1
|
Bai G, Ye M, Yu L, Yang M, Wang Y, Chen S. Purification, characterization, simulated gastrointestinal digestion and gut microbiota fermentation of a Bifidobacterium-directed mannoglucan from Lilium brownii var. viridulum. Food Chem X 2024; 23:101671. [PMID: 39139491 PMCID: PMC11321392 DOI: 10.1016/j.fochx.2024.101671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/26/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Lilium brownii var. viridulum (Longya lily) is an edible vegetable and medicinal plant with the effects of moistening lungs, relieving coughs, and removing phlegm. In this study, a homogenous mannoglucan LLP11 was purified from Longya lily using membrane ultrafiltration followed by ion exchange chromatography. The M w of LLP11 was 12.0 kDa. LLP11 exhibited a backbone of →4)-α-D-Glcp-(1 → and →4)-β-D-Manp-(1 → with a branch of T-α-D-Glcp-(1 → substituted at C-6 of →4,6)-α-D-Glcp-(1→. During the simulated digestion, LLP11 remained indigestible to digestive enzymes. Furthermore, through its interaction with the gut microbiota, LLP11 was able to significantly boost Bifidobacterium and decrease the harmful bacteria Klebsiella, that was linked to pneumonia. Additionally, LLP11 promoted the growth of B. pseudocatenulatum and B. longum and was utilized to produce acetic acid. Our findings introduced an alternative approach for the investigation of microbiota-targeted polysaccharides and underscored the potential of LLP11 as a prebiotic for supplementary treatment in respiratory diseases.
Collapse
Affiliation(s)
- Guangjian Bai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Miaoyun Ye
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Li Yu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yaqi Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shaodan Chen
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
2
|
Zahir A, Naseri E, Hussain M. Development of yogurt fortified with four varieties of common bean ( Phaseolus vulgaris) whey by using response surface methodology: a preliminary study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:753-769. [PMID: 39119564 PMCID: PMC11303373 DOI: 10.1007/s13197-023-05876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 08/10/2024]
Abstract
In recent years, there has been a growing interest in developing novel foods with improved health and nutritional characteristics, particularly through the supplementation and development of dairy products with plant-based ingredients. In this study, the response surface methodology (RSM) was employed to optimize the ingredient formulation and processing parameters of common bean whey-fortified yogurt (CBWFY) production containing Lactobacillus bulgaricus, and common bean whey (CBW) with a high probiotic count, superior physicochemical and textural properties, and desirable sensory attributes. The experiments were planned using the "box-Behnken design" (BBD) with three independent variables: fermentation time (0-10 h), common bean ratio (25-100%), and the amount of starter culture (1-5%). To assess the physicochemical properties of the yogurt, such as pH, titratable acidity, viable cell count, and syneresis of the CBWFY, they were determined and optimized. In all the common bean whey samples, the optimum conditions were obtained by supplementing cow milk with 25% common bean whey (CBW), an inoculation ratio of 1-4%, and fermentation for 5.54 h. Fermentation time and CBW concentration significantly affected the viability of L. bulgaricus and the physicochemical attributes of yogurt. This study demonstrated that the addition of cow milk with 25% CBW from the white bean variety produced probiotic yogurt with the highest L. bulgaricus population (up to 8.55 log CFU/mL) compared to the other varieties and an enhancement in the yogurt's pH and acidity, while a decrease in yogurt syneresis occurred. In general, the results of the current study showed that adding up to 25% white common bean whey to probiotic yogurt can be an option for producing yogurt with potential functional and sensory quality. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05876-z.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, Jiangsu People’s Republic of China
