1
|
Zhao R, Shu Y, Xu W, Jiang F, Ran P, Pan L, Wang J, Wang W, Zhao J, Wang Y, Fu G. The efficacy of immunotherapy in non-small cell lung cancer with KRAS mutation: a systematic review and meta-analysis. Cancer Cell Int 2024; 24:361. [PMID: 39487476 PMCID: PMC11529330 DOI: 10.1186/s12935-024-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024] Open
Abstract
PURPOSE The KRAS mutation is highly prevalent in NSCLC and is associated with poor efficacy of immunotherapy. Nevertheless, the impact of KRAS mutation, mutation subtypes, and co-mutations on the effectiveness of immunotherapy remains uncertain. This study aimed to assess the influence of the KRAS mutation on the effectiveness of immunotherapy in NSCLC, specifically examining different subtypes of KRAS mutations and co-mutations. METHODS We performed an extensive search of multiple databases, covering the period from January 1, 2000, to December 5, 2023. A total of 24 articles met our inclusion criteria and were included in this study. A comparative analysis assessed the influence of different subgroups, including KRAS mutation, KRAS wild-type, KRAS G12C mutation, KRAS G12D mutation, and KRAS with co-mutations in NSCLC with immunotherapy. The study outcomes include HR, with corresponding 95% CI and P-values for OS and PFS using Review Manager 5.4 software for the meta-analysis. RESULT The KRAS mutation appears to have a more beneficial impact on OS (HR 0.54 [95% CI: 0.41-0.71]; P < 0.00001) and PFS (HR 0.63 [95% CI: 0.53-0.76]; P < 0.00001) in NSCLC patients receiving immunotherapy compared to those without immunotherapy. The presence of KRASG12C mutation has been found to have a positive impact on PFS (HR 0.39 [95% CI: 0.25-0.62]; P < 0.0001) in NSCLC patients who undergo immunotherapy, compared to those who did not receive immunotherapy. KRAS non-G12D mutation is considerably associated with longer OS (HR 1.52 [95% CI: 1.10-2.10]; P = 0.01). The clinical benefit in OS between patients without STK11 co-mutation and those who have KRAS mutation with STK11 is significant (HR 1.46 [95% CI: 1.10-1.93]; P = 0.008). Comparing the impact of OS patients without KEAP1/NFE2L2 mutation to those with KRAS and KEAP1/NFE2L2 co-mutations showed a significant impact (HR 1.89 [95% CI: 1.33-2.68]; P = 0.0004). CONCLUSION The KRAS mutation and KRAS G12C mutation confer benefits that impact OS and PFS in NSCLC patients treated with immunotherapy. However, the KRAS G12D mutation negatively impacts OS compared to the KRAS non-G12D mutation. Furthermore, KRAS co-mutations involving STK11 and KEAP1/NFE2L2 are associated with a negative impact on the efficacy of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- The Clinical Medical College, Shandong First Medical University, (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, China
| | - Yang Shu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China
| | - Wei Xu
- Shandong University, Jinan, Shandong, 250012, China
| | - Fengxian Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China
| | - Pancen Ran
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China
| | - Liying Pan
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China
| | - Jingliang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China
| | - Weihao Wang
- The Clinical Medical College, Shandong First Medical University, (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, China
| | - Jing Zhao
- The Clinical Medical College, Shandong First Medical University, (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, China
| | - Yahui Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China
| | - Guobin Fu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- The Clinical Medical College, Shandong First Medical University, (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, China.
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250013, China.
- Shandong University, Jinan, Shandong, 250012, China.
- The Third Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250031, China.
- Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
2
|
Kato Y, Udagawa H, Matsumoto S, Izumi H, Ohe Y, Kato T, Nishino K, Miyamoto S, Kawana S, Chikamori K, Shingyoji M, Sato Y, Takada Y, Toyozawa R, Azuma K, Tanaka Y, Sakai T, Shibata Y, Sugiyama E, Nosaki K, Zenke Y, Umemura S, Yoh K, Seike M, Goto K. Efficacy of immune checkpoint inhibitors plus platinum-based chemotherapy as 1st line treatment for patients with non-small cell lung cancer harboring HER2 mutations: Results from LC-SCRUM-Asia. Lung Cancer 2024; 197:107992. [PMID: 39423763 DOI: 10.1016/j.lungcan.2024.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION HER2 mutations are reported to occur in 2%-5% of all cases of non-small cell lung cancer (NSCLC). The clinical outcomes in patients with HER2-mutant NSCLC treated with immune checkpoint inhibitors (ICIs) plus platinum-based chemotherapy as 1st line treatment still remain unclear. METHODS Using the large-scale clinico-genomic database of LC-SCRUM-Asia, the clinico-genomic characteristics and therapeutic outcomes of patients with HER2-mutant NSCLC were investigated. RESULTS Of the 15,251 patients with NSCLC enrolled in the LC-SCRUM-Asia database, tumor HER2 mutations were detected in 402 patients (2.6 %). The most common subtype of HER2 mutations was exon 20 in-frame insertions (79 %), followed in frequency by mutations in the tyrosine kinase domain other than Exon20ins (10 %) and mutations in extracellular domains (7 %). NSCLCs harboring HER2 mutations showed a higher tumor mutation burden (TMB) as compared with NSCLCs harboring EGFR mutations or ALK fusions (median: 4.22 vs. 2.54 and 2.52 mutation per megabase, respectively). Of the 402 patients, 268 patients had received platinum-based chemotherapy with ICIs (Chemo-ICI, n = 95) or without ICI (Chemo-alone, n = 173) as 1st line treatment. The progression-free survival (PFS) was significantly longer in the Chemo-ICI group as compared with the Chemo-alone group (median 8.5 vs. 6.3 months; HR [95 %CI]: 0.66 [0.50-0.88]; P < 0.005). Multivariate analysis identified use of ICIs in addition to platinum-based chemotherapy as an independent favorable prognostic factor for PFS. There was no significant difference in the overall survival between the patients of the Chemo-ICI and Chemo-alone groups (median 31.1 vs. 23.3 months; HR [95 %CI]: 0.80 [0.57-1.12], P = 0.20). CONCLUSIONS Addition of ICIs to platinum-based chemotherapy in 1st line treatment may improve the PFS in patients with HER2-mutant NSCLC. The relatively high TMB might be involved in the prolongation of the PFS in patients with HER2-mutant NSCLC receiving platinum-based chemotherapy with ICIs.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hibiki Udagawa
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Izumi
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Terufumi Kato
- Department of Thoracic Oncology, Kanagawa Cancer Center, Yokohama, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Miyamoto
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Sachiko Kawana
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Kenichi Chikamori
- Department of Medical Oncology, National Hospital Organization Yamaguchi-Ube Medical Center, Ube, Japan
| | | | - Yuki Sato
- Department of Respiratory Medicine, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Yuji Takada
- Department of Respiratory Medicine, Itami City Hospital, Itami, Japan
| | - Ryo Toyozawa
- Department of Thoracic Oncology, NHO Kyushu Cancer Center, Fukuoka, Japan
| | - Koichi Azuma
- Division of Respirology, Neurology, and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Yu Tanaka
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuya Sakai
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yuji Shibata
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Eri Sugiyama
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kaname Nosaki
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Yoshitaka Zenke
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Shigeki Umemura
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan.
