1
|
Prathap R, Kirubha S, Rajan AT, Manoharan S, Elumalai K. The increasing prevalence of cancer in the elderly: An investigation of epidemiological trends. Aging Med (Milton) 2024; 7:516-527. [PMID: 39234197 PMCID: PMC11369332 DOI: 10.1002/agm2.12347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/21/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Cancer poses a significant health threat to the elderly, accounting for a substantial proportion of cancer patients aged 65 and above. As life expectancy continues to rise and the population ages, the incidence of cancer in the elderly is expected to increase further. Age is a major risk factor for the majority of common cancers, with the incidence and prevalence rising as individuals grow older. Factors such as chemoprevention and environmental carcinogen elimination may influence the process of carcinogenesis. Studies reveal that the incidence and mortality rates of various cancers in the elderly and extremely old individuals are on the rise worldwide, with most types peaking around the age of 75 to 90, followed by a sharp decline. Birth cohort and period effects also play a complex role in the connection between aging and cancer risk. Clinical trials often exclude older individuals, limiting our understanding of cancer treatments' effects on this particular age group. More research is needed to focus on the unique requirements of older adults with cancer.
Collapse
Affiliation(s)
- Ramya Prathap
- Department of Pharmaceutical Chemistry, Saveetha College of PharmacySaveetha Institute of Medical and Technical SciencesChennaiIndia
| | - Sherlin Kirubha
- Department of Pharmaceutical Chemistry, Saveetha College of PharmacySaveetha Institute of Medical and Technical SciencesChennaiIndia
| | - Aravindhan Thiyaga Rajan
- Department of Pharmaceutical Chemistry, Saveetha College of PharmacySaveetha Institute of Medical and Technical SciencesChennaiIndia
| | - Santhosh Manoharan
- Department of Pharmaceutical Chemistry, Saveetha College of PharmacySaveetha Institute of Medical and Technical SciencesChennaiIndia
| | - Karthikeyan Elumalai
- Department of Pharmaceutical Chemistry, Saveetha College of PharmacySaveetha Institute of Medical and Technical SciencesChennaiIndia
| |
Collapse
|
2
|
Xiong Y, Mo P, Yan Y, Wang S, Zhuang K, Ma Z, Chen X, Deng L, Xiong Y, Deng D, Zhang Y. The safety and efficacy of PD-1 inhibitors in patients with advanced cancers and HIV/AIDS in China. Front Oncol 2023; 13:1248790. [PMID: 37799470 PMCID: PMC10547588 DOI: 10.3389/fonc.2023.1248790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Purpose-Immunotherapy has revolutionized cancer therapy, becoming the standard of care for various malignancy treatments. Human immunodeficiency virus (HIV) patients, however, are an underserved group with limited access to clinical trials and cancer therapy. This study was to evaluate the safety and efficacy of programmed cell death 1 (PD - 1) inhibitors in patients with advanced cancer and HIV/acquired immunodeficiency syndrome (AIDS). Methods and Materials-We performed a prospective, open-label, nonrandomized, phase 1 single center study. Patients with advanced cancer and HIV/AIDS received the treatment of PD - 1 inhibitors (camrelizumab, 200 mg, administered intravenously every 3 weeks), along with combination antiretroviral therapy (cART) for HIV. Results-Sixteen participants (12 men and 4 women; median age, 46.5 (29 - 78) years) were enrolled; 1 had non - Hodgkin lymphoma (NHL), and 15 had non - AIDS - defining cancers. Safety was observed over 130 cycles of treatment with camrelizumab. Most treatment-emergent adverse events at least possibly attributed to camrelizumab were grade 1 or 2, including reactive cutaneous capillary endothelial proliferation (RCCEP) (9 participants), hearing loss (1 participant), hypophysitis (1 participant). 3 participants experienced hemorrhage due to poor performance status. HIV was controlled in all participants. Best tumor responses included 3 complete response, 5 partial response, 2 stable disease, and 6 progressive disease. The 2 years progression-free survival (PFS) was 67.0% (95% CI: -0.05, 0.00) and overall survival (OS) was 55.3% (95% CI: -0.05, 0.01) for the 16 patients who had received camrelizumab. Conclusions-This study demonstrates that camrelizumab treatment in patients with advanced cancers and HIV/AIDS was feasible and the clinical outcomes were acceptable.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pingzheng Mo
