1
|
Capri FC, Gaglio R, Botta L, Settanni L, Alduina R. Selection of starter lactic acid bacteria capable of forming biofilms on wooden vat prototypes for their future application in traditional Sicilian goat's milk cheese making. Int J Food Microbiol 2024; 419:110752. [PMID: 38781647 DOI: 10.1016/j.ijfoodmicro.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
In this study, 327 presumptive lactic acid bacteria (LAB) were isolated from goats' milk acid curds produced at a Sicilian dairy farm with the aim to identify potential starter cultures for traditional cheeses. All isolates were first processed by randomly amplified polymorphic DNA (RAPD)-PCR analysis. This approach identified 63 distinct strains which were evaluated for their acidifying capacity. Only 15 strains specifically stood out for their acidification capacity and were identified through 16S rRNA gene sequencing as Lactococcus lactis (11 strains) Enterococcus faecalis (three strains), and Ligilactobacillus animalis (one strain). Notably, all 15 LAB isolates produced bacteriocin-like inhibitory substances and anti-biofilm compounds, against both planktonic and biofilm forms of Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, and Staphylococcus aureus, albeit at varying levels. Among these 15 LAB, En. faecalis RGM25 and Lc. lactis RGM55, susceptible to five antibiotics tested, were put in contact with wooden vat prototypes, because all equipment used in traditional cheese production in Sicily are made of wood. Scanning electron microscopy and bacterial plate counts of the wooden vat prototypes showed the development of biofilms at levels of approximately 6.0 log CFU/cm2. Overall, this study contributes to establishing a custom-made LAB starter cultures with bio-preservatives properties for Sicilian cheese productions.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Bldg. 6, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133 Palermo, Italy
| |
Collapse
|
2
|
The Influence of Flavonoid Dihydroquercetin on the Enzymatic Processes of Dough Ripening and the Antioxidant Properties of Bread. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Bread is an integral part of the diet of the world population. Development of bread enriched with biologically active substances, including antioxidants, could be good nutritional support for human health. Among well-studied antioxidants, we can highlight dihydroquercetin, a flavonoid with outstanding antioxidant properties, such as anti-inflammatory activity, immunostimulatory properties, anti-cancer properties, and others. At the same time, the technology of bread enrichment must consider the possible negative effects of the additive on the technological processes and properties of the final product. The present work was carried out to evaluate the effect of dihydroquercetin on the enzymatic processes occurring during dough maturation and the antioxidant properties of the finished bread. Dihydroquercetin was added in amounts of 0.05 g, 0.07 g, and 0.1 g per 100 g of wheat flour and fermented with commercial baker’s yeast (Saccharomyces cerevisiae). The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that dihydroquercetin caused slight slowing of enzymatic processes. However, the dosage of dihydroquercetin did not cause statistically significant changes in the yeast concentration, which reached a level of 108 KOU/g after 2 h in all dough samples. Loss of dihydroquercetin during fermentation was established at a level of 20–25%. At the same time, an increase in the total amount of flavonoids in the dough after 2 h of fermentation and an increase in values of antioxidant activity were noted. The antioxidant properties of the bread also increased when it was enriched with dihydroquercetin (about 3.5–4 times) despite the fact that the total quantitative loss of antioxidant in the technological process was considerable (about 40%). A protective effect of the bread matrix on flavonoids during digestion was shown. Dihydroquercetin loss was about 25% regardless of the amount applied. This work clearly showed that addition of dihydroquercetin to a bread formulation represents a promising strategy for increasing the antioxidant properties of bread.