| |
Collapse
|
3
|
Jing Y, Cheng R, Zeng H, Huang Q, He D, Sun J, Tian P, Li Y. Dissecting the Clinical Characteristics and Treatment Outcomes Correlates of KRAS G12C-Mutated Non-Small Cell Lung Cancer. Int J Gen Med 2024; 17:4507-4517. [PMID: 39386149 PMCID: PMC11461760 DOI: 10.2147/ijgm.s484435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024] Open
Abstract
Background KRAS mutation is one of the most common driver oncogenes in non-small cell lung cancer (NSCLC), and the most common mutation subtype is G12C. However, there is still a lack of efficacy and prognosis data related to immunotherapy, which hinders the promotion of new strategies. Methods Clinical characteristics and treatment outcomes were collected and analyzed for patients with NSCLC harboring KRAS mutations at West China Hospital of Sichuan University from June 2013 to March 2023. Results Among the 231 patients with KRAS-mutated NSCLC, 29.4% had KRAS G12C mutations. Compared to the KRAS non-G12C NSCLC group, the KRAS G12C NSCLC group had a greater number of pack-years. The programmed death ligand 1 expression and the proportion of patients with a high tumor mutational burden were not significantly different between the two groups. Similar patterns of TP53, STK11, and CDKN2A mutations were observed between KRAS G12C and KRAS non-G12C NSCLC groups. The median progression-free survival (PFS) (8.4 vs 7.0 months, p=0.100) and overall survival (OS) (12.1 vs 18.1 months, p=0.590) were not statistically different between KRAS G12C and KRAS non-G12C. Compared to patients with KRAS G12C NSCLC who did not receive immunotherapy, patients who received immunotherapy had a better objective response rate (46.2% vs 0%, p=0.002), PFS (12.2 vs 7.5 months, p=0.087) and OS (49.9 vs 11.1 months, p=0.12). Conclusion Patients with KRAS G12C were more likely to be smokers. Advanced KRAS G12C NSCLC patients who received immunotherapy had a better ORR than those who did not, suggesting that patients with G12C mutations are more likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Yawan Jing
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Gerontology and Geriatrics, Tibet Autonomous Region People’s Hospital, Lhasa, Tibet Autonomous Region, People’s Republic of China
| | - Ruixin Cheng
- Department of Radiation Oncology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, People’s Republic of China
| | - Hao Zeng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Qin Huang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Dongyu He
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Jiayi Sun
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Panwen Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Yalun Li
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Center/Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Tsukada A, Morita C, Shimizu Y, Uemura Y, Naka G, Takasaki J, Nokihara H, Izumi S, Hojo M. Efficacy of first-line immune checkpoint inhibitor and anti-angiogenic agent combination therapy for Kirsten rat sarcoma viral antigen-mutant advanced non-small-cell lung cancer: a systematic review and network meta-analysis. Thorac Cancer 2024; 15:1854-1862. [PMID: 39086088 PMCID: PMC11367661 DOI: 10.1111/1759-7714.15413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Recent advancements in advanced non-small-cell lung cancer (NSCLC) treatment have significantly improved primary therapy outcomes owing to the emergence of various molecular targeted therapies and immune checkpoint inhibitors (ICIs). However, for Kirsten rat sarcoma viral antigen (KRAS) mutations, molecular targeted drugs, such as sotorasib, are not applicable as first-line treatments, and the optimal primary treatment remains unclear. Therefore, we aimed to investigate the efficacy of ICI combination therapy as first-line treatment for KRAS-mutant NSCLC. METHODS We conducted a systematic search for phase 3 randomized controlled trials (RCTs) that presented data on KRAS mutation status in advanced NSCLC. The primary endpoints were progression-free survival (PFS) and overall survival (OS). A random-effects network meta-analysis was conducted to perform direct and indirect comparisons among treatment groups. RESULTS Six RCTs were eligible for inclusion. In the network meta-analysis for KRAS-mutant NSCLC, Chemo + bevacizumab (Bev) + ICI was associated with improved PFS (hazard ratio [HR] 0.38, 95% confidence interval [CI] 0.22-0.64), followed by Chemo + ICI + ICI (HR 0.66, 95% CI 0.47-0.93) and Chemo + ICI (HR 0.67, 95% CI 0.49-0.91). The most beneficial effect on OS was observed with Chemo + Bev + ICI (HR 0.50, 95% CI 0.34-0.73), followed by Chemo + ICI + ICI (HR 0.64, 95% CI 0.48-0.87) and Chemo + ICI (HR 0.72, 95% CI 0.56-0.92). Regarding OS in wild-type KRAS, ICI + ICI (HR 0.73, 95% CI 0.50-1.07) produced the most favorable effects, followed by Chemo + ICI (HR 0.79, 95% CI 0.63-0.99). CONCLUSION The efficacy of Chemo + Bev + ICI is potentially high for improving PFS and OS in KRAS-mutant NSCLC. In advanced NSCLC, the presence or absence of KRAS mutations may need to be considered when administering first-line treatment.