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Centre of AIDS Prevention and Cure, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajun Yan
- Centre of AIDS Prevention and Cure, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shan Wang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke Zhuang
- ABSL-III Laboratory at the Center for Animal Experiment, Wuhan University, Wuhan, Hubei, China
| | - Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoping Chen
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liping Deng
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yong Xiong
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Di Deng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Cancer Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongxi Zhang
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Centre of AIDS Prevention and Cure, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Lee SM, Schulz C, Prabhash K, Kowalski D, Szczesna A, Han B, Rittmeyer A, Talbot T, Vicente D, Califano R, Cortinovis D, Le AT, Huang D, Liu G, Cappuzzo F, Reyes Contreras J, Reck M, Palmero R, Mak MP, Hu Y, Morris S, Höglander E, Connors M, Biggane AM, Vollan HK, Peters S. First-line atezolizumab monotherapy versus single-agent chemotherapy in patients with non-small-cell lung cancer ineligible for treatment with a platinum-containing regimen (IPSOS): a phase 3, global, multicentre, open-label, randomised controlled study. Lancet 2023:S0140-6736(23)00774-2. [PMID: 37423228 DOI: 10.1016/s0140-6736(23)00774-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Despite immunotherapy advancements for patients with advanced or metastatic non-small-cell lung cancer (NSCLC), pivotal first-line trials were limited to patients with an Eastern Cooperative Oncology Group performance status (ECOG PS) 0-1 and a median age of 65 years or younger. We aimed to compare the efficacy and safety of first-line atezolizumab monotherapy with single-agent chemotherapy in patients ineligible for platinum-based chemotherapy. METHODS This trial was a phase 3, open-label, randomised controlled study conducted at 91 sites in 23 countries across Asia, Europe, North America, and South America. Eligible patients had stage IIIB or IV NSCLC in whom platinum-doublet chemotherapy was deemed unsuitable by the investigator due to an ECOG PS 2 or 3, or alternatively, being 70 years or older with an ECOG PS 0-1 with substantial comorbidities or contraindications for platinum-doublet chemotherapy. Patients were randomised 2:1 by permuted-block randomisation (block size of six) to receive 1200 mg of atezolizumab given intravenously every 3 weeks or single-agent chemotherapy (vinorelbine [oral or intravenous] or gemcitabine [intravenous]; dosing per local label) at 3-weekly or 4-weekly cycles. The primary endpoint was overall survival assessed in the intention-to-treat population. Safety analyses were conducted in the safety-evaluable population, which included all randomised patients who received any amount of atezolizumab or chemotherapy. This trial is registered with ClinicalTrials.gov, NCT03191786. FINDINGS Between Sept 11, 2017, and Sept 23, 2019, 453 patients were enrolled and randomised to receive atezolizumab (n=302) or chemotherapy (n=151). Atezolizumab improved overall survival compared with chemotherapy (median overall survival 10·3 months [95% CI 9·4-11·9] vs 9·2 months [5·9-11·2]; stratified hazard ratio 0·78 [0·63-0·97], p=0·028), with a 2-year survival rate of 24% (95% CI 19·3-29·4) with atezolizumab compared with 12% (6·7-18·0) with chemotherapy. Compared with chemotherapy, atezolizumab was associated with stabilisation or improvement of patient-reported health-related quality-of-life functioning scales and symptoms and fewer grade 3-4 treatment-related adverse events (49 [16%] of 300 vs 49 [33%] of 147) and treatment-related deaths (three [1%] vs four [3%]). INTERPRETATION First-line treatment with atezolizumab monotherapy was associated with improved overall survival, a doubling of the 2-year survival rate, maintenance of quality of life, and a favourable safety profile compared with single-agent chemotherapy. These data support atezolizumab monotherapy as a potential first-line treatment option for patients with advanced NSCLC who are ineligible for platinum-based chemotherapy. FUNDING F Hoffmann-La Roche and Genentech Inc, a member of the Roche group.