Collapse
|
3
|
Mannino G, Serio G, Gaglio R, Busetta G, La Rosa L, Lauria A, Settanni L, Gentile C. Phytochemical Profile and Antioxidant, Antiproliferative, and Antimicrobial Properties of Rubus idaeus Seed Powder. Foods 2022; 11:foods11172605. [PMID: 36076790 PMCID: PMC9455724 DOI: 10.3390/foods11172605] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
In the context of the contemporary research on sustainable development and circular economy, the quest for effective strategies aimed at revaluation of waste and by-products generated in industrial and agricultural production becomes important. In this work, an ethanolic extract from red raspberry (Rubus idaeus) seed waste (WRSP) was evaluated for its phytochemical composition and functional properties in term of antioxidative, antiproliferative, and antimicrobial activities. Chemical composition of the extract was determined by both HPLC-ESI-MS/MS and spectrophotometric methods. Phytochemical analysis revealed that flavan-3-ols and flavonols were the major phenolic compounds contained in WRSP. The extract demonstrated very high radical-scavenging (4.86 ± 0.06 µmol TE/DW) and antioxidant activity in a cell-based model (0.178 ± 0.03 mg DW/mL cell medium). The WRSP extract also exhibited antiproliferative activity against three different epithelial cancer cell lines (MCF-7, HepG2, and HeLa cells) in a dose-dependent manner. Finally, microbiological assays showed the absence of colonies of bacteria and microscopic fungi (yeasts and molds) and revealed that the WRSP extract has a large inhibition spectrum against spoilage and pathogenic bacteria, without inhibitory activity against pro-technological bacteria. In conclusion, the obtained results show that WRSP is a rich source of phytochemical compounds exerting interesting biological activities. For these reasons WRSP could find applications in the nutritional, nutraceutical, and pharmacological fields.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Innovation Centre, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135 Turin, Italy
| | - Graziella Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gabriele Busetta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Lorenza La Rosa
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Antonino Lauria
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (L.S.); (C.G.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Correspondence: (L.S.); (C.G.)
| |
Collapse
|
4
|
Gaglio R, Busetta G, Gannuscio R, Settanni L, Licitra G, Todaro M. A Multivariate Approach to Study the Bacterial Diversity Associated to the Wooden Shelves Used for Aging Traditional Sicilian Cheeses. Foods 2022; 11:774. [PMID: 35267406 PMCID: PMC8909075 DOI: 10.3390/foods11050774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022] Open
Abstract
The present study was carried to correlate the microbial diversity of the biofilms developed on the wooden boards used for aging traditional Sicilian cheeses with cheese typology. To this end, the microbial diversity of the shelves in contact with the cheeses PDO Pecorino Siciliano, PDO Piacentinu Ennese, and TAP Caciocavallo Palermitano, during ripening, was evaluated by a multivariate statistical approach. The shelf biofilms of this study were previously analyzed for their microbial composition, but no correlation between biodiversity and cheese type was investigated. Canonical discriminant analysis confirmed a cheese typology effect on the microbial loads of the wooden shelves investigated. Regarding the plate count data, the centroids of different cheeses were statistically distant from one another. This analysis also showed a good graphic separation of data regarding bacterial order operational taxonomy units (OTUs). Thus, the microbiological differences imputed to the cheese typologies were not affected by the environmental conditions of the facilities. Furthermore, wooden shelf lactic acid bacteria (LAB) were investigated for their ability to inhibit the main dairy pathogens. Although inhibitors were mainly enterococci, P. pentosaceus WS287 and W. paramesenteroides WS581 showed the highest inhibition activity, indicating their possible application to control the undesired bacteria in situ.
Collapse
Affiliation(s)
- Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Riccardo Gannuscio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| | - Giuseppe Licitra
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università degli Studi di Catania, Via Valdisavoia 5, 95123 Catania, Italy;
| | - Massimo Todaro
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (R.G.); (G.B.); (R.G.); (M.T.)
| |
Collapse
|
5
|
Sourdough “ciabatta” bread enriched with powdered insects: Physicochemical, microbiological, and simulated intestinal digesta functional properties. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Gaglio R, Catania P, Orlando S, Vallone M, Moschetti G, Settanni L. Biodiversity and dairy traits of lactic acid bacteria from foliage of aromatic plants before and after dehydration process monitored by a smart sensors system. FEMS Microbiol Lett 2021; 367:5823742. [PMID: 32319520 DOI: 10.1093/femsle/fnaa071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The main hypothesis of this work was to evaluate the presence of lactic acid bacteria (LAB) intrinsically resistant to plant essential oils in sage (Salvia officinalis L.) and laurel (Laurus nobilis), for future applications in functional cheese production by addition of aromatic herbs. The effect of the drying process on the viability of LAB was evaluated with three biomass densities (3, 4 and 5 kg/m2). The drying densities did not affect weight loss, but influenced the levels of LAB of sage and laurel. A total of 10 different strains of Enterococcus faecium, Enterococcus mundtii, Enterococcus raffinosus and Leuconostoc mesenteroides were identified from laurel, while sage did not host any LAB species. In particular, L. mesenteroides was the only species sensitive to the heat treatment. Only five strains, all enterococci, were resistant to at least one antibiotic, even though no strain showed gelatinase or haemolytic activity. The investigation on the technological traits useful in cheese making demonstrated that all LAB can be considered non starter LAB, because they were characterized by a slow acidification capacity (the pH was still above 6.00 after 3 d) and a very limited autolysis (the maximum decrease of the optical density at 599 nm was barely 0.2).
