1
|
Amusa AA, Ahmad AL, Adewole JK. Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. MEMBRANES 2020; 10:E370. [PMID: 33255866 PMCID: PMC7760533 DOI: 10.3390/membranes10120370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
In this paper, a review of the compatibility of polymeric membranes with lignocellulosic biomass is presented. The structure and composition of lignocellulosic biomass which could enhance membrane fabrications are considered. However, strong cell walls and interchain hindrances have limited the commercial-scale applications of raw lignocellulosic biomasses. These shortcomings can be surpassed to improve lignocellulosic biomass applications by using the proposed pretreatment methods, including physical and chemical methods, before incorporation into a single-polymer or copolymer matrix. It is imperative to understand the characteristics of lignocellulosic biomass and polymeric membranes, as well as to investigate membrane materials and how the separation performance of polymeric membranes containing lignocellulosic biomass can be influenced. Hence, lignocellulosic biomass and polymer modification and interfacial morphology improvement become necessary in producing mixed matrix membranes (MMMs). In general, the present study has shown that future membrane generations could attain high performance, e.g., CO2 separation using MMMs containing pretreated lignocellulosic biomasses with reachable hydroxyl group radicals.
Collapse
Affiliation(s)
- Abiodun Abdulhameed Amusa
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia;
| | - Jimoh Kayode Adewole
- Process Engineering Department, International Maritime College, Sohar 322, Oman;
| |
Collapse
|
2
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
3
|
Application of active Kurdi gum and Farsi gum-based coatings in banana fruits. Journal of Food Science and Technology 2020; 57:4236-4246. [PMID: 33071345 DOI: 10.1007/s13197-020-04462-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/02/2019] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
This study evaluated the effects of Kurdi gum (KG) and Farsi gum (FG) based coatings with and without ethanolic Prosopis farcta extract (PFE; 0, 0.25 and 0.5%) on microbial, physicochemical, and sensory properties as well as respiration and ethylene production rates of banana fruits during storage (13 °C, 80% relative humidity (RH)) for 21 days and afterward 7 days at simulated market conditions (25 °C, 60% RH). The treatment of fruits with KG + PFE 0.5% resulted in the best bacterial, chemical, and sensory properties at the end of the storage period. It can be concluded that the application of KG and FG coatings enriched with PFE can be applied to increase the commercialization of bananas during prolonged storage.
Collapse
|
4
|
Jung J, Deng Z, Zhao Y. A review of cellulose nanomaterials incorporated fruit coatings with improved barrier property and stability: Principles and applications. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jooyeoun Jung
- Department of Food Science & TechnologyOregon State University Corvallis Oregon
- Department of Food Science & TechnologyUniversity of Nebraska‐Lincoln Lincoln Nebraska
| | - Zilong Deng
- Department of Food Science & TechnologyOregon State University Corvallis Oregon
- State Key Laboratory of Pollution Control and Resource ReuseSchool of Environmental Science and Engineering, Tongji University Shanghai China
| | - Yanyun Zhao
- Department of Food Science & TechnologyOregon State University Corvallis Oregon
| |
Collapse
|
5
|
Chen H, Wang J, Cheng Y, Wang C, Liu H, Bian H, Pan Y, Sun J, Han W. Application of Protein-Based Films and Coatings for Food Packaging: A Review. Polymers (Basel) 2019; 11:E2039. [PMID: 31835317 PMCID: PMC6960667 DOI: 10.3390/polym11122039] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
As the IV generation of packaging, biopolymers, with the advantages of biodegradability, process ability, combination possibilities and no pollution to food, have become the leading food packaging materials. Biopolymers can be directly extracted from biomass, synthesized from bioderived monomers and produced directly by microorganisms which are all abundant and renewable. The raw materials used to produce biopolymers are low-cost, some even coming from agrion dustrial waste. This review summarized the advances in protein-based films and coatings for food packaging. The materials studied to develop protein-based packaging films and coatings can be divided into two classes: plant proteins and animal proteins. Parts of proteins are referred in this review, including plant proteins i.e., gluten, soy proteins and zein, and animal proteins i.e., casein, whey and gelatin. Films and coatings based on these proteins have excellent gas barrier properties and satisfactory mechanical properties. However, the hydrophilicity of proteins makes the protein-based films present poor water barrier characteristics. The application of plasticizers and the corresponding post-treatments can make the properties of the protein-based films and coatings improved. The addition of active compounds into protein-based films can effectively inhibit or delay the growth of microorganisms and the oxidation of lipids. The review also summarized the research about the storage requirements of various foods that can provide corresponding guidance for the preparation of food packaging materials. Numerous application examples of protein-based films and coatings in food packaging also confirm their important role in food packaging materials.