Collapse
Affiliation(s)
- Siow Ming Lee
- Department of Oncology, University College London Hospitals NHS Foundation Trust, CRUK Lung Cancer Centre of Excellence and UCL Cancer Institute, London, UK.
| | - Christian Schulz
- Bereich Pneumologie Klinik und Poliklinik für Innere Medizin II, University Hospital Regensburg, Regensburg, Germany
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, India
| | - Dariusz Kowalski
- Department of Lung Cancer and Thoracic Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aleksandra Szczesna
- Department of Lung Diseases, Mazowieckie Centrum Leczenia Chorób Płuc i Gruźlicy, Otwock, Poland
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Achim Rittmeyer
- Department of Thoracic Oncology, LKI Lungenfachklinik Immenhausen, Immenhausen, Germany
| | - Toby Talbot
- Department of Oncology, Royal Cornwall Hospitals NHS Trust, Truro, UK
| | - David Vicente
- Medical Oncology Department, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust and Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Diego Cortinovis
- Department of Medical Oncology, AAST H S Gerardo Monza, Monza, Italy
| | - Anh Tuan Le
- Cho Ray Cancer Centre, Cho Ray Hospital, Ho Chi Minh City, Viet Nam
| | - Dingzhi Huang
- Department of Thoracic Oncology, National Clinical Research Centre for Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Geoffrey Liu
- Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Federico Cappuzzo
- Department of Oncology, National Cancer Institute IRCCS Regina Elena, Rome, Italy
| | | | - Martin Reck
- Department of Thoracic Oncology, Lungen Clinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, Grosshansdorf, Germany
| | - Ramon Palmero
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, L'Hospitalet, Barcelona, Spain
| | - Milena Perez Mak
- Department of Medical Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Youyou Hu
- F Hoffmann-La Roche, Basel, Switzerland
| | | | | | | | | | | | - Solange Peters
- Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| |
Collapse
|
4
|
Stoff R, Grynberg S, Asher N, Laks S, Steinberg Y, Schachter J, Shapira-Frommer R, Ben-Betzalel G. Efficacy and toxicity of Ipilimumab-Nivolumab combination therapy in elderly metastatic melanoma patients. Front Oncol 2022; 12:1020058. [PMID: 36419899 PMCID: PMC9676931 DOI: 10.3389/fonc.2022.1020058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Introduction Immunotherapy has revolutionized metastatic Melanoma therapy. The most active regimen is combination therapy of Ipilimumab-Nivolumab (Ipi-Nivo) with response rates (RR) of ~60% and median overall survival (OS) of ~6 years. Immune-related adverse events (irAE) are common (~60% develop grade 3-4) and pose a challenge when treating frail patients. We sought to examine whether Ipi-Nivo therapy is feasible in elderly metastatic melanoma patients. Methods Electronic records of patients treated at the Ella Lemelbaum Institute with Ipi-Nivo between the years 2017-2021 were screened for age. Elderly patients were defined as age 75 and older (group A) and were matched with records of patients age <75 (group B). Records were analyzed for baseline parameters, immunotherapy regimen, RR, toxicity and progression-free survival (PFS). Results Twenty-six relevant patients age >75 (median 77) were identified and were matched to 34 younger patients (median age 57). No statistically significant differences were noted in terms of baseline parameters except for BRAF mutation status (group A 15%, group B 47%, p=0.008). Response rate in group A was 38% and is consistent with previously published data. Median PFS was the same for both groups (A = 5.5 months, B= 7.5 months, p=NS). Treatment was similarly tolerated: 35% of group A patients completed 4 cycles of therapy compared to 28% for group B (p=NS). Grade 2-4 irAE were the same (A=58%, B=66%, p=NS) and there was no difference in the need for hospitalization for G3-4 events between the groups. (A=63%, B=69%, p=NS). Further division into 4 age groups (>80 vs 75-79 in group A and 65-74 vs <65 in group B) found no difference in terms of response rate or G3-4 toxicity. Conclusion Ipilimumab-Nivolumab combination therapy in elderly metastatic Melanoma patients seems to be well tolerated and efficient in selected elderly patients based on performance status and comorbidities, just as in younger patients. This regimen seems to be a feasible treatment option for this age group.