Collapse
Affiliation(s)
- Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Pietro Catania
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Santo Orlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Mariangela Vallone
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| |
Collapse
|
7
|
Barbaccia P, Francesca N, Gerlando RD, Busetta G, Moschetti G, Gaglio R, Settanni L. Biodiversity and dairy traits of indigenous milk lactic acid bacteria grown in presence of the main grape polyphenols. FEMS Microbiol Lett 2021; 367:5819959. [PMID: 32286619 DOI: 10.1093/femsle/fnaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/10/2020] [Indexed: 01/17/2023] Open
Abstract
The present work was developed to select lactic acid bacteria (LAB) to be used as starter cultures in functional cheese production. The indigenous milk LAB populations were isolated from fermented raw ewes' milks (four bulks) added with 0.5 mg/mL of nine polyphenols commonly found in winery by-products. After 48 h of fermentation, all milks were characterized by an increase of LAB levels of about 3-4 Log cycles. All different colonies were purified and characterized for the main physiological and biochemical traits and then differentiated genetically at strain level and identified. Ten species belonging to the LAB genera Lactobacillus, Streptococcus, Enterococcus, Leuconostoc and Lactococcus were identified. Only Lactococcus lactis and Leuconostoc mesenteroides strains were evaluated for the technological traits including acidification and autolytic kinetics, diacetyl formation, exopolysaccharide production and generation of antimicrobial compounds. A total of four strains (Mise36, Mise94 Mise169 and Mise190) belonging to Lc. lactis displayed potential for production of cheeses containing grape polyphenols.
Collapse
Affiliation(s)
- Pietro Barbaccia
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Francesca
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Rosalia Di Gerlando
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Giancarlo Moschetti
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Ed. 5, Università degli Studi di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
8
|
Gaglio R, Todaro M, Settanni L. Improvement of Raw Milk Cheese Hygiene through the Selection of Starter and Non-Starter Lactic Acid Bacteria: The Successful Case of PDO Pecorino Siciliano Cheese. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1834. [PMID: 33668630 PMCID: PMC7917940 DOI: 10.3390/ijerph18041834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
This review article focuses on the technological aspects and microbiological critical points of pressed-cooked cheeses processed from raw ewe's milk without the inoculation of starter cultures, in particular "Pecorino" cheese typology produced in Italy. After showing the composition of the biofilms adhering to the surface of the traditional dairy equipment (mainly wooden vat used to collect milk) and the microbiological characteristics of PDO Pecorino Siciliano cheese manufactured throughout Sicily, this cheese is taken as a case study to develop a strategy to improve its hygienic and safety characteristics. Basically, the natural lactic acid bacterial populations of fresh and ripened cheeses were characterized to select an autochthonous starter and non-starter cultures to stabilize the microbial community of PDO Pecorino Siciliano cheese. These bacteria were applied at a small scale level to prove their in situ efficacy, and finally introduced within the consortium for protection and promotion of this cheese to disseminate their performances to all dairy factories. The innovation in PDO Pecorino Siciliano cheese production was proven to be respectful of the traditional protocol, the final cheeses preserved their typicality, and the general cheese safety was improved. An overview of the future research prospects is also reported.