Collapse
Affiliation(s)
- Akinari Tsukada
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| | - Chie Morita
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| | - Yosuke Shimizu
- Center for Clinical SciencesNational Center for Global Health and MedicineTokyoJapan
| | - Yukari Uemura
- Center for Clinical SciencesNational Center for Global Health and MedicineTokyoJapan
| | - Go Naka
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| | - Jin Takasaki
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| | - Hiroshi Nokihara
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| | - Shinyu Izumi
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| | - Masayuki Hojo
- Department of Respiratory MedicineNational Center for Global Health and MedicineTokyoJapan
| |
Collapse
|
5
|
Oya Y, Imaizumi K, Mitsudomi T. The next-generation KRAS inhibitors…What comes after sotorasib and adagrasib? Lung Cancer 2024; 194:107886. [PMID: 39047616 DOI: 10.1016/j.lungcan.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
The Kirsten rat sarcoma viral oncogene homolog (KRAS) is one of the first driver oncogenes identified in human cancer in the early 1980s. However, it has been deemed 'undruggable' for nearly four decades until the discovery of KRAS G12C covalent inhibitors, which marked a pivotal breakthrough. Currently, sotorasib and adagrasib have been approved by the US FDA to treat patients with non-small cell lung cancer (NSCLC) harboring KRAS G12C mutation. However, their efficacy is somewhat limited compared to that of other targeted therapies owing to intrinsic resistance or early acquisition of resistance. While G12C is the predominant subtype of KRAS mutations in NSCLC, G12D/V is prevalent in colorectal and pancreatic cancers. These facts have spurred active research to develop more potent KRAS G12C inhibitors as well as inhibitors targeting non-G12C KRAS mutations. Novel approaches, such as molecular shielding or targeted protein degradation, are also under development. Combining KRAS inhibitors with inhibitors of the receptor-tyrosine kinase-RAS-mitogen-activated protein kinase (MAPK) pathway is underway to counteract redundant feedback mechanisms. Additionally, immunological approaches utilizing T-cell receptor (TCR)-engineered T cell therapy or vaccines, and Hapimmune antibodies are ongoing. This review delineates the recent advancements in KRAS inhibitor development in the post-sotorasib/adagrasib era, with a focus on NSCLC.
Collapse
Affiliation(s)
- Yuko Oya
- Department of Respiratory Medicine, Fujita Health University, Japan
| | | | - Tetsuya Mitsudomi
- Department of Thoracic Surgery, Izumi City General Hospital, Japan; Kindai University, Faculty of Medicine, Japan.
| |
Collapse
|
6
|
Cao H, Ma Z, Huang Q, Han H, Li Y, Zhang Y, Chen H. Clinicopathologic features, concurrent genomic alterations, and clinical outcomes of patients with KRAS G12D mutations in resected lung adenocarcinoma. Eur J Cancer 2024; 202:113985. [PMID: 38452722 DOI: 10.1016/j.ejca.2024.113985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND In light of the ongoing clinical development of KRAS G12D-specific inhibitors, we sought to investigate the clinicopathologic, co-occurring genomic features and outcomes of patients with KRAS G12D-mutant lung adenocarcinoma. METHODS 3828 patients with completely resected primary lung adenocarcinomas were examined for KRAS mutations between 2008 and 2020. The association between KRAS G12D and clinicopathologic features, molecular profiles, and outcomes was investigated. RESULTS 65 patients (1.7%) with KRAS G12D-mutant lung adenocarcinoma were identified. KRAS G12D mutation was more frequent in males, former/current smokers, radiologic solid tumors, and invasive mucinous adenocarcinoma. TP53 and STK11 were the two most frequent concomitant mutations in the KRAS G12D group. KRAS G12D mutation did not appear to be a prognostic factor in resected stage I-III lung adenocarcinomas, while KRAS non-G12D mutation was related to worse survival, especially in stage I tumors. KRAS G12D mutations were associated with positive but low (1-49%) PD-L1 expression compared to negative (<1%), while KRAS non-G12D mutation was associated with high PD-L1 expression (≥50%). TP53 co-mutation indicated higher PD-L1 expression, while STK11 co-mutation had a negligible impact on PD-L1 expression. Furthermore, data mining of MSK datasets from cBioPortal revealed that KRAS G12D and SKT11 co-mutation were associated with a diminished response to immunotherapy. CONCLUSIONS KRAS G12D-mutant lung adenocarcinoma harbored unique clinicopathologic and genomic characteristics. Despite not being prognostic in resected lung adenocarcinoma, KRAS G12D might be a valuable biomarker in combination with certain co-mutations for identifying relevant subgroups of patients that could eventually influence treatment regimens.
