1
|
Peñuñuri-Pacheco N, Moreno-García YA, González-Ríos H, Astiazarán-García H, López-Franco YL, Tortoledo-Ortiz O, Pérez-Báez AJ, Dávila-Ramírez JL, Lizardi-Mendoza J, Valenzuela-Melendres M. Optimization of the Encapsulation of Vitamin D3 in Oil in Water Nanoemulsions: Preliminary Application in a Functional Meat Model System. Foods 2024; 13:2842. [PMID: 39272607 PMCID: PMC11394896 DOI: 10.3390/foods13172842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Meat products containing Vitamin D3 (VD3) are an innovative option that could contribute to reducing deficiencies in this micronutrient. Designing nanoemulsions that carry VD3 is the first step in developing functional meat products. Thereby, this study investigated the impact of food components on the nanoemulsion properties. A central composite design was used to study the effects of pea protein (PP, 0.5-2.5%), safflower oil (SO, 5-15%), and salt (0-0.5%) on the nanoemulsion stability (ζ-potential and particle size) and the VD3 retention. Also, the optimized nanoemulsion carrying VD3 was incorporated into a meat matrix to study its retention after cooking. The combination of food components in the optimized nanoemulsion were SO = 9.12%, PP = 1.54%, and salt content = 0.4%, resulting in the predicted values of ζ-potential, particle size, and VD3 retention of -37.76 mV, 485 nm, and 55.1%, respectively. The VD3 that was nanoencapsulated and included in a meat product remained more stable after cooking than the VD3 that was not encapsulated. If a meat product is formulated with 5 or 10% safflower oil, the stability of the nanoencapsulated VD3 is reduced. This research contributes to developing functional meat products carrying nanoencapsulated vitamin D3 in natural food-grade components.
Collapse
Affiliation(s)
- Nallely Peñuñuri-Pacheco
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Yuvitza Alejandra Moreno-García
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Humberto González-Ríos
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Humberto Astiazarán-García
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Yolanda L López-Franco
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Orlando Tortoledo-Ortiz
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Anna Judith Pérez-Báez
- Instituto de Acuacultura del Estado de Sonora, Comonfort y Paseo del Canal, Centro de Gobierno, Ed. Sonora, Hermosillo 83280, Sonora, Mexico
| | - José Luis Dávila-Ramírez
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Jaime Lizardi-Mendoza
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| | - Martin Valenzuela-Melendres
- Coordinación de Tecnología de Alimentos de Origen Animal, Centro de Investigación en Alimentación y Desarrollo, Carretera Gustavo Enrique Astiazarán Rosas No. 46, La Victoria, Hermosillo 83304, Sonora, Mexico
| |
Collapse
|
2
|
Norcino LB, Mendes JF, Figueiredo JDA, Oliveira NL, Botrel DA, Mattoso LHC. Development of alginate/pectin microcapsules by a dual process combining emulsification and ultrasonic gelation for encapsulation and controlled release of anthocyanins from grapes (Vitis labrusca L.). Food Chem 2022; 391:133256. [PMID: 35623279 DOI: 10.1016/j.foodchem.2022.133256] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the physicochemical, morphological, and gastrointestinal release properties of an anthocyanin-rich extract of grapes in alginate and pectin beads as carriers; the effects of ultrasonic gelation combined with emulsification were also investigated. In general, the alginate beads showed smaller size and more regular shape compared to pectin. The effect of emulsification combined with ionic gelation was more pronounced in the alginate beads and resulted in higher retention of anthocyanins, higher antioxidant capacity, and also allowed the best release profile during intestinal digestion. Thus, the simultaneous strategy could be an interesting delivery system and enhance the release of anthocyanins, providing an opportunity for the development of ingredients with different bioactive properties.