Collapse
Affiliation(s)
| | | | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy; (R.G.); (M.T.)
| |
Collapse
|
9
|
Gaglio R, Alfonzo A, Barbera M, Franciosi E, Francesca N, Moschetti G, Settanni L. Persistence of a mixed lactic acid bacterial starter culture during lysine fortification of sourdough breads by addition of pistachio powder. Food Microbiol 2020; 86:103349. [DOI: 10.1016/j.fm.2019.103349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/16/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
|
10
|
Evaluation of the Fermentation Dynamics of Commercial Baker’s Yeast in Presence of Pistachio Powder to Produce Lysine-Enriched Breads. FERMENTATION 2019. [DOI: 10.3390/fermentation6010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The present work was carried out to evaluate the microbiological, physicochemical, and sensory characteristics of fortified pistachio breads. Pistachio powder (5% w/w) was added to flour or semolina and fermented by a commercial baker’s yeast (Saccharomyces cerevisiae). Pistachio powder did not influence the biological leavening of the doughs. The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that the leavening process occurred similarly for all trials. The concentration of yeasts increased during fermentation and reached levels of 108 CFU/g after 2 h. Pistachio powder decreased the height and softness of the final breads and increased cell density of the central slices. The amount of lysine after baking increased in pistachio breads and this effect was stronger for semolina rather than flour trials. Sensory evaluation indicated that fortified breads processed from semolina were those more appreciated by the judges. This work clearly indicated that the addition of pistachio powder in bread production represents a promising strategy to increase the availability of lysine in cereal-based fermented products.
Collapse
|
11
|
Ispirli H, Demirbaş F, Yüzer MO, Dertli E. Identification of Lactic Acid Bacteria from Spontaneous Rye Sourdough and Determination of Their Functional Characteristics. FOOD BIOTECHNOL 2018. [DOI: 10.1080/08905436.2018.1507913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hümeyra Ispirli
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | | | - Mustafa O. Yüzer
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Enes Dertli
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| |
Collapse
|
12
|
Formation and Characterization of Early Bacterial Biofilms on Different Wood Typologies Applied in Dairy Production. Appl Environ Microbiol 2018; 84:AEM.02107-17. [PMID: 29180375 DOI: 10.1128/aem.02107-17] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The main hypothesis of this work was that Sicilian forestry resources are suitable for the production of equipment to be used in cheese making and indigenous milk lactic acid bacteria (LAB) are able to develop stable biofilms providing starter and nonstarter cultures necessary for curd fermentation and cheese ripening, respectively. Hence, the present work was carried out with deproteinized whey to evaluate LAB biofilm formation on different woods derived from tree species grown in Sicily. Microbiological and scanning electron microscopy analyses showed minimal differences in microbial levels and compositions for the neoformed biofilms. The specific investigation of Salmonella spp., Listeria monocytogenes, Escherichia coli, coagulase-positive staphylococci (CPS), and sulfite-reducing anaerobes did not generate any colony for all vats before and after bacterial adhesion. LAB populations dominated all vat surfaces. The highest levels (7.63 log CFU/cm2) were registered for thermophilic cocci. Different colonies were characterized physiologically, biochemically, and genetically (at strain and species levels). Six species within the genera Enterococcus, Lactobacillus, Lactococcus, and Streptococcus were identified. The species most frequently present were Lactobacillus fermentum and Lactococcus lactis LAB found on the surfaces of the wooden vats in this study showed interesting characteristics important for dairy manufacture. To thoroughly investigate the safety of the wooden vat, a test of artificial contamination on new Calabrian chestnut (control wood) vats was carried out. The results showed that LAB represent efficient barriers to the adhesion of the main dairy pathogens, probably due to their acidity and bacteriocin generation.IMPORTANCE This study highlights the importance of using wooden vats for traditional cheese production and provides evidence for the valorization of the Sicilian forest wood resources via the production of dairy equipment.
