1
|
Corrigan BM, O'Mahony JA, Fenelon MA. The effect of whey source on heat-induced aggregation of casein and whey protein mixtures of relevance to infant nutritional product formulation. J Dairy Sci 2023; 106:8299-8311. [PMID: 38040197 DOI: 10.3168/jds.2022-22088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/25/2022] [Indexed: 12/03/2023]
Abstract
Sweet and, to a lesser extent, acid whey protein ingredients can be used for the formulation of infant nutritional products. Unlike acid whey, sweet whey contains caseinomacropeptide (CMP), a heat-stable peptide liberated from κ-casein during cheese and rennet casein manufacture. Four protein systems-sweet whey (SW) and acid whey (AW), with or without standardization for CMP protein content-were added to skim milk (50/50, wt/wt) and unheated or heated to 85 or 110°C. These 12 samples were assessed for physicochemical stability in the presence of added calcium at pH 6.8. The effect of CMP content on the physicochemical properties of the protein systems was also assessed. Without preheat treatment, mixtures of AW and skim milk (SM) were more heat stable than SW and SM, demonstrating the effect of whey protein type on heat stability. Preheat treatment of the SW in the presence of SM significantly improved the heat stability of the resultant protein systems on subsequent heating. All of the protein systems had significantly lower heat stability with the addition of Ca, although the reduction was significantly smaller for the heated protein systems than the unheated controls. The findings can help identify heating parameters and ingredients for optimizing processing stability and physicochemical characteristics of nutritional beverages such as infant formulations.
Collapse
Affiliation(s)
- Bernard M Corrigan
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 TP07
| | - Mark A Fenelon
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 C996; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 TP07.
| |
Collapse
|
2
|
|
3
|
Karimidastjerd A, Gulsunoglu-Konuskan Z. Biological, functional and nutritional properties of caseinomacropeptide from sweet whey. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34802348 DOI: 10.1080/10408398.2021.2000360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bioactive peptides derived from bovine milk proteins have gained much attention due to their health promoting functions. All over the world, cheese industry generates high volumes of sweet whey that could be used as an alternative source of bioactive peptide in nutraceuticals and food industry. Caseinomacropeptide (CMP) is a bioactive peptide derived from κ-casein by the action of chymosin during cheese manufacturing. CMP consist of two forms which are glycosylated (gCMP) and non-glycosylated (aCMP). The predominant carbohydrate in gCMP is N-acetylneuraminic (sialic acid) which gives functional and biological properties to gCMP. Due to its unique composition and technological characteristics such as wide pH range solubility, emulsifying, gelling, and foaming ability, CMP has received special attention. Therefore, there is an increased interest in researches for isolation and concentration of CMP. However, the isolation and purification methods are not cost-effective. It would be easier to optimize the conditions for isolation, purification, and utilization of CMP in nutraceuticals and food industry through deeper understanding of the effective factors. In this review, the structure of CMP, biological activities, isolation, and purification methods, the factors affecting functional properties and application areas of CMP in food industry are discussed.
Collapse
Affiliation(s)
- Atefeh Karimidastjerd
- Department of Food Engineering, Faculty of Chemical and Metallurgical, Istanbul Technical University, Istanbul, Turkey
| | - Zehra Gulsunoglu-Konuskan
- Nutrition and Dietetics Department, Faculty of Health Sciences, Istanbul Aydin University, Istanbul, Turkey
| |
Collapse
|
4
|
Influence of chaperone-like activity of caseinomacropeptide on the gelation behaviour of whey proteins at pH 6.4 and 7.2. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Gaspard SJ, Sunds AV, Larsen LB, Poulsen NA, O'Mahony JA, Kelly AL, Brodkorb A. Influence of desialylation of caseinomacropeptide on the denaturation and aggregation of whey proteins. J Dairy Sci 2020; 103:4975-4990. [PMID: 32229125 DOI: 10.3168/jds.2019-17780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/24/2020] [Indexed: 11/19/2022]
Abstract
The effect of the addition of caseinomacropeptide (CMP) or desialylated CMP on the heat-induced denaturation and aggregation of whey proteins was investigated in the pH range 3 to 7 after heating at 80°C for 30 min. The rate and temperature of denaturation, the extent of aggregation, and the changes in secondary structure of the whey proteins heated in presence of CMP or desialylated CMP were measured. The sialic acid bound to CMP favored the denaturation and aggregation of whey proteins when the whey proteins were oppositely charged to CMP at pH 4. A transition occurred at pH 6, below which the removal of sialic acid enhanced the stabilizing properties of CMP against the denaturation and aggregation of the whey proteins. At pH >6, the interactions between desialylated CMP and the whey proteins led to more extensive denaturation and aggregation. Sialic acid bound to CMP influenced the denaturation and aggregation behavior of whey proteins in a pH-dependent manner, and this should be considered in future studies on the heat stability of such systems containing CMP.
