1
|
Bontoux C, Hofman V, Chamorey E, Schiappa R, Lassalle S, Long-Mira E, Zahaf K, Lalvée S, Fayada J, Bonnetaud C, Goffinet S, Ilié M, Hofman P. Reproducibility of c-Met Immunohistochemical Scoring (Clone SP44) for Non-Small Cell Lung Cancer Using Conventional Light Microscopy and Whole Slide Imaging. Am J Surg Pathol 2024; 48:1072-1081. [PMID: 38980727 DOI: 10.1097/pas.0000000000002274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Emerging therapies for non-small cell lung cancer targeting c-Met overexpression have recently demonstrated promising results. However, the evaluation of c-Met expression can be challenging. We aimed to study the inter and intraobserver reproducibility of c-Met expression evaluation. One hundred ten cases with non-small cell lung cancer (40 biopsies and 70 surgical specimens) were retrospectively selected in a single laboratory (LPCE) and evaluated for c-Met expression. Six pathologists (4 seniors and 2 juniors) evaluated the H-score and made a 3-tier classification of c-Met expression for all cases, using conventional light microscopy (CLM) and whole slide imaging (WSI). The interobserver reproducibility with CLM gave global Cohen Kappa coefficients (ƙ) ranging from 0.581 (95% CI: 0.364-0.771) to 0.763 (95% CI: 0.58-0.92) using the c-Met 3-tier classification and H-score, respectively. ƙ was higher for senior pathologists and biopsy samples. The interobserver reproducibility with WSI gave a global ƙ ranging from 0.543 (95% CI: 0.33-0.724) to 0.905 (95% CI: 0.618-1) using the c-Met H-score and 2-tier classification (≥25% 3+), respectively. ƙ for intraobserver reproducibility between CLM and WSI ranged from 0.713 to 0.898 for the c-Met H-score and from 0.600 to 0.779 for the c-Met 3-tier classification. We demonstrated a moderate to excellent interobserver agreement for c-Met expression with a substantial to excellent intraobserver agreement between CLM and WSI, thereby supporting the development of digital pathology. However, some factors (scoring method, type of tissue samples, and expertise level) affect reproducibility. Our findings highlight the importance of establishing a consensus definition and providing further training, particularly for inexperienced pathologists, for c-Met immunohistochemistry assessment in clinical practice.
Collapse
Affiliation(s)
- Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Véronique Hofman
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Emmanuel Chamorey
- Department of Statistics, Antoine Lacassagne Cancer Center, Nice, France
| | - Renaud Schiappa
- Department of Statistics, Antoine Lacassagne Cancer Center, Nice, France
| | - Sandra Lassalle
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Elodie Long-Mira
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Katia Zahaf
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Salomé Lalvée
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Julien Fayada
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Christelle Bonnetaud
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | | | - Marius Ilié
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology
- Hospital-Integrated Biobank
- Team 4, Institute of Research on Cancer and Aging of Nice Inserm U1081, CNRS UMR7284, Côte d'Azur University
- FHU OncoAge, Côte d'Azur University
- University Hospital Institute RespirERA, Côte d'Azur University, Pasteur Hospital, CHU of Nice
| |
Collapse
|
2
|
Yu Y, Dong W, Shi Y, Wu R, Yu Q, Ye F, Zhou C, Dong X, Li X, Li Y, Li Z, Wu L, Pan Y, Shen H, Wu D, Xu Z, Wu J, Xu N, Qin Y, Zang A, Zhang J, Zhou J, Zhang X, Zhao Y, Li F, Wang H, Liu Q, Han Z, Li J, Lu S. A pooled analysis of clinical outcome in driver-gene negative non-small cell lung cancer patients with MET overexpression treated with gumarontinib. Ther Adv Med Oncol 2024; 16:17588359241264730. [PMID: 39091606 PMCID: PMC11292687 DOI: 10.1177/17588359241264730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Background MET overexpression represents the most MET aberration in advanced non-small-cell lung cancer (NSCLC). However, except MET exon 14 (METex14) skipping mutation was recognized as a clinical biomarker, the role of MET overexpression as a predictive factor to MET inhibitor is not clear. Objectives The purpose of the pooled analysis is to explore the safety and efficiency of gumarontinib, a highly selective oral MET inhibitor, in drive-gene negative NSCLC patients with MET overexpression. Design and methods NSCLC patients with MET overexpression [immunohistochemistry (IHC) ⩾3+ as determined by central laboratory] not carrying epidermal growth factor receptor mutation, METex14 skipping mutation or other known drive gene alternations who received Gumarontinib 300 mg QD from two single arm studies were selected and pooled for the analysis. The efficacy [objective response rate (ORR), disease control rate (DCR), duration of response, progression-free survival (PFS) and overall survival (OS)] and safety [treatment emergent adverse event (TEAE), treatment related AE (TRAE) and serious AE (SAE) were assessed. Results A total of 32 patients with MET overexpression were included in the analysis, including 12 treatment naïve patients who refused or were unsuitable for chemotherapy, and 20 pre-treated patients who received ⩾1 lines of prior systemic anti-tumour therapies. Overall, the ORR was 37.5% [95% confidence interval (CI): 21.1-56.3%], the DCR was 81.3% (95% CI: 63.6-92.8%), median PFS (mPFS) and median OS (mOS) were 6.9 month (95% CI: 3.6-9.7) and 17.0 month (95% CI: 10.3-not evaluable), respectively. The most common AEs were oedema (59.4%), hypoalbuminaemia (40.6%), alanine aminotransferase increased (31.3%). Conclusion Gumarontinib showed promising antitumour activity in driver-gene negative locally advanced or metastatic NSCLC patients with MET overexpression, which warranted a further clinical trial. Trial registration ClinicalTrials.gov identifier: NCT03457532; NCT04270591.
