1
|
de Deus C, Duque-Soto C, Rueda-Robles A, Martínez-Baena D, Borrás-Linares I, Quirantes-Piné R, Ragagnin de Menezes C, Lozano-Sánchez J. Stability of probiotics through encapsulation: Comparative analysis of current methods and solutions. Food Res Int 2024; 197:115183. [PMID: 39593393 DOI: 10.1016/j.foodres.2024.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Probiotics have awakened a great interest in the scientific community for their potential beneficial effects on health. Although only allowed by the European Food Safety Agency as a nutrition declaration associated with the improvement of lactose digestion, recent in vitro and in vivo studies have demonstrated their varied beneficial effect for the improvement of certain pathologies. However, probiotics face stability and viability challenges, which make their delivery difficult in sufficient quantities for these effects to be observed. Thus, there is a dire need for the development and implantation of innovative technological protection procedures. In this sense, encapsulation rises as a widely applied technique, offering additional advantages. In the present study, a systematic review was conducted for the evaluation of the main encapsulation technologies applied in literature, considering operating conditions, probiotics, and encapsulation efficacy. For this purpose, several conditions are evaluated: a) the characteristics, storage conditions and viability of probiotics; b) evaluation and comparison of the probiotic stabilization for the main encapsulation methods; and c) co-encapsulation with potential bioactive molecules as a new alternative for improving cell viability. This evaluation revealed the efficacy of seven encapsulation techniques on the improvement of the stability and viability of probiotics.
Collapse
Affiliation(s)
- Cassandra de Deus
- Department of Food Science and Technology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Daniel Martínez-Baena
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | | | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Avci E, Tekin-Cakmak ZH, Ozgolet M, Karasu S, Kasapoglu MZ, Ramadan MF, Sagdic O. Capsaicin Rich Low-Fat Salad Dressing: Improvement of Rheological and Sensory Properties and Emulsion and Oxidative Stability. Foods 2023; 12:foods12071529. [PMID: 37048350 PMCID: PMC10093882 DOI: 10.3390/foods12071529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
This study aimed to investigate the potential use of cold-pressed hot pepper seed oil by-product (HPOB) in a low-fat salad dressing to improve its rheological properties, emulsion, and oxidative stability. The total phenolic content (TPC), the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and CUPRIC reducing antioxidant capacity (CUPRAC) values were 317.4 mg GAE/100 g, 81.87%, and 6952.8 mg Trolox/100 g, respectively. The capsaicin, dihydrocapsaicin, and total carotenoid content were 175.8 mg/100 g, 71.01 mg/100 g, and 106.3 µg/g, respectively. All emulsions indicated shear-thinning, viscoelastic solid-like behavior, and recoverable characteristics, which were improved via enrichment with HPOB. The thermal loop test showed that the low-fat sample formulated with 3% HPOB indicated little change in the G* value, showing that it exhibited high emulsion stability. The induction period values (IP) of the salad dressing samples containing HPOB (between 6.33 h and 8.33 h) were higher than the IP values of the control samples (3.20 h and 2.58 h). The enrichment with HPOB retarded the formation of oxidative volatile compounds of hexanal, nonanal, and 1-octene-3-ol. According to the results presented in this study, HPOB could be effectively used in a low-fat salad dressing to enhance its rheological characteristics and oxidative stability.