Collapse
Affiliation(s)
- Hang Cao
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zelin Ma
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qingyuan Huang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Han Han
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuan Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Haiquan Chen
- Department of Thoracic Surgery and State Key Laboratory of Genetic Engineering, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Mimura C, Takamiya R, Fujimoto S, Fukui T, Yatani A, Yamada J, Takayasu M, Takata N, Sato H, Fukuda K, Furukawa K, Hazama D, Katsurada N, Yamamoto M, Matsumoto S, Goto K, Tachihara M. Utility of bronchoscopically obtained frozen cytology pellets for next-generation sequencing. BMC Cancer 2024; 24:489. [PMID: 38632507 PMCID: PMC11022476 DOI: 10.1186/s12885-024-12250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Next-generation sequencing (NGS) is essential for lung cancer treatment. It is important to collect sufficient tissue specimens, but sometimes we cannot obtain large enough samples for NGS analysis. We investigated the yield of NGS analysis by frozen cytology pellets using an Oncomine Comprehensive Assay or Oncomine Precision Assay. METHODS We retrospectively enrolled patients with lung cancer who underwent bronchoscopy at Kobe University Hospital and were enrolled in the Lung Cancer Genomic Screening Project for Individualized Medicine. We investigated the amount of extracted DNA and RNA and determined the NGS success rates. We also compared the amount of DNA and RNA by bronchoscopy methods. To create the frozen cytology pellets, we first effectively collected the cells and then quickly centrifuged and cryopreserved them. RESULTS A total of 132 patients were enrolled in this study between May 2016 and December 2022; of them, 75 were subjected to frozen cytology pellet examinations and 57 were subjected to frozen tissue examinations. The amount of DNA and RNA obtained by frozen cytology pellets was nearly equivalent to frozen tissues. Frozen cytology pellets collected by endobronchial ultrasound-guided transbronchial needle aspiration yielded significantly more DNA than those collected by transbronchial biopsy methods. (P < 0.01) In RNA content, cytology pellets were not inferior to frozen tissue. The success rate of NGS analysis with frozen cytology pellet specimens was comparable to the success rate of NGS analysis with frozen tissue specimens. CONCLUSIONS Our study showed that frozen cytology pellets may have equivalent diagnostic value to frozen tissue for NGS analyses. Bronchial cytology specimens are usually used only for cytology, but NGS analysis is possible if enough cells are collected to create pellet specimens. In particular, the frozen cytology pellets obtained by endobronchial ultrasound-guided transbronchial needle aspiration yielded sufficient amounts of DNA. TRIAL REGISTRATION This was registered with the University Medical Hospital Information Network in Japan (UMINCTR registration no. UMIN000052050).
Collapse
Affiliation(s)
- Chihiro Mimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Rei Takamiya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Shodai Fujimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Takafumi Fukui
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Atsuhiko Yatani
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Jun Yamada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Mizuki Takayasu
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Naoya Takata
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Hiroki Sato
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Kiyoko Fukuda
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Koichi Furukawa
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Daisuke Hazama
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Naoko Katsurada
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-City, Chiba, 277-8577, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa-City, Chiba, 277-8577, Japan
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe-City, Hyogo, 650-0017, Japan.