Collapse
Affiliation(s)
- Sophie J Gaspard
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland; School of Food and Nutritional Sciences, University College Cork, T12 YN60, Ireland
| | - Anne V Sunds
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus N Denmark
| | - Lotte B Larsen
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus N Denmark
| | - Nina A Poulsen
- Department of Food Science, Faculty of Technical Sciences, Aarhus University, 8200 Aarhus N Denmark
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, T12 YN60, Ireland
| | - Alan L Kelly
- School of Food and Nutritional Sciences, University College Cork, T12 YN60, Ireland
| | - André Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996, Ireland.
| |
Collapse
|
6
|
Impact of the order of acid and heat treatments on the composition of caseinomacropeptide isolate. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Feeney S, Ryan JT, Kilcoyne M, Joshi L, Hickey R. Glycomacropeptide Reduces Intestinal Epithelial Cell Barrier Dysfunction and Adhesion of Entero-Hemorrhagic and Entero-Pathogenic Escherichia coli in Vitro. Foods 2017; 6:foods6110093. [PMID: 29077065 PMCID: PMC5704137 DOI: 10.3390/foods6110093] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022] Open
Abstract
In recent years, the potential of glycosylated food components to positively influence health has received considerable attention. Milk is a rich source of biologically active glycoconjugates which are associated with antimicrobial, immunomodulatory, anti-adhesion, anti-inflammatory and prebiotic properties. Glycomacropeptide (GMP) is the C-terminal portion of kappa-casein that is released from whey during cheese-making by the action of chymosin. Many of the biological properties associated with GMP, such as anti-adhesion, have been linked with the carbohydrate portion of the protein. In this study, we investigated the ability of GMP to inhibit the adhesion of a variety of pathogenic Escherichia coli strains to HT-29 and Caco-2 intestinal cell lines, given the importance of E. coli in causing bacterial gastroenteritis. GMP significantly reduced pathogen adhesion, albeit with a high degree of species specificity toward enteropathogenic E. coli (EPEC) strains O125:H32 and O111:H2 and enterohemorrhagic E. coli (EHEC) strain 12900 O157:H7. The anti-adhesive effect resulted from the interaction of GMP with the E. coli cells and was also dependent on GMP concentration. Pre-incubation of intestinal Caco-2 cells with GMP reduced pathogen translocation as represented by a decrease in transepithelial electrical resistance (TEER). Thus, GMP is an effective in-vitro inhibitor of adhesion and epithelial injury caused by E. coli and may have potential as a biofunctional ingredient in foods to improve gastrointestinal health.
Collapse
Affiliation(s)
- Shane Feeney
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Joseph Thomas Ryan
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, H91TK33 Galway, Ireland.
| | - Rita Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61C996 Co. Cork, Ireland.
| |
Collapse
|
8
|
Farías M, Pilosof A. The influence of acid type on self-assembly, rheological and textural properties of caseinomacropeptide. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Wagoner TB, Ward L, Foegeding EA. Using state diagrams for predicting colloidal stability of whey protein beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4335-4344. [PMID: 25880701 DOI: 10.1021/acs.jafc.5b00633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A method for evaluating aspects of colloidal stability of whey protein beverages after thermal treatment was established. Three state diagrams for beverages (pH 3-7) were developed representing protein solubility, turbidity, and macroscopic state after two ultrahigh-temperature (UHT) treatments. Key transitions of stability in the state diagrams were explored using electrophoresis and chromatography to determine aggregation propensities of β-lactoglobulin, α-lactalbumin, bovine serum albumin, and glycomacropeptide. The state diagrams present an overlapping view of high colloidal stability at pH 3 accompanied by high solubility of individual whey proteins. At pH 5, beverages were characterized by poor solubility, high turbidity, and aggregation/gelation of whey proteins with the exception of glycomacropeptide. Stability increased at pH 6, due to increased solubility of α-lactalbumin. The results indicate that combinations of state diagrams can be used to identify key regions of stability for whey protein containing beverages.
Collapse
Affiliation(s)
- Ty B Wagoner
- †Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Box 7624, Raleigh, North Carolina 27695-7624, United States
| | - Loren Ward
- §Glanbia Nutritionals, 450 Falls Avenue, Twin Falls, Idaho 83301, United States
| | - E Allen Foegeding
- †Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Box 7624, Raleigh, North Carolina 27695-7624, United States
| |
Collapse
|