- Department of Food Science and Technology, Faculty of Veterinary Medicine, Afghanistan National Agricultural Sciences and Technology University, Kandahar, 3801 Afghanistan
| | | | - Muzahir Hussain
- MoBioFood Research Group Biochemistry and Biotechnology Department, Universitat Rovira i Virgili, Sescelades, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Ma X, Zheng Z, Wang Q, Zuo J, Ju J, Zheng B, Lu X. The modulation effect of lotus (Nelumbo nucifera Gaertn.) seeds oligosaccharides with different structures on intestinal flora and action mode of growth effects on Bifidobacterium in vivo and in vitro. Food Chem 2023; 419:136057. [PMID: 37011571 DOI: 10.1016/j.foodchem.2023.136057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023]
Abstract
Natural lotus seed oligosaccharides monomers (LOSs: LOS3-1, LOS3-2, and LOS4) were prepared by preparative chromatography and were hydroxyl-labeled with fluorescein isothiocyanate (FITC). The prebiotic properties of LOSs by the gut microbiota of male Balb/C mice in vivo and in vitro were studied. In vivo experiment results showed that LOS4 could significantly increase the average daily food consumption, weight, liver index and the abundance of Bacteroides and Bifidobacterium for mice (p < 0.05). In addition, LOS4 also had significant proliferation effect on Bifidobacterium adolescentis and longum in vitro (p < 0.05). Laser confocal microscopy observation showed interaction site between LOS4-FITC and Bifidobacterium adolescentis was located outside and inside of cell, which was completed within 1 h. The relationship between structures of LOSs and prebiotics of intestinal flora (especially Bifidobacterium), and expanded the knowledge on the effects of carbohydrate polymerization degree (DP) and glycosidic bond connection with fermentation selectivity of bacteria was studied.
Collapse
|
4
|
Structural characterization and in vitro analysis of the prebiotic activity of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Food Chem 2022; 388:133045. [PMID: 35486989 DOI: 10.1016/j.foodchem.2022.133045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022]
Abstract
In the present study, lotus seed oligosaccharides (LOSs) were isolated from lotus (Nelumbo nucifera Gaertn.) seeds using preparative liquid chromatography. LOS structures were characterized using fourier transform infrared spectroscopy (FT-IR), acid hydrolysis, tandemmass spectrometry (MS/MS) and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Then, Lactobacillus acidophilus was used to evaluate the prebiotic activity of LOSs in vitro. The structural analysis revealed that the monosaccharide components of LOSs included glucose, mannose, fructose and galactose. The MS/MS results indicated that disaccharides, trisaccharides, trisaccharides and tetrasaccharides were the constituents of isolated oligosaccharide polymers LOS2, LOS3-1, LOS3-2, and LOS4, respectively. The FT-IR and 1D/2D NMR data confirmed that LOS3 and LOS4 had a linear structure consisting of (1 → 6)-α-d-mannopyranosyl and glucopyranosyl residues. LOS3-1 and LOS4 effectively and selectively promoted the growth of an L. acidophilus strain, according to the results of the assays of optical density and the short-chain fatty acid (SCFA) content in the culture broth.
