1
|
Xia W, Yang J, Li H, Li L, Liu J. Comparing Genomic Profiles of ALK Fusion-Positive and ALK Fusion-Negative Nonsmall Cell Lung Cancer Patients. Glob Med Genet 2024; 11:175-186. [PMID: 38873557 PMCID: PMC11175831 DOI: 10.1055/s-0044-1787301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Background Anaplastic lymphoma kinase ( ALK ) fusion events account for 3 to 7% of genetic alterations in patients with nonsmall cell lung cancer (NSCLC). This study aimed to explore the landscape of ALK fusion-positive and ALK fusion-negative in a large cohort of NSCLC patients. Methods The formalin-fixed paraffin-embedded specimens of NSCLC patients who underwent next-generation sequencing from 2020 to 2023 in Yinfeng Gene Technology Co., Ltd. Clinical laboratory were included in this study. Results In the current study, a total of 180 (3.20%) patients tested positive for ALK fusions in 5,622 NSCLC samples. Within the ALK -positive cohort, a total of 228 ALK fusions were identified. Furthermore, five novel ALK fusion partners, including DAB1-ALK , KCMF1-ALK , KIF13A-ALK , LOC643770-ALK , and XDH-ALK were identified. In cases with ALK fusion-positive, TP53 alterations were the most prevalent (26.3%), followed by CDKN2A (8.4%), epidermal growth factor receptor ( EGFR , 5.6%), and ALK (5.6%). By contrast, EGFR alterations were most prevalent (51%) in patients with ALK fusion-negative NSCLC, followed by TP53 (42.7%), KRAS (11.6%), and CDKN2A (11.3%). A total of 10 cases where ALK fusion co-occurred with EGFR mutations were also identified. Notably, the ALK fusion positivity rate was higher in younger patients ( p < 0.0001) and in female patients ( p = 0.0429). Additionally, positive ALK test results were more prevalent in patients with high programmed death-ligand 1 expression, especially when applying a 50% cutoff. Conclusions Collectively, these findings offer valuable genomic insights that could inform the personalized clinical care of patients with NSCLC harboring ALK fusions within the context of precision medicine.
Collapse
Affiliation(s)
- Wenchao Xia
- Department of Thoracic Surgery, Tianjin Chest Hospital, Tianjin, People's Republic of China
| | - Jing Yang
- Department of Pathogenic Biology, Logistics University of Chinese People's Armed Police Force, Tianjin, People's Republic of China
| | - Hongbin Li
- Department of Oncology, Rongcheng County People's Hospital, Baoding, People's Republic of China
| | - Ling Li
- Department of Medicine, Yinfeng Gene Technology Co., Ltd., Jinan, People's Republic of China
| | - Jinfeng Liu
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, People's Republic of China
| |
Collapse
|
2
|
Blasi M, Kuon J, Lüders H, Misch D, Kauffmann-Guerrero D, Hilbrandt M, Kazdal D, Falkenstern-Ge RF, Hackanson B, Dintner S, Faehling M, Kirchner M, Volckmar AL, Kopp HG, Allgäuer M, Grohé C, Tufman A, Reck M, Frost N, Stenzinger A, Thomas M, Christopoulos P. First-line immunotherapy for lung cancer with MET exon 14 skipping and the relevance of TP53 mutations. Eur J Cancer 2024; 199:113556. [PMID: 38271745 DOI: 10.1016/j.ejca.2024.113556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The efficacy of checkpoint inhibitors for non-small cell lung cancer (NSCLC) with MET exon 14 skipping (METΔ14ex) remains controversial. MATERIALS AND METHODS 110 consecutive METΔ14ex NSCLC patients receiving first-line chemotherapy (CHT) and/or immunotherapy (IO) in 10 German centers between 2016-2022 were analyzed. RESULTS Combined CHT-IO was given to 35/110 (32%) patients, IO alone to 43/110 (39%), and CHT to 32/110 (29%) upfront. Compared to CHT, CHT-IO showed longer progression-free survival (median PFS 6 vs. 2.5 months, p = 0.004), more objective responses (ORR 49% vs. 28%, p = 0.086) and numerically longer overall survival (OS 16 vs. 10 months, p = 0.240). For IO monotherapy, OS (14 vs. 16 months) and duration of response (26 vs. 22 months) were comparable to those of CHT-IO. Primary progressive disease (PD) was more frequent with IO compared to CHT-IO (13/43 vs. 3/35, p = 0.018), particularly for never-smokers (p = 0.041). Higher PD-L1 TPS were not associated with better IO outcomes, but TP53 mutated tumors showed numerically improved ORR (56% vs. 32%, p = 0.088) and PFS (6 vs. 3 months, p = 0.160), as well as longer OS in multivariable analysis (HR=0.54, p = 0.034) compared to their wild-type counterparts. Any second-line treatment was administered to 35/75 (47%) patients, with longer survival for capmatinib or tepotinib compared to crizotinib (PFS 10 vs. 3 months, p = 0.013; OS 16 vs. 13 months, p = 0.270). CONCLUSION CHT-IO is superior to CHT, and IO alone also effective for METΔ14ex NSCLC, especially in the presence of TP53 mutations and independent of PD-L1 expression, but never-smokers are at higher risk of primary PD.