Collapse
Affiliation(s)
- Ronen Stoff
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
- *Correspondence: Ronen Stoff, ; Shirly Grynberg,
| | - Shirly Grynberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
- *Correspondence: Ronen Stoff, ; Shirly Grynberg,
| | - Nethanel Asher
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Shachar Laks
- Surgical Division, Sheba Medical Center, Ramat Gan, Israel
| | - Yael Steinberg
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | - Jacob Schachter
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| | | | - Guy Ben-Betzalel
- Ella Lemelbaum Institute of Immuno-Oncology, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
5
|
Makuku R, Seyedmirzaei H, Tantuoyir MM, Rodríguez-Román E, Albahash A, Mohamed K, Moyo E, Ahmed AO, Razi S, Rezaei N. Exploring the application of immunotherapy against HIV infection in the setting of malignancy: A detailed review article. Int Immunopharmacol 2022; 105:108580. [PMID: 35121225 DOI: 10.1016/j.intimp.2022.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
Abstract
According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), as of 2019, approximately 42.2 million people have died from acquired immunodeficiency syndrome (AIDS)-related illnesses since the start of the epidemic. Antiretroviral therapy (ART) has significantly reduced mortality, morbidity, and incidence of the human immunodeficiency virus (HIV)/AIDS-defining cancers, taming once-dreaded disease into a benign chronic infection. Although the treatment has prolonged the patients' survival, general HIV prevalence has increased and this increase has dovetailed with an increasing incidence of Non-AIDS-defining cancers (NADCs) among people living with HIV (PLWH). This is happening when new promising approaches in both oncology and HIV infection are being developed. This review focuses on recent progress witnessed in immunotherapy approaches against HIV-related, Non-AIDS-defining cancers (NADCs), and HIV infection.
Collapse
Affiliation(s)
- Rangarirai Makuku
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marcarious M Tantuoyir
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Accra, Ghana; Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana
| | - Eduardo Rodríguez-Román
- Center for Microbiology and Cell Biology, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela; Universal Scientific Education and Research Network (USERN), Caracas, Venezuela
| | - Assil Albahash
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kawthar Mohamed
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Universal Scientific Education and Research Network (USERN), Manama, Bahrain
| | - Ernest Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe; Department of Mathematics and Statistics, Midlands State University, Zimbabwe
| | | | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
6
|
Xiong A, Wang J, Zhou C. Immunotherapy in the First-Line Treatment of NSCLC: Current Status and Future Directions in China. Front Oncol 2021; 11:757993. [PMID: 34900707 PMCID: PMC8654727 DOI: 10.3389/fonc.2021.757993] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Lung cancer causes significant morbidity and mortality in China and worldwide. In China, lung cancer accounts for nearly one-fourth of all cancer deaths. Non-small cell lung cancer (NSCLC) is the predominant type of lung cancer, accounting for approximately 80%–85% of all lung cancer cases. Immunotherapy with immune checkpoint inhibitors (ICIs) is revolutionizing the treatment of NSCLC. Immune checkpoint molecules, including PD-1/PD-L1 and CTLA-4, can suppress immune responses by delivering negative signals to T cells. By interfering with these immunosuppressive axes, ICIs unleash antitumor immune responses, ultimately eliminating cancer cells. ICIs have demonstrated promising antitumor efficacy in NSCLC, and mounting evidence supports the use of ICIs in treatment-naïve patients with advanced NSCLC. A comprehensive overview of current and emerging ICIs for the first-line treatment of NSCLC in China will facilitate a better understanding of NSCLC immunotherapy using ICIs and optimize the clinical use of ICIs in previously untreated Chinese patients with NSCLC. Herein, we review the efficacy and safety of currently approved and investigational ICIs as the first-line treatment of NSCLC in China. We also discuss the challenges limiting more widespread use of ICIs and future directions in the first-line treatment of NSCLC using ICIs.