| |
Collapse
|
8
|
Morimoto K, Yamada T, Hirai S, Katayama Y, Fukui S, Sawada R, Tachibana Y, Matsui Y, Nakamura R, Ishida M, Kawachi H, Kunimasa K, Sasaki T, Nishida M, Furuya N, Watanabe S, Shiotsu S, Nishioka N, Horinaka M, Sakai T, Uehara H, Yano S, Son BK, Tokuda S, Takayama K. AXL signal mediates adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutant tumor cells. Cancer Lett 2024; 587:216692. [PMID: 38342232 DOI: 10.1016/j.canlet.2024.216692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/13/2024]
Abstract
Recently, novel Kirsten rat sarcoma viral oncogene homolog (KRAS) inhibitors have been clinically developed to treat KRAS G12C-mutated non-small cell lung cancer (NSCLC) patients. However, achieving complete tumor remission is challenging. Therefore, the optimal combined therapeutic intervention with KRAS G12C inhibitors has a potentially crucial role in the clinical outcomes of patients. We investigated the underlying molecular mechanisms of adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutated NSCLC cells to devise a strategy preventing drug-tolerant cell emergence. We demonstrate that AXL signaling led to the adaptive resistance to KRAS G12C inhibitors in KRAS G12C-mutated NSCLC, activation of which is induced by GAS6 production via YAP. AXL inhibition reduced the viability of AXL-overexpressing KRAS G12C-mutated lung cancer cells by enhancing KRAS G12C inhibition-induced apoptosis. In xenograft models of AXL-overexpressing KRAS G12C-mutated lung cancer treated with KRAS G12C inhibitors, initial combination therapy with AXL inhibitor markedly delayed tumor regrowth compared with KRAS G12C inhibitor alone or with the combination after acquired resistance to KRAS G12C inhibitor. These results indicated pivotal roles for the YAP-GAS6-AXL axis and its inhibition in the intrinsic resistance to KRAS G12C inhibitor.
Collapse
Affiliation(s)
- Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Soichi Hirai
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yuki Katayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Sarina Fukui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryo Sawada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yusuke Tachibana
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Ryota Nakamura
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Masaki Ishida
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hayato Kawachi
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Sasaki
- First Department of Internal Medicine, Asahikawa Medical University Hospital, Hokkaido, Japan
| | - Makoto Nishida
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinsuke Shiotsu
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Naoya Nishioka
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan; Department of Respiratory Medicine, Fukuchiyama City Hospital, Kyoto, Japan
| | - Mano Horinaka
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hisanori Uehara
- Division of Pathology, Tokushima University Hospital, Tokushima, Japan
| | - Seiji Yano
- Department of Respiratory Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan; Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; WPI-Nano Life Science Institute (WPI-Nano LSI), Kanazawa University, Kanazawa, Japan
| | - Bo-Kyung Son
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan; Institute of Gerontology, The University of Tokyo, Tokyo, Japan; Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
9
|
Oi I, Ito T, Saito Z, Imakita T, Kanai O, Fujita K, Tachibana H, Mio T. Kristen rat sarcoma virus (KRAS) G12F-positive non-small cell lung cancer mimicking KRAS G12C positivity: A case report. Thorac Cancer 2024; 15:271-273. [PMID: 38010032 PMCID: PMC10803219 DOI: 10.1111/1759-7714.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023] Open
Abstract
Searching for driver gene alteration is a prerequisite for chemotherapy of non-small cell lung cancer. Due to its high sensitivity and concordance rate, the Amoy Dx Pan Lung Cancer PCR panel has been approved and is widely used in Japan. In this report, we describe a case in which a positive result for Kristen rat sarcoma virus (KRAS) exon2 p.G12F, a rare KRAS mutation, may have led to a false-positive result for KRAS exon2 p.G12C on AMOY. Genetic analysis in this case was performed by LC-SCRUM-Asia.
Collapse
Affiliation(s)
- Issei Oi
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Takanori Ito
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Zentaro Saito
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Takuma Imakita
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Osamu Kanai
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Kohei Fujita
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Hiromasa Tachibana
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| | - Tadashi Mio
- Division of Respiratory Medicine, Center of Respiratory DiseasesNational Hospital Organization Kyoto Medical CenterKyotoJapan
| |
Collapse
|
10
|
Kunimasa K, Matsumoto S, Honma K, Tamiya M, Inoue T, Kawamura T, Tanada S, Miyazaki A, Kanzaki R, Maniwa T, Okami J, Matsumoto Y, Goto K, Nishino K. Utility of needle biopsy in centrally located lung cancer for genome analysis: a retrospective cohort study. BMC Pulm Med 2023; 23:484. [PMID: 38041137 PMCID: PMC10690970 DOI: 10.1186/s12890-023-02749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/05/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND It is essential to collect a sufficient amount of tumor tissue for successful next-generation sequencing (NGS) analysis. In this study, we investigated the clinical risk factors for avoiding re-biopsy for NGS analysis (re-genome biopsy) in cases where a sufficient amount of tumor tissue could not be collected by bronchoscopy. METHODS We investigated the association between clinical factors and the risk of re-genome biopsy in patients who underwent transbronchial biopsy (TBB) or endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and required re-genome biopsy in cases enrolled in LC-SCRUM Asia, a prospective nationwide genome screening project in Japan. We also examined whether the frequency of re-genome biopsy decreased between the first and second halves of the enrolment period. RESULTS Of the 572 eligible patients, 236 underwent TBB, and 134 underwent EBUS-TBNA. Twenty-four TBBs required re-genome biopsy, and multivariate analysis showed that the risk of re-genome biopsy was significantly increased in lesions where the tumor lesion was centrally located. In these cases, EBUS-TBNA should be utilized even if the lesion is a pulmonary lesion. However, it should be noted that even with EBUS-TBNA, lung field lesions are at a higher risk of re-canalization than mediastinal lymph node lesions. It was also found that even when tumor cells were detected in rapid on-site evaluation, a sufficient amount of tumor tissue was not always collected. CONCLUSIONS For centrally located pulmonary mass lesions, EBUS-TBNA, rather than TBB, can be used to obtain tumor tissues that can be analyzed by NGS.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan.