Collapse
Affiliation(s)
- Miriam Blasi
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jonas Kuon
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany; Lungenklinik Loewenstein, Department of Thoracic Oncology, Loewenstein, Germany
| | - Heike Lüders
- Department of Respiratory Medicine, Evangelische Lungenklinik Berlin, Berlin, Germany
| | - Daniel Misch
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, University Hospital, LMU Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Hilbrandt
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Daniel Kazdal
- Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Björn Hackanson
- Department of Hematology/Oncology, University Medical Center Augsburg, Augsburg, Germany as part of the BZKF (Bavarian Center for Cancer Research) and Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Sebastian Dintner
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany, part of the Bavarian Cancer Research Center (BZKF), Augsburg, Germany
| | - Martin Faehling
- Klinik für Kardiologie, Angiologie und Pneumologie, Klinikum Esslingen, Germany
| | - Martina Kirchner
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Georg Kopp
- Robert Bosch Centrum für Tumorerkrankungen (RBCT), Stuttgart, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Grohé
- Department of Respiratory Medicine, Evangelische Lungenklinik Berlin, Berlin, Germany
| | - Amanda Tufman
- Department of Medicine V, University Hospital, LMU Munich, Germany; Comprehensive Pneumology Center Munich (CPC-M), member of the German Center for Lung Research (DZL), Munich, Germany
| | - Martin Reck
- Department of Pneumology, LungenClinic Großhansdorf, Großhansdorf, Germany; Airway Research Center North (ARCN), member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Nikolaj Frost
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Albrecht Stenzinger
- Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany; Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital and National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership Between DKFZ and Heidelberg University Hospital, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
3
|
Kiełbowski K, Żychowska J, Becht R. Anaplastic lymphoma kinase inhibitors-a review of anticancer properties, clinical efficacy, and resistance mechanisms. Front Pharmacol 2023; 14:1285374. [PMID: 37954850 PMCID: PMC10634320 DOI: 10.3389/fphar.2023.1285374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Fusions and mutations of anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, have been identified in several neoplastic diseases. Rearranged ALK is a driver of tumorigenesis, which activates various signaling pathway associated with proliferation and survival. To date, several agents that target and inhibit ALK have been developed. The most studied ALK-positive disease is non-small cell lung cancer, and three generations of ALK tyrosine kinase inhibitors (TKIs) have been approved for the treatment of metastatic disease. Nevertheless, the use of ALK-TKIs is associated with acquired resistance (resistance mutations, bypass signaling), which leads to disease progression and may require a substitution or introduction of other treatment agents. Understanding of the complex nature and network of resistance mutations may allow to introduce sequential and targeted therapies. In this review, we aim to summarize the efficacy and safety profile of ALK inhibitors, describe off-target anticancer effects, and discuss resistance mechanisms in the context of personalized oncology.