Collapse
|
13
|
Rumjuankiat K, Keawsompong S, Nitisinprasert S. Bacterial contaminants from frozen puff pastry production process and their growth inhibition by antimicrobial substances from lactic acid bacteria. Food Sci Nutr 2017; 5:454-465. [PMID: 28572930 PMCID: PMC5448371 DOI: 10.1002/fsn3.413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/18/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
Seventy-five bacterial contaminants which still persisted to cleaning system from three puff pastry production lines (dough forming, layer and filling forming, and shock freezing) were identified using 16S rDNA as seven genera of Bacillus, Corynebacterium, Dermacoccus, Enterobacter, Klebsiella, Pseudomonas, and Staphylococcus with detection frequencies of 24.00, 2.66, 1.33, 37.33, 1.33, 2.66, and 30.66, respectively. Seventeen species were discovered while only 11 species Bacillus cereus, B. subtilis, B. pumilus, Corynebacterium striatum, Dermacoccus barathri, Enterobacter asburiae, Staphylococcus kloosii, S. haemolyticus, S. hominis, S. warneri, and S. aureus were detected at the end of production. Based on their abundance, the highest abundance of E. asburiae could be used as a biomarker for product quality. While a low abundance of the mesophile pathogen C. striatum, which causes respiratory and nervous infection and appeared only at the shock freezing step was firstly reported for its detection in bakery product. Six antimicrobial substances (AMSs) from lactic acid bacteria, FF1-4, FF1-7, PFUR-242, PFUR-255, PP-174, and nisin A were tested for their inhibition activities against the contaminants. The three most effective were FF1-7, PP-174, and nisin A exhibiting wide inhibition spectra of 88.00%, 85.33%, and 86.66%, respectively. The potential of a disinfectant solution containing 800 AU/ml of PP-174 and nisin A against the most resistant strains of Enterobacter, Staphylococcus, Bacillus and Klebsiella was determined on artificially contaminated conveyor belt coupons at 0, 4, 8, 12, and 16 hr. The survival levels of the test strains were below 1 log CFU/coupon at 0 hr. The results suggested that a combined solution of PP-174 and nisin A may be beneficial as a sanitizer to inhibit bacterial contaminants in the frozen puff pastry industry.
Collapse
Affiliation(s)
- Kittaporn Rumjuankiat
- Specialized Research Unit: Prebiotics and Probiotics for HealthFaculty of Agro‐IndustryDepartment of BiotechnologyKasetsart UniversityBangkokThailand
| | - Suttipun Keawsompong
- Specialized Research Unit: Prebiotics and Probiotics for HealthFaculty of Agro‐IndustryDepartment of BiotechnologyKasetsart UniversityBangkokThailand
- Center for Advanced Studies for Agriculture and FoodKasetsart University Institute for Advanced StudiesKasetsart UniversityBangkokThailand
| | - Sunee Nitisinprasert
- Specialized Research Unit: Prebiotics and Probiotics for HealthFaculty of Agro‐IndustryDepartment of BiotechnologyKasetsart UniversityBangkokThailand
- Center for Advanced Studies for Agriculture and FoodKasetsart University Institute for Advanced StudiesKasetsart UniversityBangkokThailand
| |
Collapse
|
14
|
Alfonzo A, Miceli C, Nasca A, Franciosi E, Ventimiglia G, Di Gerlando R, Tuohy K, Francesca N, Moschetti G, Settanni L. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation. Food Microbiol 2017; 62:256-269. [DOI: 10.1016/j.fm.2016.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
|
15
|
Gaglio R, Barbera M, Aleo A, Lommatzsch I, La Mantia T, Settanni L. Inhibitory Activity and Chemical Characterization of Daucus carota subsp. maximus Essential Oils. Chem Biodivers 2017; 14. [PMID: 28171692 DOI: 10.1002/cbdv.201600477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/03/2017] [Indexed: 11/11/2022]
Abstract
The essential oils (EOs) of green seeds from Daucus carota subsp. maximus growing wild in Pantelleria Island (Sicily, Italy) were characterized. EOs were extracted by steam distillation, examined for their inhibitory properties against food-borne Gram-positive and Gram-negative bacteria and analyzed for the chemical composition by gas chromatography (GC) and mass spectrometry (MS). Undiluted EOs showed a large inhibition spectrum against Gram-positive strains and also vs. Acinetobacter spp. and Stenotrophomonas maltophilia. The minimum inhibition concentration (MIC) was in the range 1.25 - 2.50 μl/ml for the most sensitive strains. The chemical analysis indicated that D. carota subsp. maximus EOs included 34 compounds (five monoterpene hydrocarbons, six oxygenated monoterpenes, 14 sesquiterpene hydrocarbons, four oxygenated sesquiterpenes, camphorene and four other compounds), accounting for 95.48% of the total oil, and that the major chemicals were carotol, β-bisabolene, and isoelemicin.