Collapse
Affiliation(s)
- Esra Avci
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Zeynep Hazal Tekin-Cakmak
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Muhammed Ozgolet
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | - Salih Karasu
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| | | | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Osman Sagdic
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, 34220 Istanbul, Turkey
| |
Collapse
|
3
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
4
|
Akcicek A, Yildirim RM, Tekin-Cakmak ZH, Karasu S. Low-Fat Salad Dressing as a Potential Probiotic Food Carrier Enriched by Cold-Pressed Tomato Seed Oil By-Product: Rheological Properties, Emulsion Stability, and Oxidative Stability. ACS OMEGA 2022; 7:48520-48530. [PMID: 36591179 PMCID: PMC9798515 DOI: 10.1021/acsomega.2c06874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This study aims to investigate the potential of the use of cold-pressed tomato seed oil by-products in a low-fat salad dressing as potential probiotic food carriers to improve the oxidative stability and emulsion stability as well as the rheological properties. The low-fat salad dressing emulsions were formulated with cold-pressed tomato seed by-product (TBP) and Lactobacillus plantarum ELB90. The optimum low-fat salad dressing formulations found were determined as 10 g/100 g oil, 0.283 g/100 g xanthan, and 2.925 g/100 g TBP. The samples prepared with the optimum formulation (SD-O) were compared with the low-fat control salad dressing sample (SD-LF) and the high-fat control salad dressing sample (SD-HF) based on the rheological properties, emulsion stability, oxidative stability, and L. plantarum ELB90 viability. The sample SD-O showed shear-thinning, viscoelastic solid, and recoverable characters. The sample SD-O showed higher IP and ΔG ++ and lower ΔS ++ values than those of the control samples. After 9 weeks of refrigerated storage, viable L. plantarum ELB90 cell counts of salad dressing samples were counted as 7.93 ± 0.03, 5.81 ± 0.04, and 6.02 ± 0.08 log cfu g-1 for SD-O, SD-LF, and SD-HF, respectively. This study showed that TBP could be successfully used in a low-fat salad dressing as a potential probiotic carrier.
Collapse
Affiliation(s)
- Alican Akcicek
- Department
of Gastronomy and Culinary Arts, Faculty of Tourism, Kocaeli University, Kartepe, Kocaeli41080, Turkey
| | - Rusen Metin Yildirim
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul34220, Turkey
| | - Zeynep Hazal Tekin-Cakmak
- Department
of Nutrition and Dietetics, Health Sciences Faculty, Istinye University, İstanbul34010, Turkey
| | - Salih Karasu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul34220, Turkey
| |
Collapse
|
5
|
Luca L, Oroian M. Oat Yogurts Enriched with Synbiotic Microcapsules: Physicochemical, Microbiological, Textural and Rheological Properties during Storage. Foods 2022; 11:foods11070940. [PMID: 35407027 PMCID: PMC8998009 DOI: 10.3390/foods11070940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the influence of synbiotic microcapsules on oat yogurt’s properties. For this study, four different microcapsules were added into the oat yogurt and the modifications were studied for 28 days. Microbiological analysis was used to analyze the effect of different factors on the microencapsulated probiotic population in the product. Those factors are: the technological process of obtaining microcapsules; the type of prebiotic chicory inulin (INU), oligofructose (OLI) and soluble potato starch (STH); the prebiotic concentrations in the encapsulation matrix; the technological process of obtaining yogurt; and the yogurt storage period, gastric juice action and intestinal juice action. The experimental data show that oat yogurt containing synbiotic microcapsules has similar properties to yogurt without microcapsules, which illustrates that the addition of synbiotic microcapsules does not change the quality, texture or rheological parameters of the product. Oat yogurt with the addition of synbiotic microcapsules can be promoted as a functional food product, which, in addition to other beneficial components (bioactive compounds), has in its composition four essential amino acids (glycine, valine, leucine and glutamine acids) and eight non-essential amino acids (alanine, serine, proline, asparagine, thioproline, aspartic acid, glutamic acid and α-aminopimelic acid). After 28 days of storage in refrigerated conditions, the cell viability of the microcapsules after the action of the simulated intestinal juice were: 9.26 ± 0.01 log10 cfu/g, I STH (oat yogurt with synbiotic microcapsules—soluble potato starch); 9.33 ± 0.01 log10 cfu/g, I INU, 9.18 ± 0.01 log10 cfu/g, I OIL and 8.26 ± 0.04 log10 cfu/g, IG (oat yogurt with microcapsules with glucose). The new functional food product provides consumers with an optimal number of probiotic cells which have a beneficial effect on intestinal health.