Collapse
Affiliation(s)
- Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jiali Wang
- Medical Research Lab (MRL) Global Medical Affairs, MSD China, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zhang H, Zhao W, Li X, He Y. Cholesterol Metabolism as a Potential Therapeutic Target and a Prognostic Biomarker for Cancer Immunotherapy. Onco Targets Ther 2021; 14:3803-3812. [PMID: 34188488 PMCID: PMC8232957 DOI: 10.2147/ott.s315998] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
Checkpoint-based immunotherapies, such as programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1) inhibitors, have shown promising clinical outcomes in many types of cancers. Unfortunately, the response rate of immune checkpoint inhibitors is low. It is very important to discover novel therapeutic targets and prognostic biomarkers. Cholesterol metabolism has been demonstrated to be related to the occurrence and development of a variety of tumors and may provide a new breakthrough in the development of immunotherapy. First of all, cholesterol metabolism in the tumor microenvironment affects the function of tumor-infiltrating immune cells. In addition, intracellular cholesterol homeostasis is an important regulator of immune cell function. Furthermore, drugs that act on cholesterol metabolism affect the efficacy of immunotherapy. What is more, peripheral blood cholesterol level can be a biomarker to predict the efficacy of immunotherapy. In this review, we aimed to explore the potential role of cholesterol metabolism on immunotherapy. By summarizing the major findings of recent preclinical and clinical studies on cholesterol metabolism in immunotherapy, we suggested that cholesterol metabolism could be a potential therapeutic target and a prognostic biomarker for immunotherapy.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Wencheng Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, People’s Republic of China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, 200433, People’s Republic of China
- Tongji University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
8
|
Chen S, Li R, Zhang Z, Huang Z, Cui P, Jia W, Zhang S, Tao H, Wang L, Li X, Wang J, Ma J, Liu Z, Huang D, Zheng X, Saito Y, Ichiki Y, Hu Y. Prognostic value of baseline and change in neutrophil-to-lymphocyte ratio for survival in advanced non-small cell lung cancer patients with poor performance status receiving PD-1 inhibitors. Transl Lung Cancer Res 2021; 10:1397-1407. [PMID: 33889518 PMCID: PMC8044483 DOI: 10.21037/tlcr-21-43] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Advanced non-small cell lung cancer (NSCLC) patients with poor performance status (PS) are likely to receive programmed cell death 1 (PD-1) inhibitors, despite limited evidence. The aim of the present study was to report the clinical outcomes and potential prognostic biomarkers in advanced NSCLC patients with poor PS receiving PD-1 inhibitors. Methods We conducted a retrospective study enrolling 101 advanced NSCLC patients from our hospital. Data of patients with poor PS 2-4 receiving PD-1 inhibitors were retrieved from medical records. Patients were stratified based on dichotomized baseline neutrophil-to-lymphocyte ratio (NLR), change in NLR (ΔNLR; 6 weeks post-treatment NLR minus baseline NLR), and their combination. The receiver-operating characteristic curve was used to assess the best cutoff for NLR. Multivariate Cox analysis was used to evaluate the prognostic value of NLR and ΔNLR for patients' survival. Results The optimal cutoff for NLR was 4.5. The median follow-up was 25.7 months, baseline NLR ≥4.5, and ΔNLR ≥0, which were independently and significantly associated with shorter overall survival (both P=0.002) and progression-free survival (P=0.004 for NLR and P<0.001 for ΔNLR). Furthermore, simultaneous elevation of the 2 factors was associated with worsened prognosis; patients with both NLR ≥4.5 and ΔNLR ≥0 had significantly increased risk of death [hazards ratio (HR): 10.79, 95% confidence interval (CI): 4.30-27.10] and disease progression (HR: 10.49, 95% CI: 4.39-25.09), compared with both low NLR and ΔNLR patients. Patients with either NLR ≥4.5 or ΔNLR ≥0 showed an intermediate risk for death (HR: 3.12, 95% CI: 1.35-7.21) and progression (HR: 3.45, 95% CI: 1.62-7.36). Conclusions High baseline NLR and increased post-treatment NLR might aid in the stratification of high progression and death risk groups in advanced NSCLC patients with poor PS receiving PD-1 inhibitors.