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology & Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Motohiro Tamiya
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| | - Takako Inoue
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| | - Takahisa Kawamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| | - Satoshi Tanada
- Department of Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Akito Miyazaki
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| | - Ryu Kanzaki
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Tomohiro Maniwa
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Jiro Okami
- Department of General Thoracic Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Yuji Matsumoto
- Department of Endoscopy, Respiratory Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, 3-1-69 Otemae Chuoku, Osaka City, Osaka, 541-8567, Japan
| |
Collapse
|
11
|
OHTSU A, GOTO K, YOSHINO T. Improvement of patient care using cancer genomic profiling: SCRUM-/CIRCULATE-Japan experience. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:241-253. [PMID: 37558430 PMCID: PMC10749397 DOI: 10.2183/pjab.99.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 08/11/2023]
Abstract
We launched SCRUM-Japan platform for the cancer genome profiling (CGP) test screening followed by the enrollment to genomically-matched clinical trials in 2015. More than 30,000 tissue-based and 10,000 liquid-based CGP tests have already been performed for enrolling to a total of 127 industry-/investigator-initiated registration trials, which resulted in regulatory approvals of 12 new agents with 14 indications in Japan. Using the clinical-genomic database, a new driver gene was recently discovered with dramatic response by genomically-matched agent. Our comparative study with tissue-based CGPs revealed more usefulness of liquid biopsy in terms of less invasive manner, shorter turn-round time, and higher enrollment rate for matched treatments than tissue-based in gastrointestinal cancers. For detecting minimal/molecular residual disease (MRD) after surgery, post-surgical monitoring with tumor-informed liquid biopsy assay in association with two randomized control trials have also started in 2020 (CIRCULATE-Japan). The observational cohort study showed obvious efficacy of the MRD monitoring for predicting recurrence, leading to change clinical practice in patient selection who should receive adjuvant therapy in the near future.
Collapse
Affiliation(s)
- Atsushi OHTSU
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - Koichi GOTO
- National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | |
Collapse
|
12
|
Ottaiano A, Sabbatino F, Perri F, Cascella M, Sirica R, Patrone R, Capuozzo M, Savarese G, Ianniello M, Petrillo N, Circelli L, Granata V, Berretta M, Santorsola M, Nasti G. KRAS p.G12C Mutation in Metastatic Colorectal Cancer: Prognostic Implications and Advancements in Targeted Therapies. Cancers (Basel) 2023; 15:3579. [PMID: 37509241 PMCID: PMC10377118 DOI: 10.3390/cancers15143579] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
KRAS is frequently mutated in tumors. It is mutated in approximately 30% of all cancer cases and in nearly 50% of cases of metastatic colorectal cancer (CRC), which is the third leading cause of cancer-related deaths worldwide. Recent advancements in understanding CRC biology and genetics have highlighted the significance of KRAS mutations in the progression of CRC. The KRAS gene encodes a small GTPase (Guanosine TriPhosphatases) that plays a key role in signaling pathways associated with important proteins involved in amplifying growth factor and receptor signals. Mutations in KRAS are frequently observed in codons 12 and 13, and these mutations have oncogenic properties. Abnormal activation of KRAS proteins strongly stimulates signals associated with various cancer-related processes in CRC, including cell proliferation, migration and neoangiogenesis. In this review, we explore the distinct prognostic implications of KRAS mutations. Specifically, the KRAS p.G12C mutation is associated with a worse prognosis in metastatic CRC. The correlation between structure, conformation and mutations is visually presented to emphasize how alterations in individual amino acids at the same position in a single protein can unexpectedly exhibit complex involvement in cancer. Last, KRAS p.G12C is discussed as an emerging and promising therapeutic target in metastatic CRC, providing a concise overview of available clinical data regarding the use of new inhibitors.