Collapse
Affiliation(s)
- Raimondo Gaglio
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, IT-90128, Palermo, Italy
| | - Marcella Barbera
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, IT-90128, Palermo, Italy
| | - Aurora Aleo
- Dipartimento di Scienze per la Promozione della Salute e Materno Infantile 'G. D'Alessandro', Università degli Studi di Palermo, Via del Vespro, IT-90127, Palermo
| | - Ines Lommatzsch
- Azienda Agricola Soleone, Via Venedisé 35, IT-9107, Pantelleria, TP, Italy
| | - Tommaso La Mantia
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, IT-90128, Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie e Forestali, Università degli Studi di Palermo, Viale delle Scienze 4, IT-90128, Palermo, Italy
| |
Collapse
|
16
|
Ventimiglia G, Alfonzo A, Galluzzo P, Corona O, Francesca N, Caracappa S, Moschetti G, Settanni L. Codominance of Lactobacillus plantarum and obligate heterofermentative lactic acid bacteria during sourdough fermentation. Food Microbiol 2015; 51:57-68. [DOI: 10.1016/j.fm.2015.04.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/04/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
|
17
|
Scatassa ML, Gaglio R, Macaluso G, Francesca N, Randazzo W, Cardamone C, Di Grigoli A, Moschetti G, Settanni L. Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses. Food Microbiol 2015; 52:31-41. [PMID: 26338114 DOI: 10.1016/j.fm.2015.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/10/2015] [Accepted: 06/20/2015] [Indexed: 10/23/2022]
Abstract
The biofilms of 12 wooden vats used for the production of the traditional stretched cheeses Caciocavallo Palermitano and PDO Vastedda della valle del Belìce were investigated. Salmonella spp. and Listeria monocytogenes were never detected. Total coliforms were at low numbers with Escherichia coli found only in three vats. Coagulase-positive staphylococci (CPS) were below the enumeration limit, whereas lactic acid bacteria (LAB) dominated the surfaces of all vats. In general, the dominance was showed by coccus LAB. Enterococci were estimated at high numbers, but usually between 1 and 2 Log cycles lower than other LAB. LAB populations were investigated at species and strain level and for their technological properties relevant in cheese production. Eighty-five strains were analysed by a polyphasic genetic approach and allotted into 16 species within the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus. Enterococcus faecium was found in all wooden vats and the species most frequently isolated were Enterococcus faecalis, Lactococcus lactis, Leuconostoc mesenteroides, Pediococcus acidilactici and Streptococcus thermophilus. The study of the quantitative data on acidification rate, autolysis kinetics, diacetyl production, antibacterial compound generation and proteolysis by cluster and principal component analysis led to the identification of some strains with promising dairy characteristics. Interestingly, a consistent percentage of LAB was bacteriocin-like inhibitory substances (BLIS) producer. Thus, the microbial biofilms of the wooden vats analysed in this study might contribute actively to the stability of the final cheeses.
Collapse
Affiliation(s)
- Maria Luisa Scatassa
- Istituto Zooprofilattico Sperimentale della Sicilia "Adelmo Mirri", Via G. Marinuzzi 3, 90129, Palermo, Italy
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Giusi Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia "Adelmo Mirri", Via G. Marinuzzi 3, 90129, Palermo, Italy
| | - Nicola Francesca
- Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Walter Randazzo
- Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Cinzia Cardamone
- Istituto Zooprofilattico Sperimentale della Sicilia "Adelmo Mirri", Via G. Marinuzzi 3, 90129, Palermo, Italy
| | - Antonino Di Grigoli
- Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Giancarlo Moschetti
- Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy
| | - Luca Settanni
- Dipartimento Scienze Agrarie e Forestali, Università di Palermo, Viale delle Scienze 4, 90128, Palermo, Italy.