Collapse
|
5
|
YU C, Liu Y, Xuemei Z, Ma A, Jianxin T, Yiling T. Fermented Carrot Pulp Regulates the Dysfunction of Murine Intestinal Microbiota. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2479956. [PMID: 35340216 PMCID: PMC8942650 DOI: 10.1155/2022/2479956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/04/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
It was the focus of attention that probiotic control drink was packed with prebiotic nutrients and lactic acid bacteria. So, this study is aimed at revealing that the fermented carrot pulp regulation and protection function to the intestinal microecological disorders usually induced by antibiotic treatment. First, we study on lactobacillus fermentation conditions and effects on the secondary metabolism of fermented carrot juice, get its phenolic acids up, and get its flavonoids down. Then, establishment of the dysbacteriosis mouse model was used to validate the fermented carrot pulp prevention and treatment of intestinal microbiota imbalance. After the antibiotic treatment, the mice showed impotence, laziness, slow movement, weight loss, thin feces, dull hair, and anal redness, while the mice in the control group were all normal in terms of the mental state, diet, weight, and bowl movement. Along with the treatment, the abnormal conditions of the mice in the model group and natural recovery group improved in different degrees, indicating that the fermentation treatment is of help to the intestinal microbiota recovery. The fermentation-treated group of mice recovered close to normal that the diarrhea disappeared, and the weight gain, mental state, and the feces became normal. The serum antioxidant (SOD, GSH, and MDA) levels of the mice were checked. The superoxide dismutase (SOD) levels and glutathione (GSH) levels in the ordinary fermentation-treated group and probiotic fermentation-treated group were significantly increased compare to the natural recovery group. The malondialdehyde (MDA) levels showed great differences between the fermentation-treated groups and the blank group. At last, the 16sRNA analysis revealed that the microbiota richness and diversity in probiotic fermentation (J) are much higher than those in the model group (H), ordinary fermentation group (I), and blank group (G). Groups J and I are of significantly higher antioxidant level than group H; however, only the glutathione (GSH) level in group J increased dramatically but not those in the other three groups. Antibiotic treatment-induced mouse intestinal microecological disorder reduce the microbiota richness and diversity. Prebiotics fermented carrot pulp treatment can help in the recovery from the microbiota richness and diversity level prior to the antibiotic treatment, which suggests it can regulate and protect the murine intestinal microbiome.
Collapse
Affiliation(s)
- Chenchen YU
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Ying Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Zhang Xuemei
- College of Forestry, Hebei Agricultural University, Baoding Hebei, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Tan Jianxin
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| | - Tian Yiling
- College of Food Science and Technology, Hebei Agricultural University, Baoding Hebei, China
| |
Collapse
|
6
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
7
|
Ye Z, Jiang B, Gao D, Ping W, Ge J. Bacillus spp. increase the Paracin 1.7 titer of L. paracasei HD1.7 in sauerkraut juice: Emphasis on the influence of inoculation conditions on the symbiotic relationship. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
8
|
Fan R, Burghardt JP, Huang J, Xiong T, Czermak P. Purification of Crude Fructo-Oligosaccharide Preparations Using Probiotic Bacteria for the Selective Fermentation of Monosaccharide Byproducts. Front Microbiol 2021; 11:620626. [PMID: 33584587 PMCID: PMC7874009 DOI: 10.3389/fmicb.2020.620626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Probiotics are microbes that promote health when consumed in sufficient amounts. They are present in many fermented foods or can be provided directly as supplements. Probiotics utilize non-digestible prebiotic oligosaccharides for growth in the intestinal tract, contributing to a healthy microbiome. The oligosaccharides favored by probiotics are species-dependent, as shown by the selective utilization of substrates in mixed sugar solutions such as crude fructo-oligosaccharides (FOS). Enzymatically produced crude FOS preparations contain abundant monosaccharide byproducts, residual sucrose, and FOS varying in chain length. Here we investigated the metabolic profiles of four probiotic bacteria during the batch fermentation of crude FOS under controlled conditions. We found that Bacillus subtilis rapidly utilized most of the monosaccharides but little sucrose or FOS. We therefore tested the feasibility of a microbial fed-batch fermentation process for the purification of FOS from crude preparations, which increased the purity of FOS from 59.2 to 82.5% with a final concentration of 140 g·l-1. We also tested cell immobilization in alginate beads as a means to remove monosaccharides from crude FOS. This encapsulation concept establishes the basis for new synbiotic formulations that combine probiotic microbes and prebiotic oligosaccharides.