Collapse
Affiliation(s)
- Yongfeng Yu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Dong
- Department of Respiratory Medicine, Hainan Cancer Hospital, Haikou, China
| | - Yanxia Shi
- Internal Medicine Department, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Rong Wu
- Second Medical Oncology Breast Tumors, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qitao Yu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Feng Ye
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Fujian, China
| | - Chengzhi Zhou
- Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingya Li
- Oncology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Li
- Internal Medicine-Oncology and Phase I Clinical Trial Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zhen Li
- Internal Medicine 5, Linyi Cancer Hospital, Linyi, China
| | - Lin Wu
- Second Department of Thoracic Medicine, Hunan Cancer Hospital, Changsha, China
| | - Yueyin Pan
- Department of Oncology and Chemotherapy, Anhui Provincial Hospital, Hefei, China
| | - Hong Shen
- Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dehua Wu
- Radiotherapy Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhongyuan Xu
- Nanfang Hospital National Drug Clinical Trial Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinsheng Wu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Nong Xu
- Internal Medicine-Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanru Qin
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University of Medicine, Zhengzhou, China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jingdong Zhang
- Gastroenterology Department, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jianya Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaotao Zhang
- Radiotherapy Department, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, China
| | - Yanqiu Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Fugen Li
- Haihe Biopharma Co., Ltd, Shanghai, China
| | | | - Qi Liu
- Haihe Biopharma Co., Ltd, Shanghai, China
| | | | - Jin Li
- Department of Medical Oncology, Shanghai East Hospital, Tongji University, 150 Jimo Road, Pudong New Area, Shanghai 200123, China
| | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, No. 241 Huaihai West Road, Shanghai 200030, China
| |
Collapse
|
3
|
Patil T, Staley A, Nie Y, Sakamoto M, Stalker M, Jurica JM, Koehler K, Cass A, Kuykendall H, Schmitt E, Filar E, Reventaite E, Davies KD, Nijmeh H, Haag M, Yoder BA, Bunn PA, Schenk EL, Aisner DL, Iams WT, Marmarelis ME, Camidge DR. The Efficacy and Safety of Treating Acquired MET Resistance Through Combinations of Parent and MET Tyrosine Kinase Inhibitors in Patients With Metastatic Oncogene-Driven NSCLC. JTO Clin Res Rep 2024; 5:100637. [PMID: 38361741 PMCID: PMC10867444 DOI: 10.1016/j.jtocrr.2024.100637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Acquired MET gene amplification, MET exon 14 skip mutations, or MET fusions can emerge as resistance mechanisms to tyrosine kinase inhibitors (TKIs) in patients with lung cancer. The efficacy and safety of combining MET TKIs (such as crizotinib, capmatinib, or tepotinib) with parent TKIs to target acquired MET resistance are not well characterized. Methods Multi-institutional retrospective chart review identified 83 patients with metastatic oncogene-driven NSCLC that were separated into the following two pairwise matched cohorts: (1) MET cohort (n = 41)-patients with acquired MET resistance continuing their parent TKI with a MET TKI added or (2) Chemotherapy cohort (n = 42)-patients without any actionable resistance continuing their parent TKI with a platinum-pemetrexed added. Clinicopathologic features, radiographic response (by means of Response Evaluation Criteria in Solid Tumors version 1.1), survival outcomes, adverse events (AEs) (by means of Common Terminology Criteria for Adverse Events version 5.0), and genomic data were collected. Survival outcomes were assessed using Kaplan-Meier methods. Multivariate modeling adjusted for lines of therapy, brain metastases, TP53 mutations, and oligometastatic disease. Results Within the MET cohort, median age was 56 years (range: 36-83 y). Most patients were never smokers (28 of 41, 68.3%). Baseline brain metastases were common (21 of 41, 51%). The most common oncogenes in the MET cohort were EGFR (30 of 41, 73.2%), ALK (seven of 41, 17.1%), and ROS1 (two of 41, 4.9%). Co-occurring TP53 mutations (32 of 41, 78%) were frequent. Acquired MET alterations included MET gene amplification (37 of 41, 90%), MET exon 14 mutations (two of 41, 5%), and MET gene fusions (two of 41, 5%). After multivariate adjustment, the objective response rate (ORR) was higher in the MET cohort versus the chemotherapy cohort (ORR: 69.2% versus 20%, p < 0.001). Within the MET cohort, MET gene copy