Collapse
|
6
|
Tekin-Cakmak ZH, Atik I, Karasu S. The Potential Use of Cold-Pressed Pumpkin Seed Oil By-Products in a Low-Fat Salad Dressing: The Effect on Rheological, Microstructural, Recoverable Properties, and Emulsion and Oxidative Stability. Foods 2021; 10:foods10112759. [PMID: 34829043 PMCID: PMC8620466 DOI: 10.3390/foods10112759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cold-pressed pumpkin seed oil by-product (POB) was evaluated for its application as a natural fat substitute and stabilizer in the reduced-fat salad dressings. For this aim, the samples were prepared by combining the xanthan gum (0.2–0.4 g/100 g), POB (1.0–5.0 g/100 g), egg yolk powder (3 g/100 g), and sunflower oil (10–30 g/100 g) in 17 different formulations. The optimization was carried out using response surface methodology (RSM) and full factorial central composite design (CCD). Results showed that all samples presented the shear-thinning (or pseudoplastic) flow behavior with 3.75–16.11 Pa·sn and 0.18–0.30, K and n values, respectively. The flow behavior rheological data were fitted to a power-law model (R2 > 0.99). The samples with high POB and low oil content showed similar K and n values compared to high oil content samples. Additionally, the dynamic rheological properties and three interval thixotropic test (3-ITT) were determined. The G′ value was larger than G″ in all frequency ranges, indicating viscoelastic solid characteristics in all samples. The optimum formulation was determined as 0.384% XG, 10% oil, and 3.04% POB. The samples prepared with the optimum formulation (POBLF-SD) were compared to low-fat (LF-SD), and high-fat (HF-SD) control salad dressing samples based on the rheological properties, emulsion stability, oxidative stability, zeta potential, and particle size. The oxidation kinetic parameters namely, IP, Ea, ΔS++, and ΔG++ showed that the oxidative stability of salad dressing samples could be improved by enriched by POB. The results of the present study demonstrated that POB could be considerably utilized as a natural fat substitute and stabilizer in salad dressing type emulsions.
Collapse
Affiliation(s)
- Zeynep Hazal Tekin-Cakmak
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34349, Turkey;
| | - Ilker Atik
- Food Technology Program, Afyon Vocational School, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey;
| | - Salih Karasu
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul 34349, Turkey;
- Correspondence: ; Tel.: +90-212-3834623
| |
Collapse
|
7
|
Tekin ZH, Karasu S. Cold‐pressed flaxseed oil by‐product as a new source of fat replacers in low‐fat salad dressing formulation: Steady, dynamic and 3‐ITT rheological properties. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Zeynep Hazal Tekin
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University, Davutpasa Campus İstanbul Turkey
| | - Salih Karasu
- Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering Yildiz Technical University, Davutpasa Campus İstanbul Turkey
| |
Collapse
|
8
|
|
9
|
Campos JM, Stamford TLM, Sarubbo LA. Characterization and application of a biosurfactant isolated from Candida utilis in salad dressings. Biodegradation 2019; 30:313-324. [PMID: 31089840 DOI: 10.1007/s10532-019-09877-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/11/2019] [Indexed: 11/28/2022]
Abstract
This study aimed at characterizing a biosurfactant from Candida utilis, and use it in the preparation of salad dressings. The biosurfactant was produced in mineral medium supplemented with 6% glucose and 6% waste frying canola oil. The crude biosurfactant was then tested for stability in different conditions of pH, salt concentration, heating time and temperature. The critical micelle dilution, chemical composition, and structural analysis were determined. The compound was resistant to extreme conditions and presented stable surface tension and emulsification activity in alkaline pH and was characterized as a carbohydrate-lipid-protein complex showing the best formulation and consistency at 0.7% (w/v) with guar gum indicating potential applicability in food emulsions.