Collapse
Affiliation(s)
- Rong Fan
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
| | - Jan Philipp Burghardt
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| | - Jinqing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
| |
Collapse
|
9
|
Marín-Manzano MDC, Hernandez-Hernandez O, Diez-Municio M, Delgado-Andrade C, Moreno FJ, Clemente A. Prebiotic Properties of Non-Fructosylated α-Galactooligosaccharides from PEA ( Pisum sativum L.) Using Infant Fecal Slurries. Foods 2020; 9:foods9070921. [PMID: 32668744 PMCID: PMC7405007 DOI: 10.3390/foods9070921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
The interest for naturally-occurring oligosaccharides from plant origin having prebiotic properties is growing, with special focus being paid to supplemented products for infants. Currently, non-fructosylated α-galactooligosaccharides (α-GOS) from peas have peaked interest as a result of their prebiotic activity in adults and their mitigated side-effects on gas production from colonic bacterial fermentation. In this study, commercially available non-fructosylated α-GOS from peas and β-galactooligosaccharides (β-GOS) derived from lactose were fermented using fecal slurries from children aged 11 to 24 months old during 6 and 24 h. The modulatory effect of both GOS on different bacterial groups and bifidobacteria species was assessed; non-fructosylated α-GOS consumption was monitored throughout the fermentation process and the amounts of lactic acid and short-chain fatty acids (SCFA) generated were analyzed. Non-fructosylated α-GOS, composed mainly of manninotriose and verbascotetraose and small amounts of melibiose, were fully metabolized and presented remarkable bifidogenic activity, similar to that obtained with β-GOS. Furthermore, non-fructosylated α-GOS selectively caused an increase on the population of Bifidobacterium longum subsp. longum and Bifidobacterium catenulatum/pseudo-catenulatum. In conclusion, non-fructosylated α-GOS could be used as potential ingredient in infant formula supplemented with prebiotic oligosaccharides.
Collapse
Affiliation(s)
- María del Carmen Marín-Manzano
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
| | | | - Marina Diez-Municio
- Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (O.H.-H.); (M.D.-M.); (F.J.M.)
| | - Cristina Delgado-Andrade
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
| | - Francisco Javier Moreno
- Institute of Food Science Research (CIAL, CSIC-UAM), 28049 Madrid, Spain; (O.H.-H.); (M.D.-M.); (F.J.M.)
| | - Alfonso Clemente
- Estación Experimental del Zaidín (CSIC), Consejo Superior de Investigaciones Científicas (CSIC), 18008 Granada, Spain; (M.d.C.M.-M.); (C.D.-A.)
- Correspondence: ; Tel.: +34-9-5857-2757
| |
Collapse
|
10
|
Emerging prebiotics obtained from lemon and sugar beet byproducts: Evaluation of their in vitro fermentability by probiotic bacteria. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Sánchez ÓJ, Barragán PJ, Serna L. Review of Lactobacillus in the food industry and their culture media. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n2.81576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lactic acid bacteria (LAB) are currently of great importance given their increasing use in the improvement of human and animal health and nutrition. They exhibit complex nutritional requirements, which is the reason why their production costs are high. Research efforts are being made aimed at evaluating different substrates for their production as well as the production of valuable metabolites from them. The purpose of this paper is to expose the main research and development trends for LAB production for industrial purposes with emphasis on the culture media required for their growth. The web of Science databases as well as the Google Patent Search tool were used in order to gather and analyze the scientific and technical information published in the last twelve years relating to LAB and their culture media. The use of milk, industrial cheese whey, cane molasses, hydrolyzed starches, lignocellulosic materials, organic food waste and bovine blood plasma, among others, have been proposed for Lactobacillus cultivation with the purpose of reducing costs and increasing performance in their production. Research groups and centers have the responsibility of intensifying their efforts to offer highly efficient technological alternatives to the industry that allow the production and application of LAB as a growth factor for the food sector. Also, research in prebiotic ingredients or additives derived from LAB that allow the enhancement of the benefits to the consumer must be continued. In this regard, it is necessary to increase the international visibility of Colombian scientific production in this area.