Collapse
Affiliation(s)
| | | | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Tian X, Li Y, Huang Q, Zeng H, Wei Q, Tian P. High PD-L1 Expression Correlates with an Immunosuppressive Tumour Immune Microenvironment and Worse Prognosis in ALK-Rearranged Non-Small Cell Lung Cancer. Biomolecules 2023; 13:991. [PMID: 37371571 PMCID: PMC10296689 DOI: 10.3390/biom13060991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
High tumour programmed cell death-ligand 1 (PD-L1) expression is associated with poor progression-free survival (PFS) after tyrosine kinase inhibitor (TKI) therapy in ALK-rearranged non-small cell lung cancer (NSCLC). However, the characteristics of the tumour microenvironment (TME) and their prognostic values in ALK-rearranged NSCLC are unknown. Here, we collected tumour tissues from pretreated ALK-rearranged NSCLC patients, immunohistochemical staining was used to assess PD-L1 expression, and tumour-infiltrating immune cells were determined via multiplex immunofluorescence staining (mIF). Our data showed that the median values of PFS for the high PD-L1 group and low PD-L1 group who received ALK-TKI treatment were 4.4 and 16.4 months, respectively (p = 0.008). The median overall survival (OS) of the two groups was 24.0 months and not reached, respectively (p = 0.021). Via univariate and multivariate analyses, a high PD-L1 expression and a worse ECOG PS were determined to be independent prognostic factors of OS (HR = 3.35, 95% CI: 1.23-9.11, p = 0.018; HR = 6.42, 95% CI: 1.45-28.44, p = 0.014, respectively). In addition, the high PD-L1 group had increased Tregs and exhausted CD8+ T cells in both the tumour and stroma (all p < 0.05). High PD-L1 expression was an adverse predictive and prognostic biomarker for ALK-rearranged NSCLC. The characteristics of the TME in patients with high PD-L1 expression were shown to have an immunosuppressive status.
Collapse
Affiliation(s)
| | | | | | | | | | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, Lung Cancer Center, West China Hospital, Sichuan University, Precision Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China; (X.T.); (Y.L.); (Q.H.); (H.Z.); (Q.W.)
| |
Collapse
|
5
|
Pan Y, Liu X, Zhang W, Wang W, Wang H, Luo L, Jia K, Shao C, Mao S, Qiu T, Ni J, Yu J, Wang L, Chen B, Xiong A, Gao G, Chen X, Wu F, Zhou C, Wu C, Ren S. Association of PD-L1 expression with efficacy of alectinib in advanced NSCLC patients with ALK fusion. Lung Cancer 2023; 181:107233. [PMID: 37201296 DOI: 10.1016/j.lungcan.2023.107233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Programmed cell death-ligand 1 (PD-L1) expression was found to be a biomarker of inferior efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in EGFR-mutated non-small cell lung cancer (NSCLC). However, whether PD-L1 expression could also serve as a similar biomarker in anaplastic lymphoma kinase (ALK)-positive patients, especially for those treated with front-line alectinib, remains unclear. The aim of the study is to investigate the association of PD-L1 expression and efficacy of alectinib in this setting. METHODS From January 2018 to March 2020, 225 patients with ALK-rearranged lung cancer were consecutively collected at Shanghai Pulmonary Hospital, Tongji University. Baseline PD-L1 expression was detected using immunohistochemistry (IHC) in 56 patients of advanced ALK-rearranged lung cancer who received front-line alectinib. RESULTS Among the 56 eligible patients, 30 (53.6%) were PD-L1 expression negative, 19 (33.9%) patients had TPS 1%-49% and 7 (12.5%) had TPS ≥ 50%.We found no statistically significant associations between PD-L1 positivity and objective response rate (ORR, 90.0% vs. 80.8%, p = 0.274) or progression-free survival (PFS, not reached vs. not reached, HR: 0.98, 95 %CI: 0.37-2.61, p = 0.97) in patients treated with alectinib. Meanwhile, patients with PD-L1 high expression (TPS ≥ 50%) had a trend of longer PFS (not reached vs. not reached, p = 0.61). CONCLUSIONS PD-L1 expression might not serve as a predict biomarker for the efficacy of front-line alectinib in ALK-positive NSCLC patients.
Collapse
Affiliation(s)
- Yingying Pan
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Xinyu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Wanying Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Haowei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Libo Luo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Chuchu Shao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Shiqi Mao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Tianyu Qiu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Jun Ni
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu 215699, PR China
| | - Jia Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Anwen Xiong
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Guanghui Gao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Xiaoxia Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, PR China.
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Cancer Institute, Tongji University School of Medicine, Shanghai 200433, PR China.
| |
Collapse
|