number (≥10 versus 6-10) did not affect radiographic response (54.5% versus 68.4%, p = 0.698). There was no difference in ORR on the basis of MET TKI used (F [2, 36] = 0.021, p = 0.978). There was no difference in progression-free survival (5 versus 6 mo; hazard ratio = 0.64; 95% confidence interval: 0.34-1.23, p = 0.18) or overall survival (13 versus 11 mo; hazard ratio = 0.75; 95% confidence interval: 0.42-1.35, p = 0.34) between the MET and chemotherapy cohorts. In the MET cohort, dose reductions for MET TKI-related toxicities were common (17 of 41, 41.4%) but less frequent for parent TKIs (two of 41, 5%). Grade 3 AEs were not significant between crizotinib, capmatinib, and tepotinib (p = 0.3). The discontinuation rate of MET TKIs was 17% with no significant differences between MET TKIs (p = 0.315). Among pre- and post-treatment biopsies (n = 17) in the MET cohort, the most common next-generation sequencing findings were loss of MET gene amplification (15 of 17, 88.2%), MET on-target mutations (seven of 17, 41.2%), new Ras-Raf-MAPK alterations (three of 17, 17.6%), and EGFR gene amplification (two of 17, 11.7%). Conclusions The efficacy and safety of combining MET TKIs (crizotinib, capmatinib, or tepotinib) with parent TKIs for acquired MET resistance are efficacious. Radiographic response and AEs did not differ significantly on the basis of the underlying MET TKI used. Loss of MET gene amplification, development of MET on-target mutations, Ras-Raf-MAPK alterations, and EGFR gene amplification were molecular patterns found on progression with dual parent and MET TKI combinations.
Collapse
Affiliation(s)
- Tejas Patil
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Alyse Staley
- University of Colorado Cancer Center Biostatistics Core, University of Colorado School of Medicine, Aurora, Colorado
| | - Yunan Nie
- Department of Medical Oncology, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Mandy Sakamoto
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Margaret Stalker
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - James M. Jurica
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Kenna Koehler
- Division of Medical Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Amanda Cass
- Division of Medical Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Halle Kuykendall
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Emily Schmitt
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Emma Filar
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Evelina Reventaite
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Kurt D. Davies
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Hala Nijmeh
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Mary Haag
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Benjamin A. Yoder
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul A. Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Erin L. Schenk
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Dara L. Aisner
- Department of Pathology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Wade T. Iams
- Division of Medical Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee
| | - Melina E. Marmarelis
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
4
|
Spitaleri G, Trillo Aliaga P, Attili I, Del Signore E, Corvaja C, Corti C, Uliano J, Passaro A, de Marinis F. MET in Non-Small-Cell Lung Cancer (NSCLC): Cross 'a Long and Winding Road' Looking for a Target. Cancers (Basel) 2023; 15:4779. [PMID: 37835473 PMCID: PMC10571577 DOI: 10.3390/cancers15194779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Non-Small-Cell Lung Cancer (NSCLC) can harbour different MET alterations, such as MET overexpression (MET OE), MET gene amplification (MET AMP), or MET gene mutations. Retrospective studies of surgical series of patients with MET-dysregulated NSCLC have shown worse clinical outcomes irrespective of the type of specific MET gene alteration. On the other hand, earlier attempts failed to identify the 'druggable' molecular gene driver until the discovery of MET exon 14 skipping mutations (METex14). METex14 are rare and amount to around 3% of all NSCLCs. Patients with METex14 NSCLC attain modest results when they are treated with immune checkpoint inhibitors (ICIs). New selective MET inhibitors (MET-Is) showed a long-lasting clinical benefit in patients with METex14 NSCLC and modest activity in patients with MET AMP NSCLC. Ongoing clinical trials are investigating new small molecule tyrosine kinase inhibitors, bispecific antibodies, or antibodies drug conjugate (ADCs). This review focuses on the prognostic role of MET, the summary of pivotal clinical trials of selective MET-Is with a focus on resistance mechanisms. The last section is addressed to future developments and challenges.