Collapse
Affiliation(s)
- Shixue Chen
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Ruixin Li
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Zhibo Zhang
- The 78th Group Army Hospital of Chinese PLA, Mudanjiang, China
| | - Ziwei Huang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Pengfei Cui
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Wangping Jia
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China.,Institute of Geriatrics, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatrics Diseases, Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sujie Zhang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Haitao Tao
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Lijie Wang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Li
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Jinliang Wang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Junxun Ma
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Zhefeng Liu
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Di Huang
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China.,School of Medicine, Nankai University, Tianjin, China
| | - Xuan Zheng
- Department of Graduate Administration, Chinese PLA General Hospital, Beijing, China.,Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshinobu Ichiki
- Department of General Thoracic Surgery, National Hospital Organization, Saitama Hospital, Wako, Japan.,Second Department of Surgery, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | - Yi Hu
- Department of Medical Oncology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
9
|
Takamori S, Takada K, Shimokawa M, Matsubara T, Fujishita T, Ito K, Toyozawa R, Yamaguchi M, Okamoto T, Yoneshima Y, Tanaka K, Okamoto I, Tagawa T, Mori M. Clinical utility of pretreatment Glasgow prognostic score in non-small-cell lung cancer patients treated with immune checkpoint inhibitors. Lung Cancer 2020; 152:27-33. [PMID: 33341085 DOI: 10.1016/j.lungcan.2020.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Immune checkpoint inhibitors (ICIs) have become one of the standard therapies in non-small-cell lung cancer (NSCLC). Although inflammatory indices, including Glasgow prognostic score (GPS), modified Glasgow prognostic score (mGPS), and C-reactive protein/albumin ratio (CAR) were reported to be reliable predictors for survival in cancer patients, their clinical utility in NSCLC patients treated with ICIs is unknown. MATERIALS AND METHODS Advanced or recurrent NSCLC patients (n = 304) treated with ICI monotherapy at the National Hospital Organization Kyushu Cancer Center and Kyushu University Hospital between January 2016 and December 2019 were analyzed. Information on patient demographics, GPS, mGPS, and CAR at diagnosis were collected. The time-dependent area under curves (AUCs) of receiver operating characteristic curves for the prediction of overall survival (OS) for each factor were compared. RESULTS Of the three indices, GPS was the most significantly correlated with the degree of disease control rate (DCR) (DCR of GPS of 0, 1, and 2: 63.6 %, 49.4 %, and 41.4 %, respectively). The time-dependent AUC values of GPS for the prediction of OS were superior to those of mGPS and CAR (time-dependent AUC values of GPS, mGPS, and CAR for the prediction of 1-year OS: 0.7005, 0.6736, and 0.6565, respectively). GPS was significantly correlated with performance status (PS) (P < 0.0001) and clinical stage (P = 0.0139). GPS in combination with PS effectively predicted survival at 1 year ranging from 83.5 % (GPS = 0, PS = 0) to 25.0 % (GPS = 2, PS = 2, 3). A multivariable analysis revealed that GPS was an independent predictor of PFS and OS (P = 0.0009 and P = 0.0100, respectively). CONCLUSIONS We report for the first time that GPS represents a simple and useful prognostic factor in NSCLC patients treated with ICIs and should be validated prospectively.
Collapse
Affiliation(s)
- Shinkichi Takamori
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan.
| | - Kazuki Takada
- Department of Thoracic Surgery, Kitakyushu Municipal Medical Center, 2-1-1 Bashaku, Kokurakita-ku, Kitakyushu, Fukuoka, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Taichi Matsubara
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Takatoshi Fujishita
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Kensaku Ito
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Masafumi Yamaguchi
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Yasuto Yoneshima
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
Holmen Olofsson G, Jensen AWP, Idorn M, thor Straten P. Exercise Oncology and Immuno-Oncology; A (Future) Dynamic Duo. Int J Mol Sci 2020; 21:ijms21113816. [PMID: 32471301 PMCID: PMC7312459 DOI: 10.3390/ijms21113816] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Recent advances in clinical oncology is based on exploiting the capacity of the immune system to combat cancer: immuno-oncology. Thus, immunotherapy of cancer is now used to treat a variety of malignant diseases. A striking feature is that even patients with late-stage disease may experience curative responses. However, most patients still succumb to disease, and do not benefit from treatment. Exercise has gained attention in clinical oncology and has been used for many years to improve quality of life, as well as to counteract chemotherapy-related complications. However, more recently, exercise has garnered interest, largely due to data from animal studies suggesting a striking therapeutic effect in preclinical cancer models; an effect largely mediated by the immune system. In humans, physical activity is associated with a lower risk for a variety of malignancies, and some data suggest a positive clinical effect for cancer patients. Exercise leads to mobilization of cells of the immune system, resulting in redistribution to different body compartments, and in preclinical models, exercise has been shown to lead to immunological changes in the tumor microenvironment. This suggests that exercise and immunotherapy could have a synergistic effect if combined.
Collapse
Affiliation(s)
- Gitte Holmen Olofsson
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), University Hospital Herlev, 2730 Herlev, Denmark;
- Correspondence: (G.H.O.); (P.t.S.)
| | - Agnete Witness Praest Jensen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), University Hospital Herlev, 2730 Herlev, Denmark;
| | - Manja Idorn
- Department of Biomedicine, Faculty of Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Per thor Straten
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), University Hospital Herlev, 2730 Herlev, Denmark;
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (G.H.O.); (P.t.S.)
| |
Collapse
|