Collapse
Affiliation(s)
- Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Roberto Sirica
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Renato Patrone
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | | | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Luisa Circelli
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| | - Guglielmo Nasti
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, 80131 Naples, Italy
| |
Collapse
|
13
|
Wu LL, Jiang WM, Liu ZY, Zhang YY, Qian JY, Liu Y, Huang YY, Li K, Li ZX, Ma GW, Xie D. AMG-510 and cisplatin combination increases antitumor effect in lung adenocarcinoma with mutation of KRAS G12C: a preclinical and translational research. Discov Oncol 2023; 14:91. [PMID: 37284902 PMCID: PMC10247598 DOI: 10.1007/s12672-023-00698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND The efficacy of monotherapy of AMG-510 is limited. This study explored whether the AMG-510 and cisplatin combination increases the anti-tumor effect in lung adenocarcinoma with the mutation of Kirsten rat sarcoma viral oncogene (KRAS) G12C. METHODS Patients' data were used to analyze the proportion of KRAS G12C mutation. Besides, the next-generation sequencing data was used to uncover information about co-mutations. The cell viability assay, the concentration inhibiting 50% of cell viability (IC50) determination, colony formation, and cell-derived xenografts were conducted to explore the anti-tumor effect of AMG-510, Cisplatin, and their combination in vivo. The bioinformatic analysis was conducted to reveal the potential mechanism of drug combination with improved anticancer effect. RESULTS The proportion of KRAS mutation was 2.2% (11/495). In this cohort with KRAS mutation, the proportion of G12D was higher than others. Besides, KRAS G12A mutated tumors had the likelihood of concurrent serine/threonine kinase 11 (STK11) and kelch-like ECH-associated protein 1 (KEAP1) mutations. KRAS G12C and tumor protein p53 (TP53) mutations could appear at the same time. In addition, KRAS G12D mutations and C-Ros oncogene 1 (ROS1) rearrangement were likely to be present in one tumor simultaneously. When the two drugs were combined, the respective IC50 values were lower than when used alone. In addition, there was a minimum number of clones among all wells in the drug combination. In in vivo experiments, the tumor size reduction in the drug combination group was more than twice that of the single drug group (p < 0.05). The differential expression genes were enriched in the pathways of phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling and extracellular matrix (ECM) proteoglycans compared the combination group to the control group. CONCLUSIONS The anticancer effect of the drug combination was confirmed to be better than monotherapy in vitro and in vivo. The results of this study may provide some information for the plan of neoadjuvant therapy and the design of clinical trials for lung adenocarcinoma patients with KRAS G12C mutation.
Collapse
Affiliation(s)
- Lei-Lei Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Wen-Mei Jiang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, People's Republic of China
| | - Zhi-Yuan Liu
- School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yi-Yi Zhang
- School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jia-Yi Qian
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Yu'e Liu
- School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yang-Yu Huang
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Zhi-Xin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China
| | - Guo-Wei Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, People's Republic of China.
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
14
|
Rosell R, Aguilar-Hernández A, González-Cao M. Insights into EGFR Mutations and Oncogenic KRAS Mutations in Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15092519. [PMID: 37173989 PMCID: PMC10177428 DOI: 10.3390/cancers15092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Genetic mutations can activate different sets of proto-oncogenes and tumor suppressors genes [...].
Collapse
Affiliation(s)
- Rafael Rosell
- Germans Trias i Pujol Research Institute, 08916 Badalona, Spain
- IOR, Hospital Quiron-Dexeus, 08028 Barcelona, Spain
| | | | | |
Collapse
|