| |
Collapse
|
18
|
Di Grigoli A, Francesca N, Gaglio R, Guarrasi V, Moschetti M, Scatassa ML, Settanni L, Bonanno A. The influence of the wooden equipment employed for cheese manufacture on the characteristics of a traditional stretched cheese during ripening. Food Microbiol 2015; 46:81-91. [DOI: 10.1016/j.fm.2014.07.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 11/17/2022]
|
19
|
Rizzello CG, Calasso M, Campanella D, De Angelis M, Gobbetti M. Use of sourdough fermentation and mixture of wheat, chickpea, lentil and bean flours for enhancing the nutritional, texture and sensory characteristics of white bread. Int J Food Microbiol 2014; 180:78-87. [PMID: 24794619 DOI: 10.1016/j.ijfoodmicro.2014.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/12/2014] [Accepted: 04/02/2014] [Indexed: 11/25/2022]
Abstract
This study aimed at investigating the addition of legume (chickpea, lentil and bean) flours to wheat flour bread. Type I sourdough containing legumes or wheat-legume flours were prepared and propagated (back slopped) in laboratory, according to traditional protocols that are routinely used for making typical Italian breads. Based on kinetic of acidification and culture-dependent data, the wheat-legume sourdough was further characterized and selected for bread making. As determined by RAPD-PCR and partial sequencing of 16S rDNA gene analyses, lactic acid bacteria in wheat-legume sourdough included Lactobacillus plantarum, Lactobacillus sanfranciscensis, Leuconostoc mesenteroides, Lactobacillus fermentum, Weissella cibaria, Lactobacillus pentosus, Lactobacillus coryneformis, Lactobacillus rossiae, Lactobacillus brevis, Lactobacillus parabuchneri and Lactobacillus paraplantarum. Two breads containing 15% (w/w) of legume (chickpea, lentil and bean) flours were produced using selected wheat-legume sourdough (WLSB) and traditional wheat sourdough (WSB). Compared to wheat yeasted bread (WYB), the level of total free amino acids (FAA) was higher in WSB and WLSB. Phytase and antioxidant activities were the highest in WLSB. Compared to bread WYB, the addition of legume flours decreased the in vitro protein digestibility (IVPD) (WYB versus WSB). However, the dough fermentation with WSLB favored an increase of IVPD. According to the levels of carbohydrates, dietary fibers and resistant starch, WSB and WLSB showed lower values of hydrolysis index (HI) compared to WYB. As showed by texture and image analyses and sensory evaluation of breads, a good acceptability was found for WSB and, especially, WLSB breads.
Collapse
Affiliation(s)
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Daniela Campanella
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Marco Gobbetti
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Settanni L, Guarcello R, Gaglio R, Francesca N, Aleo A, Felis GE, Moschetti G. Production, stability, gene sequencing and in situ anti-Listeria activity of mundticin KS expressed by three Enterococcus mundtii strains. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Diversity and technological potential of lactic acid bacteria of wheat flours. Food Microbiol 2013; 36:343-54. [DOI: 10.1016/j.fm.2013.07.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/29/2013] [Accepted: 07/09/2013] [Indexed: 11/19/2022]
|
22
|
Zaeim D, Soleimanian-Zad S, Sheikh-Zeinoddin M. Identification and Partial Characterization of a Bacteriocin-Like Inhibitory Substance (BLIS) fromLb. BulgaricusK41 Isolated from Indigenous Yogurts. J Food Sci 2013; 79:M67-73. [DOI: 10.1111/1750-3841.12314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Davood Zaeim
- Dept. of Food Science and Technology; College of Agriculture; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| | - Sabihe Soleimanian-Zad
- Dept. of Food Science and Technology; College of Agriculture; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| | - Mahmoud Sheikh-Zeinoddin
- Dept. of Food Science and Technology; College of Agriculture; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
23
|
Gaglio R, Francesca N, Di Gerlando R, Cruciata M, Guarcello R, Portolano B, Moschetti G, Settanni L. Identification, typing and investigation of the dairy characteristics of lactic acid bacteria isolated from “Vastedda della valle del Belìce” cheeses. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13594-013-0150-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Technological, functional and safety aspects of enterococci in fermented vegetable products: a mini-review. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0363-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
25
|
Settanni L, Tanguler H, Moschetti G, Reale S, Gargano V, Erten H. Evolution of fermenting microbiota in tarhana produced under controlled technological conditions. Food Microbiol 2011; 28:1367-73. [DOI: 10.1016/j.fm.2011.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/08/2011] [Accepted: 06/13/2011] [Indexed: 11/26/2022]