Collapse
Affiliation(s)
- Laís Bruno Norcino
- Department of Forest Sciences (DCF), Federal University of Lavras, Lavras 37200-900, MG, Brazil.
| | - Juliana Farinassi Mendes
- National Laboratory of Nanotechnology for Agriculture (LNNA), Embrapa Instrumentation, São Carlos 13560-970, SP, Brazil
| | | | - Natália Leite Oliveira
- Department of Food Science (DCA), Federal University of Lavras, Lavras 37200-900, MG, Brazil.
| | - Diego Alvarenga Botrel
- Department of Food Science (DCA), Federal University of Lavras, Lavras 37200-900, MG, Brazil.
| | | |
Collapse
|
3
|
Pamunuwa G, Anjalee N, Kukulewa D, Edirisinghe C, Shakoor F, Karunaratne DN. Tailoring of release properties of folic acid encapsulated nanoparticles via changing alginate and pectin composition in the matrix. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
4
|
Engineering approaches for drug delivery systems production and characterization. Int J Pharm 2020; 581:119267. [DOI: 10.1016/j.ijpharm.2020.119267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
|
5
|
Drug Delivery Systems for Vitamin D Supplementation and Therapy. Pharmaceutics 2019; 11:pharmaceutics11070347. [PMID: 31323777 PMCID: PMC6680748 DOI: 10.3390/pharmaceutics11070347] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Vitamin D (VD) is a fat-soluble prohormone well known for its role in regulating calcium and phosphate metabolism. It has been clinically used for many years to prevent rickets in children, osteomalacia, and osteoporosis in adults. VD insufficiency is a common medical condition, and many supplements are available in the market in order to increase serum 25-hydroxy VD levels to recommended amounts. Over the course of the last decades, it has become increasingly clear that calcitriol, an active form of VD, regulates multiple cellular processes with effects on normal and malignant cell growth and differentiation, and on the immune and cardiovascular function. Increasing evidence supports the role of the VD system in cancer prevention and therapy. Due to many pleiotropic and beneficial effects in extra-skeletal disorders, VD has gained potential and become an interesting active for encapsulation into drug delivery systems. The purpose of this review is to present the diversity of drug delivery systems that have been reported for VD or VD derivatives in an orderly manner across the following categories: Oral administration, application on the skin, cancer prevention/therapy, and other diseases or routes of administration.
Collapse
|
6
|
Dalmoro A, Bochicchio S, Lamberti G, Bertoncin P, Janssens B, Barba AA. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv 2019; 9:19800-19812. [PMID: 35519406 PMCID: PMC9065329 DOI: 10.1039/c9ra03022k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Micronutrients administration by fortification of staple and complementary foods is a followed strategy to fight malnutrition and micronutrient deficiencies and related pathologies. There is a great industrial interest in preparation of formulations for joint administration of vitamin D3 and vitamin K2 for providing bone support, promoting heart health and helping boost immunity. To respond to this topic, in this work, uncoated nanoliposomes loaded with vitamin D3 and K2 were successfully prepared, by using a novel, high-yield and semi continuous technique based on simil-microfluidic principles. By the same technique, to promote and to enhance mucoadhesiveness and stability of the produced liposomal structures, chitosan was tested as covering material. By this way polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications. Micronutrients administration by liposomal vectors is a growing strategy in fortification processes of staple and complementary foods to fight malnutrition and micronutrient deficiencies and related pathologies.![]()
Collapse
Affiliation(s)
- Annalisa Dalmoro
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| | | | - Gaetano Lamberti
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Salerno
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita – Centro Microscopia Elettronica
- Università degli Studi di Trieste
- 34127 Trieste
- Italy
| | | | - Anna Angela Barba
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| |
Collapse
|
7
|
Jiang H, Liu Z, Wang S. Microwave processing: Effects and impacts on food components. Crit Rev Food Sci Nutr 2017; 58:2476-2489. [PMID: 28613917 DOI: 10.1080/10408398.2017.1319322] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
As an efficient heating method, microwave processing has attracted attention both in academic research and industry. However, the mechanism of dielectric heating is quite distinct from that of the traditional conduction heating, and is widely applied as polar molecules and charged ions interaction with the alternative electromagnetic fields, resulting in fast and volumetric heating through their friction losses. Such a heating pattern would cause a certain change in microwave treatment, which is an unarguable reality. In this review, we made a retrospect of the essential knowledge about dielectric properties and summarized the concept of microwave heating, and the impact of microwave application on the main components of foods and agricultural products, which are classified as carbohydrates, lipids, proteins, chromatic/flavor substances, and vitamins. Finally, we offered a way to resolve the drawbacks of relevant microwave treatment and outlined the directions for future research.