Collapse
|
12
|
Szajnar K, Znamirowska A, Kalicka D. Effects of various magnesium salts for the production of milk fermented by Bifidobacterium animalis ssp. lactis Bb-12. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1628779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Katarzyna Szajnar
- Department of Dairy Technology, University of Rzeszow, Rzeszow, Poland
| | - Agata Znamirowska
- Department of Dairy Technology, University of Rzeszow, Rzeszow, Poland
| | - Dorota Kalicka
- Department of Dairy Technology, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
13
|
Huang YL, Ma YS, Tsai YH, Chang SK. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. Int J Biol Macromol 2019; 124:796-801. [DOI: 10.1016/j.ijbiomac.2018.11.249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 01/25/2023]
|
14
|
Requena T, Miguel M, Garcés-Rimón M, Martínez-Cuesta MC, López-Fandiño R, Peláez C. Pepsin egg white hydrolysate modulates gut microbiota in Zucker obese rats. Food Funct 2018; 8:437-443. [PMID: 28091678 DOI: 10.1039/c6fo01571a] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is limited information that relates the intake of food-derived bioactive peptides and the gut microbiota. We have previously described a pepsin hydrolysate of egg white (EWH) that ameliorates fat accumulation and dyslipidemia, while reducing oxidative stress and inflammation markers in obese Zucker rats. The aim of this study was to associate the beneficial effects of EWH with gut microbiota changes in these animals. Obese Zucker rats received daily 750 mg kg-1 EWH in drinking water for 12 weeks and faeces were analysed for microbial composition and metabolic compounds in comparison with Zucker lean rats and obese controls. EWH supplementation modulated the microbiological characteristics of the obese rats to values similar to those of the lean rats. Specifically, counts of total bacteria, Lactobacillus/Enterococcus and Clostridium leptum in EWH fed obese Zucker rats were more similar to the lean rats than to the obese controls. Besides, feeding the obese Zucker rats with EWH reduced (P < 0.05) the faecal concentration of lactic acid. The physiological benefits of EWH in the improvement of obesity associated complications of Zucker rats could be associated with a more lean-like gut microbiota and a tendency to diminish total short-chain fatty acids (SCFA) production and associated obesity complications. The results warrant the use of pepsin egg white hydrolysate as a bioactive food ingredient.
Collapse
Affiliation(s)
- Teresa Requena
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Miguel
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Garcés-Rimón
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - M Carmen Martínez-Cuesta
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Carmen Peláez
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
15
|
Kaprasob R, Kerdchoechuen O, Laohakunjit N, Somboonpanyakul P. B vitamins and prebiotic fructooligosaccharides of cashew apple fermented with probiotic strains Lactobacillus spp., Leuconostoc mesenteroides and Bifidobacterium longum. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Effect of Pseudomonas graminis strain CPA-7 on the ability of Listeria monocytogenes and Salmonella enterica subsp. enterica to colonize Caco-2 cells after pre-incubation on fresh-cut pear. Int J Food Microbiol 2017; 262:55-62. [DOI: 10.1016/j.ijfoodmicro.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/11/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
|
17
|
Bao C, Zeng H, Zhang Y, Zhang L, Lu X, Guo Z, Miao S, Zheng B. Structural characteristics and prebiotic effects of Semen coicis resistant starches (type 3) prepared by different methods. Int J Biol Macromol 2017; 105:671-679. [DOI: 10.1016/j.ijbiomac.2017.07.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 01/18/2023]
|
18
|
Cutrim CS, Barros RFD, Franco RM, Cortez MAS. Escherichia coli O157:H7 SURVIVAL IN TRADITIONAL AND LOW LACTOSE YOGURT DURING FERMENTATION AND COOLING PERIODS. CIÊNCIA ANIMAL BRASILEIRA 2017. [DOI: 10.1590/1089-6891v18e-39554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract The purpose of this study was to evaluate the behavior of E. coli O157:H7 during lactose hydrolysis and fermentation of traditional and low lactose yogurt. It also aimed to verify E. coli O157:H7 survival after 12 h of storage at 4 ºC ±1 ºC. Two different types of yogurts were prepared, two with whole milk and two with pre-hydrolyzed whole milk; in both groups one yogurt was inoculated with E. coli O157:H7 and the other one was not inoculated. The survival of E. coli and pH of yogurt were determined during fermentation and after 12-h refrigeration. The results showed that E. coli O157:H7 was able to grow during the fermentation period (from 4.34 log CFU.mL-1 to 6.13 log CFU.mL-1 in traditional yogurt and 4.34 log CFU.mL-1 to 6.16 log CFU.mL-1 in low lactose yogurt). The samples with E. coli O157:H7 showed gas formation and syneresis. Thus, E. coli O157:H7 was able to survive and grow during fermentation of traditional and low lactose yogurts affecting the manufacture technology. Moreover, milk contamination by E. coli before LAB addition reduces the growth of L. bulgaricus and S. thermophilus especially when associated with reduction of lactose content.