Collapse
Affiliation(s)
- J M Campos
- Universidade Federal de Pernambuco (UFPE), Rua Nelson Chaves, s/n, Cidade Universitária, Recife, PE, Brazil
| | - T L M Stamford
- Universidade Federal de Pernambuco (UFPE), Rua Nelson Chaves, s/n, Cidade Universitária, Recife, PE, Brazil
| | - L A Sarubbo
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, n. 526, Boa Vista, Recife, PE, CEP 50050-900, Brazil. .,Instituto Avançado de Tecnologia e Inovação (IATI), Rua Joaquim de Brito, Boa vista, n. 216, Boa Vista, Recife, PE, CEP 50070-280, Brazil.
| |
Collapse
|
10
|
Akcicek A, Karasu S. Utilization of cold pressed chia seed oil waste in a low-fat salad dressing as natural fat replacer. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alican Akcicek
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| | - Salih Karasu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering; Yildiz Technical University; Istanbul Turkey
| |
Collapse
|
11
|
Gupta M, Bajaj BK. Development of fermented oat flour beverage as a potential probiotic vehicle. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Shori AB. The potential applications of probiotics on dairy and non-dairy foods focusing on viability during storage. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.09.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Campos JM, Stamford TLM, Rufino RD, Luna JM, Stamford TCM, Sarubbo LA. Formulation of mayonnaise with the addition of a bioemulsifier isolated from Candida utilis. Toxicol Rep 2015; 2:1164-1170. [PMID: 28962458 PMCID: PMC5598453 DOI: 10.1016/j.toxrep.2015.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023] Open
Abstract
A biosurfactant from Candida utilis was employed in formulations of mayonnaises. The biosurfactant was tested on rats and in different formulations of mayonnaise. The biosurfactant showed absence of toxic effect in the animals. The most stable formulation was obtained with guar gum and the biosurfactant. The innocuousness of the biosurfactant indicates its safe use in food emulsions.
Biosurfactants have a number of industrial applications due their diverse properties, such as emulsification, foaming, wetting, and surface activity. The aim of the present study was to produce a biosurfactant from Candida utilis and employ it in the formulation of a mayonnaise. The biosurfactant was produced in a mineral medium supplemented with glucose and canola waste frying oil at 150 rpm for 88 h. The product was biologically tested on rats and in different formulations of mayonnaise, which were submitted to microbiological evaluations. The biosurfactant was added to the diet of the rats for 21 days. Greater consumption was found of the experimental diet. Moreover, no changes were found in the liver or kidneys of the animals, demonstrating the absence of a toxic effect from the biosurfactant. Six different formulations of mayonnaise were prepared and tested regarding stability with the addition of carboxymethyl cellulose and guar gum (combined and isolated) after 30 days of refrigeration. The most stable formulation with the best quality was obtained with combination of guar gum and the isolated biosurfactant, with an absence of pathogenic microorganisms. In conclusion, the potential and innocuousness of the biosurfactant isolated from C. utilis indicates its safe use in food emulsions.
Collapse
Affiliation(s)
- Jenyffer M Campos
- Universidade Federal de Pernambuco (UFPE), Rua Nelson Chaves, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Tânia L M Stamford
- Universidade Federal de Pernambuco (UFPE), Rua Nelson Chaves, s/n, Cidade Universitária, Recife, PE, Brazil
| | - Raquel D Rufino
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, Boa Vista, Recife, PE, Brazil
| | - Juliana M Luna
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, Boa Vista, Recife, PE, Brazil
| | | | - Leonie A Sarubbo
- Centro de Ciências e Tecnologia, Universidade Católica de Pernambuco (UNICAP), Rua do Príncipe, Boa Vista, Recife, PE, Brazil
| |
Collapse
|
14
|
Schnitzenbaumer B, Arendt EK. Brewing with up to 40% unmalted oats (Avena sativa) and sorghum (Sorghum bicolor): a review. JOURNAL OF THE INSTITUTE OF BREWING 2014. [DOI: 10.1002/jib.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Birgit Schnitzenbaumer
- School of Food and Nutritional Sciences; National University of Ireland, University College Cork; College Road Cork Ireland
| | - Elke K. Arendt
- School of Food and Nutritional Sciences; National University of Ireland, University College Cork; College Road Cork Ireland
| |
Collapse
|