Collapse
Affiliation(s)
- Hao Jiang
- a College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi , China
| | - Zhigang Liu
- a College of Food Science and Engineering , Northwest A&F University , Yangling , Shaanxi , China
| | - Shaojin Wang
- b College of Mechanical and Electronic Engineering , Northwest A&F University , Yangling , Shaanxi , China.,c Department of Biological Systems Engineering , Washington State University , Pullman , WA , USA
| |
Collapse
|
8
|
Dalmoro A, Cascone S, Lamberti G, Barba AA. Encapsulation of Active Molecules in Microparticles Based on Natural Polysaccharides. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701200608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This mini-review is focused on an engineering approach to produce polysaccharides-based microparticles for nutraceutical and pharmaceutical purposes. A brief introduction about the fundamental properties of polysaccharides and their use as microsystems in food, cosmetics, and pharmaceutics, and a summary of the most important methods of preparation are described. Then, a novel method based on the ultrasonic atomization of solutions of the two most used polysaccharides, alginate and chitosan, followed by ionotropic gelation to produce enteric microsystems for oral administration and, in particular, the basic mechanisms of the encapsulation of molecules with different size and hydrophilicity, are investigated. This mini-review will show therefore the pathway to correctly design a polysaccharide microcarrier for the encapsulation of active molecules with different properties: from the choice of materials features, to the selection and the optimization of production methods with the aim to reduce costs and energy (ionotropic gelation coupled to ultrasonic atomization), to the control of the final carrier size (by purposely developed predictive models), at last to the optimization of encapsulation properties (predicting by model the drug leakage and providing different solutions to avoid it).
Collapse
Affiliation(s)
- Annalisa Dalmoro
- Department of Pharmacy, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
- Department of Industrial Engineering, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Sara Cascone
- Department of Industrial Engineering, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Gaetano Lamberti
- Department of Industrial Engineering, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| | - Anna Angela Barba
- Department of Pharmacy, Via Giovanni Paolo II, 132, University of Salerno, Fisciano, Italy 84084
| |
Collapse
|
9
|
Dalmoro A, Sitenkov AY, Cascone S, Lamberti G, Barba AA, Moustafine RI. Hydrophilic drug encapsulation in shell-core microcarriers by two stage polyelectrolyte complexation method. Int J Pharm 2017; 518:50-58. [DOI: 10.1016/j.ijpharm.2016.12.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 01/25/2023]
|
10
|
Dalmoro A, Sitenkov AY, Lamberti G, Barba AA, Moustafine RI. Ultrasonic atomization and polyelectrolyte complexation to produce gastroresistant shell-core microparticles. J Appl Polym Sci 2015. [DOI: 10.1002/app.42976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Annalisa Dalmoro
- Department of Pharmacy; University of Salerno; via Giovanni Paolo II, 132 Fisciano (SA) 84084 Italy
- Department of Industrial Engineering; via Giovanni Paolo II, 132 Fisciano (SA) 84084 Italy
| | - Alexander Y. Sitenkov
- Department of Pharmaceutical Analytical and Toxicological Chemistry; Kazan State Medical University; Butlerov Street 49 420012 Kazan Russian Federation
| | - Gaetano Lamberti
- Department of Industrial Engineering; via Giovanni Paolo II, 132 Fisciano (SA) 84084 Italy
| | - Anna Angela Barba
- Department of Pharmacy; University of Salerno; via Giovanni Paolo II, 132 Fisciano (SA) 84084 Italy
| | - Rouslan I. Moustafine
- Department of Pharmaceutical Analytical and Toxicological Chemistry; Kazan State Medical University; Butlerov Street 49 420012 Kazan Russian Federation
| |
Collapse
|