Collapse
|
19
|
Kong L, Zhao XH. Yields of three acids during simulated fermentation of inulin and xylo-oligosaccharides enhanced by six exogenous strains. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2017. [DOI: 10.1007/s11694-016-9439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD. Sci Rep 2017; 7:44174. [PMID: 28276495 PMCID: PMC5343441 DOI: 10.1038/srep44174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
Lotus seeds were identified by the Ministry of Public Health of China as both food and medicine. One general function of lotus seeds is to improve intestinal health. However, to date, studies evaluating the relationship between bioactive compounds in lotus seeds and the physiological activity of the intestine are limited. In the present study, by using medium pressure liquid chromatography coupled with evaporative light-scattering detector and diode-array detector, five oligosaccharides were isolated and their structures were further characterized by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. In vitro testing determined that LOS3-1 and LOS4 elicited relatively good proliferative effects on Lactobacillus delbrueckii subsp. bulgaricus. These results indicated a structure-function relationship between the physiological activity of oligosaccharides in lotus seeds and the number of probiotics applied, thus providing room for improvement of this particular feature. Intestinal probiotics may potentially become a new effective drug target for the regulation of immunity.
Collapse
|
21
|
Effect of lactulose-derived oligosaccharides on intestinal microbiota during the shift between media with different energy contents. Food Res Int 2016; 89:302-308. [PMID: 28460919 DOI: 10.1016/j.foodres.2016.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/25/2022]
Abstract
The microbiological and metabolic changes of an overweight-associated colonic microbiota after reducing in vitro the carbohydrate supply and its supplementation with oligosaccharides derived from lactulose (OsLu) were evaluated using a dynamic simulator of the gastrointestinal tract. The differentiation and stability of the microbial communities within each colon compartment were reached after two weeks of feeding the system with a high energy (HE) medium based on fructose and readily fermentable starches. The effect of reducing the energy content (low-energy medium, LE) and the supplementation with OsLu caused minor variations in bacterial counts, except for Enterobacteriaceae. The LE medium caused an effect on the microbial metabolic activity that was characterized by an absence of net butyrate production and an increase in ammonium content. This shift from fermentative to proteolytic metabolism was not observed when the LE medium was supplemented with OsLu. This oligosaccharide mixture was mainly metabolized in the proximal colonic compartment. The results obtained in this study indicate that the substitution in the diet of easily digestible carbohydrates by OsLu maintains the fermentative functionality of the intestinal microbiota, allowing the net production of butyric acid with potential beneficial effects on health, and avoiding a full transition to proteolytic metabolism profiles.