|
26
|
Luo F, Feng S, Sun Q, Xiang W, Zhao J, Zhang J, Yang Z. Screening for bacteriocin-producing lactic acid bacteria from kurut, a traditional naturally-fermented yak milk from Qinghai–Tibet plateau. Food Control 2011. [DOI: 10.1016/j.foodcont.2010.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Settanni L, Franciosi E, Cavazza A, Cocconcelli PS, Poznanski E. Extension of Tosèla cheese shelf-life using non-starter lactic acid bacteria. Food Microbiol 2010; 28:883-90. [PMID: 21569930 DOI: 10.1016/j.fm.2010.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/12/2010] [Accepted: 12/06/2010] [Indexed: 11/18/2022]
Abstract
Six strains of non-starter lactic acid bacteria (NSLAB) were used to extend the shelf-life of the fresh cheese Tosèla manufactured with pasteurised cows' milk. The acidification kinetics of three Lactobacillus paracasei, one Lactobacillus rhamnosus and two Streptococcus macedonicus were studied in synthetic milk medium. Lb. paracasei NdP78 and NdP88 and S. macedonicus NdP1 and PB14-1 showed an interesting acidifying capacity and were further characterised for growth in UHT milk and production of antimicrobial compounds. Lb. paracasei NdP78 and S. macedonicus NdP1 grew more than 2 log cycles in 6 h. Lb. paracasei NdP78 was also found to produce a bacteriocin-like inhibitory substance (BLIS) active against Listeria monocytogenes. The four NSLAB strains (singly or in combination) were used to produce experimental pilot-scale cheeses which were compared by a panel. The cheese manufactured with the mixed culture Lb. paracasei NdP78 - S. macedonicus NdP1 was the most appreciated for its sensory properties. The cheeses produced at factory-scale showed higher concentrations of lactobacilli (7.90 log CFU/g) and streptococci (6.10 log CFU/g), but a lower development of coliforms (3.10 log CFU/g) and staphylococci (2.78 log CFU/g) than control cheese (4.86, 4.89, 4.93 and 5.00 log CFU/g of lactobacilli, streptococci, coliforms and staphylococci, respectively) processed without NSLAB addition. The food pathogens Salmonella spp. and Listeria monocytogenes were never detected. The dominance of the species inoculated was demonstrated by denaturing gradient gel electrophoresis (DGGE), whereas strain recognition was evaluated by randomly amplified polymorphic DNA (RAPD)-PCR. From the results obtained, Lb. paracasei NdP78 and S. macedonicus NdP1 were able to persist during the storage of Tosèla cheese and their combination influenced positively the sensory characteristics and shelf-life of the final product.
Collapse
Affiliation(s)
- Luca Settanni
- SENFIMIZO Department, Section of Phytopathology and Agricultural Microbiology, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|
28
|
Delbes-Paus C, Dorchies G, Chaabna Z, Callon C, Montel MC. Contribution of hydrogen peroxide to the inhibition of Staphylococcus aureus by Lactococcus garvieae in interaction with raw milk microbial community. Food Microbiol 2010; 27:924-32. [PMID: 20688234 DOI: 10.1016/j.fm.2010.05.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
Abstract
The response of Staphylococcus aureus growth inhibition by Lactococcus garvieae to catalase and milk lactoperoxidase, and its efficiency in raw milk cheese were evaluated. S. aureus and L. garvieae were co-cultivated in broth buffered at pH 6.8, and in raw, pasteurized and microfiltered milk, in presence and absence of catalase. Although H2O2 production by L. garvieae was detected only in agitated broth, the inhibition of S. aureus by L. garvieae was reduced by catalase both in static and shaking cultures by 2.7 log, pasteurized milk (approximately 0.7 log), microfiltered milk (approximately 0.6 log) and raw milk (approximately 0.2 log). The growth of S. aureus alone in microfiltered milk was delayed compared with that in pasteurized milk and inhibition of S. aureus by L. garvieae was stronger in microfiltered milk. The inhibition of coagulase-positive staphylococci (CPS) by L. garvieae in raw milk cheese was similar to that in raw milk (approximately 0.8 log), but weaker than that in pasteurized and microfiltered milks. L. garvieae also had an early antagonistic effect on the growth of several other microbial groups, which lastingly affected populations levels and balance during cheese ripening.
Collapse
Affiliation(s)
- Céline Delbes-Paus
- Unité de Recherches Fromagères UR545, INRA, 20 Côte de Reyne, F-15000 Aurillac, France.
| | | | | | | | | |
Collapse
|
29
|
Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol 2008; 121:123-38. [DOI: 10.1016/j.ijfoodmicro.2007.09.001] [Citation(s) in RCA: 285] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 08/15/2007] [Accepted: 09/03/2007] [Indexed: 11/25/2022]
|