Collapse
Affiliation(s)
- Gianluca Spitaleri
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Pamela Trillo Aliaga
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Ilaria Attili
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Ester Del Signore
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Carla Corvaja
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (C.C.); (J.U.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Jacopo Uliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, 20141 Milan, Italy; (C.C.); (J.U.)
- Department of Oncology and Haematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| | - Filippo de Marinis
- Division of Thoracic Oncology, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy; (P.T.A.); (I.A.); (E.D.S.); (C.C.); (F.d.M.)
| |
Collapse
|
5
|
Roskoski R. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacol Res 2023; 194:106847. [PMID: 37454916 DOI: 10.1016/j.phrs.2023.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Owing to genetic alterations and overexpression, the dysregulation of protein kinases plays a significant role in the pathogenesis of many autoimmune and neoplastic disorders and protein kinase antagonists have become an important drug target. Although the efficacy of imatinib in the treatment of chronic myelogenous leukemia in the United States in 2001 was the main driver of protein kinase inhibitor drug discovery, this was preceded by the approval of fasudil (a ROCK antagonist) in Japan in 1995 for the treatment of cerebral vasospasm. There are 21 small molecule protein kinase inhibitors that are approved in China, Japan, Europe, and South Korea that are not approved in the United Sates and 75 FDA-approved inhibitors in the United States. Of the 21 agents, eleven target receptor protein-tyrosine kinases, eight inhibit nonreceptor protein-tyrosine kinases, and two block protein-serine/threonine kinases. All 21 drugs are orally bioavailable or topically effective. Of the non-FDA approved drugs, sixteen are prescribed for the treatment of neoplastic diseases, three are directed toward inflammatory disorders, one is used for glaucoma, and fasudil is used in the management of vasospasm. The leading targets of kinase inhibitors approved by both international regulatory agencies and by the FDA are members of the EGFR family, the VEGFR family, and the JAK family. One-third of the 21 internationally approved drugs are not compliant with Lipinski's rule of five for orally bioavailable drugs. The rule of five relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791-8717, United States.
| |
Collapse
|
6
|
Spagnolo CC, Ciappina G, Giovannetti E, Squeri A, Granata B, Lazzari C, Pretelli G, Pasello G, Santarpia M. Targeting MET in Non-Small Cell Lung Cancer (NSCLC): A New Old Story? Int J Mol Sci 2023; 24:10119. [PMID: 37373267 PMCID: PMC10299133 DOI: 10.3390/ijms241210119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, we have seen the development and approval for clinical use of an increasing number of therapeutic agents against actionable oncogenic drivers in metastatic non-small cell lung cancer (NSCLC). Among them, selective inhibitors, including tyrosine kinase inhibitors (TKIs) and monoclonal antibodies targeting the mesenchymal-epithelial transition (MET) receptor, have been studied in patients with advanced NSCLC with MET deregulation, primarily due to exon 14 skipping mutations or MET amplification. Some MET TKIs, including capmatinib and tepotinib, have proven to be highly effective in this molecularly defined subgroup of patients and are already approved for clinical use. Other similar agents are being tested in early-stage clinical trials with promising antitumor activity. The purpose of this review is to provide an overview of MET signaling pathways, MET oncogenic alterations primarily focusing on exon 14 skipping mutations, and the laboratory techniques used to detect MET alterations. Furthermore, we will summarize the currently available clinical data and ongoing studies on MET inhibitors, as well as the mechanisms of resistance to MET TKIs and new potential strategies, including combinatorial approaches, to improve the clinical outcomes of MET exon 14-altered NSCLC patients.
Collapse
Affiliation(s)
- Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Giuliana Ciappina
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrje Universiteit, 1081HV Amsterdam, The Netherlands;
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, 56017 San Giuliano, Italy
| | - Andrea Squeri
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Barbara Granata
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| | - Chiara Lazzari
- Candiolo Cancer Institute, Fondazione del Piemonte per l’Oncologia (FPO)-IRCCS, 10060 Torino, Italy;
| | - Giulia Pretelli
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.P.); (G.P.)
| | - Giulia Pasello
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy; (G.P.); (G.P.)
- Oncologia Medica 2, Istituto Oncologico Veneto, IRCCS, 35128 Padova, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (G.C.); (A.S.); (B.G.)
| |
Collapse
|