Collapse
|
22
|
Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol Res 2016; 192:159-171. [PMID: 27664734 DOI: 10.1016/j.micres.2016.07.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/12/2016] [Accepted: 07/07/2016] [Indexed: 02/07/2023]
Abstract
The invasion of pathogens causes a disruption of the gut homeostasis. Innate immune responses and those triggered by endogenous microbiota form the first line of defence in our body. Pathogens often successfully overcome the resistances offered, calling for therapeutic intervention. Conventional strategy involving antibiotics might eradicate pathogens, but often leave the gut uncolonised and susceptible to recurrences. Probiotic supplements are useful alternatives. Bifidobacterium is one of widely studied probiotic genus, effective in restoring gut homeostasis. Mechanisms of probiotic action of bifidobacteria are several, often with strain-specificity. Analysis of streamlined literature reports reveal that although most studies report the probiotic aspect of bifidobacteria, sporadic documented contradictory results exist, challenging its therapeutic application and prompting studies to unambiguously establish the strain-associated probiotic activity and negate adverse effects prior to its clinical administration. Multi-strain/combinatorial therapy possibly relies on a combination of underlying operating mechanisms, each contributing towards enhanced probiotic efficacy, understanding which could help in developing customised formulations against targeted pathogens. Bifidogenic activity is also mediated by surface-associated structural components such as exopolysaccharides, lipoteichoic acids along with metabolites and bifidocins. This highlights scope for developing advanced structural therapeutic strategy which might be pivotal in replacing intact cell probiotics therapy.
Collapse
|
23
|
Ren Y, Liu W, Zhang H. Identification of Coccoidal Bacteria in Traditional Fermented Milk Products from Mongolia, and the Fermentation Properties of the Predominant Species, Streptococcus thermophilus. Korean J Food Sci Anim Resour 2016; 35:683-91. [PMID: 26761898 PMCID: PMC4670899 DOI: 10.5851/kosfa.2015.35.5.683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/25/2015] [Accepted: 09/26/2015] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to identify the coccoidal bacteria present in 188 samples of fermented yaks', mares' and cows' milk products collected from 12 different regions in Mongolia. Furthermore, we evaluated the fermentation properties of ten selected isolates of the predominant species, Streptococcus (S.) thermophiles, during the process of milk fermentation and subsequent storage of the resulting yoghurt at 4℃. Overall, 159 isolates were obtained from 188 samples using M17 agar. These isolates were presumed to be lactic acid bacteria based on their gram-positive and catalase-negative properties, and were identified to species level using 16S rRNA gene sequence analysis. These coccoid isolates were distributed in four genera and six species: Enterococcus (E.) durans, Enterococcus (E.) faecalis, Lactococcus (Lac.) subsp. lactis, Leuconostoc (Leuc.) lactis, Leuconostoc (Leuc.) mesenteroides. subsp. mesenteroides and S. thermophilus. Among these S. thermophilus was the most common species in most samples. From evaluation of the fermentation characteristics (viable counts, pH, titratable acidity [TA]) of ten selected S. thermophilus isolates we could identify four isolates (IMAU 20246, IMAU20764, IMAU20729 and IMAU20738) that were fast acid producers. IMAU20246 produced the highest concentrations of lactic acid and formic acid. These isolates have potential as starter cultures for yoghurt production.
Collapse
Affiliation(s)
- Yan Ren
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
24
|
Libera J, Karwowska M, Stasiak DM, Dolatowski ZJ. Microbiological and physicochemical properties of dry-cured neck inoculated with probiotic ofBifidobacterium animalisssp.lactisBB-12. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12806] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Justyna Libera
- Department of Meat Technology and Food Quality; University of Life Sciences in Lublin; 8 Skromna 20-704 Lublin Poland
| | - Małgorzata Karwowska
- Department of Meat Technology and Food Quality; University of Life Sciences in Lublin; 8 Skromna 20-704 Lublin Poland
| | - Dariusz M. Stasiak
- Department of Meat Technology and Food Quality; University of Life Sciences in Lublin; 8 Skromna 20-704 Lublin Poland
| | - Zbigniew J. Dolatowski
- Department of Meat Technology and Food Quality; University of Life Sciences in Lublin; 8 Skromna 20-704 Lublin Poland
| |
Collapse
|