Collapse
Affiliation(s)
- Hongbo Chen
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Jingjing Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Yaohua Cheng
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Chuansheng Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
- Shandong Provincial Key Laboratory of Polymer Material Advanced Manufactorings Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Haichao Liu
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (H.L.)
| | - Huiguang Bian
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Yiren Pan
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; (H.C.); (J.W.); (Y.C.); (C.W.); (H.B.); (Y.P.)
| | - Jingyao Sun
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (H.L.)
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenwen Han
- Academic Division of Engineering, Qingdao University of Science & Technology, Qingdao 266061, China; (H.L.)
- National Engineering Laboratory for Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao 266061, China
| |
Collapse
|
6
|
Jiang Y, Yu L, Hu Y, Zhu Z, Zhuang C, Zhao Y, Zhong Y. Electrostatic spraying of chitosan coating with different deacetylation degree for strawberry preservation. Int J Biol Macromol 2019; 139:1232-1238. [DOI: 10.1016/j.ijbiomac.2019.08.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
|
7
|
Figueroa-Lopez KJ, Andrade-Mahecha MM, Torres-Vargas OL. Development of Antimicrobial Biocomposite Films to Preserve the Quality of Bread. Molecules 2018; 23:E212. [PMID: 29351265 PMCID: PMC6017510 DOI: 10.3390/molecules23010212] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/04/2022] Open
Abstract
This study focused on the development of gelatin-based films with incorporation of microcrystalline cellulose as reinforcement material. Clove (Syzygium aromaticum), nutmeg (Myristica fragrans), and black pepper (Piper nigrum) oleoresins containing antimicrobial compounds of natural origin were incorporated into the films. The mechanical, thermal, optical, and structural properties, as well as color, seal strength and permeability to water vapor, light, and oil of the films were determined. Adding oleoresins to the gelatin matrix increased the elongation of the material and significantly diminished its permeability to water vapor and oil. Evaluation of the potential use of films containing different oleoresins as bread packaging material was influenced by the film properties. The biocomposite film containing oleoresin from black pepper was the most effective packaging material for maintaining bread's quality characteristics.
Collapse
Affiliation(s)
- Kelly J Figueroa-Lopez
- Optoelectronics Group, Interdisciplinary Science Institute, Faculty of Basic Science and Technologies, Universidad del Quindío, Carrera 15 Calle 12 Norte, Armenia 630004, Colombia.
| | | | - Olga Lucía Torres-Vargas
- Group of Agro-industrial Sciences, Faculty of Agro-industrial Sciences, Universidad del Quindío, Carrera 15 Calle 12 Norte, Armenia 630004, Colombia.
| |
Collapse
|
8
|
Prakash Menon M, Selvakumar R, Suresh kumar P, Ramakrishna S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv 2017. [DOI: 10.1039/c7ra06713e] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellulose nanofibers obtained from various plants and microbial sources, their extraction methods and various environmental applications are discussed.
Collapse
Affiliation(s)
| | - R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore
- India-641004
| | - Palaniswamy Suresh kumar
- Environmental & Water Technology Centre of Innovation (EWTCOI)
- Ngee Ann Polytechnic
- Singapore-599489
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
9
|
Abstract
This review discusses the latest advances in the composition of gelatin-based edible films and coatings, including nanoparticle addition, and their properties are reviewed along their potential for application in the food packaging industry. Gelatin is an important biopolymer derived from collagen and is extensively used by various industries because of its technological and functional properties. Nowadays, a very wide range of components are available to be included as additives to improve its properties, as well as its applications and future potential. Antimicrobials, antioxidants and other agents are detailed due to the fact that an increasing awareness among consumers regarding healthy lifestyle has promoted research into novel techniques and additives to prolong the shelf life of food products. Thanks to its ability to improve global food quality, gelatin has been particularly considered in food preservation of meat and fish products, among others.
Collapse
|