1
|
Takamiya D, Takahashi H, Nakamura A, Xia Y, Kuda T. Effect of Lactiplantibacillus plantarum fermentation on the in-vitro antioxidant and angiotensin I-converting enzyme-inhibitory properties of turmeric, coriander, cumin, and red chili pepper suspensions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
2
|
In Vitro Probiotic Characterization and Safety Assessment of Lactic Acid Bacteria Isolated from Raw Milk of Japanese-Saanen Goat ( Capra hircus). Animals (Basel) 2022; 13:ani13010007. [PMID: 36611617 PMCID: PMC9817676 DOI: 10.3390/ani13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Two novel probiotic strains of lactic acid bacteria were successfully isolated from the raw milk of dairy Japanese-Saanen goats. Selection criteria for positive candidates were grown on de Man-Rogosa-Sharpe or M17 selective medium at 30, 35, or 42 °C anaerobically, and characterized based on Gram reaction, catalase test, and tolerance to low pH and bile salts. Among the 101 isolated positive candidates, two strains, YM2-1 and YM2-3, were selected and identified as Lacticaseibacillus rhamnosus using 16S rDNA sequence similarity. Culture supernatants of the two strains exhibited antipathogenic activity against Salmonella enterica subsp. enterica serovar. Typhimurium, Shigella sonnei, methicillin-resistant Staphylococcus aureus, methicillin-sensitive Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli O157. The antipathogenic activities were retained to some extent after neutralization, indicating the presence of antipathogenic substances other than organic acids in the culture supernatants. The two strains were sensitive with coincidental minimum inhibition concentrations (indicated in the parentheses hereafter) to ampicillin (0.25 μg/mL), chloramphenicol (4 μg/mL), gentamycin (4 μg/mL), kanamycin (64 μg/mL), streptomycin (16 μg/mL), and tetracycline (4 μg/mL). Furthermore, the two strains were resistant to clindamycin (16 μg/mL) and erythromycin (4 μg/mL). In addition, both YM2-1 and YM2-3 strains showed less unfavorable activities, including bile acid bioconversion, carcinogenic-related enzymes, mucin degradation, plasminogen activation, and hemolysis, than the detection limits of in vitro evaluation methods used in this study. In summary, L. rhamnosus YM2-1 and YM2-3 are highly safe and promising probiotic strains applicable in the dairy industry, and were first isolated from the raw milk of Japanese-Saanen goats.
Collapse
|
3
|
Handa N, Kuda T, Yamamoto M, Takahashi H, Kimura B. In vitro anti-oxidant, anti-glycation, and bile acid-lowering capacity of chickpea milk fermented with Lactiplantibacillus pentosus Himuka-SU5 and Lactococcus lactis subsp. lactis Amami-SU1. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Enhancement of Antioxidant Activities in Black Soy Milk through Isoflavone Aglycone Production during Indigenous Lactic Acid Bacteria Fermentation. FERMENTATION 2022. [DOI: 10.3390/fermentation8070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Black soybeans contain high antioxidant compounds such as isoflavone but mainly in glucoside form, with low antioxidant activities. Fermentation by lactic acid bacteria (LAB) can enhance the antioxidant properties, but its ability is strain-dependent. This study aims to study the ability of Indonesian indigenous LAB, Lactiplantibacillus plantarum WGK 4, Streptococcus thermophilus Dad 11, and Lactiplantibacillus plantarum Dad 13, to enhance the antioxidant properties during black soy milk fermentation. Fermentation was carried out at 37 °C for 24 h. Viable cell, acid production, Folin–Ciocalteu assay, antioxidant activity (DPPH), isoflavone aglycone daidzein and genistein, and β-glucosidase activity were measured every six hours. All LAB strains could grow well during the fermentation of black soy milk. Lactiplantibacillus plantarum WGK 4 produced the highest acid (1.50%). All three LAB strains could enhance antioxidant activity (DPPH) from 24.90% to 31.22–38.20%, followed by increased isoflavone aglycone. All strains could increase daidzein and genistein content, ranging from 61% to 107% and 81% to 132%, respectively. All three Indonesian indigenous LAB enhanced antioxidant properties of black soy milk relatively at the same level and potentially could be used as a starter culture of black soy milk fermentation.
Collapse
|
5
|
Yamamoto M, Handa N, Nakamura A, Takahashi H, Kuda T. In vitro antioxidant, anti-glycation, and bile acid-lowering capacity of peanut milk fermented with Lactiplantibacillus plantarum Kinko-SU4. Curr Res Food Sci 2022; 5:992-997. [PMID: 35734141 PMCID: PMC9207605 DOI: 10.1016/j.crfs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Plant-based milk-like products from soybeans and other legumes and nuts have been explored worldwide, owing to their nutritional and functional characteristics. This study was conducted to develop new functional food materials from peanut (Arachis hypogaea) milk (PM) with desirable health functions to mitigate lifestyle and age-related diseases. The antioxidant, anti-glycation and bile acid-lowering properties of PM fermented with lactic acid bacteria Lactiplantibacillus plantarum Kinko-SU4 (FPM) were determined in vitro. L. plantarum Kinko-SU4 lowered the pH level from 6.4 to 4.3, 3.9, and 3.7 at 10, 24, and 48 h, respectively. The lactic acid concentration was 4.4 mg/mL after 48 h of incubation. The starter degraded the dissolved proteins in PM, including Ara h 1, one of the peanut allergens. Although the total phenolic content was 36% lower in FPM than in unfermented PM, O2 - radical-scavenging capacity was high in FPM. Anti-glycation in a bovine serum albumin-fructose model and the bile acid-lowering capacities of PM were distinctly increased following fermentation. The result of this study infers that PM fermented with L. plantarum Kinko-SU4 can be considered a desirable food material to prevent and ameliorate chronic lifestyle diseases, particularly in the elderly.
Collapse
Affiliation(s)
- Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Natsumi Handa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|
6
|
In vitro antioxidant and immunomodulation capacities of low-molecular weight-alginate- and laminaran-responsible gut indigenous bacteria. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Piazentin ACM, da Silva TMS, Florence-Franco AC, Bedani R, Converti A, de Souza Oliveira RP. Soymilk fermentation: effect of cooling protocol on cell viability during storage and in vitro gastrointestinal stress. Braz J Microbiol 2020; 51:1645-1654. [PMID: 32865712 PMCID: PMC7688817 DOI: 10.1007/s42770-020-00369-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/21/2020] [Indexed: 11/26/2022] Open
Abstract
This work covers soymilk fermentation by starter and probiotic cultures and explores the influence of cooling protocol on cell viability, organic acid production, sugar consumption, fatty acid profile, and cell survival to in vitro gastrointestinal stress. After fermentation at 37 °C by mono- or co-cultures of Streptococcus thermophilus (St), Lactobacillus bulgaricus (Lb), and Lactobacillus paracasei (Lp), fermented soymilk was cooled directly at 4 °C for 28 days or cooled in two phases (TPC), i.e., by preceding that step by another at 25 °C for 8 h. Soybean milk fermentation by Lb alone lasted longer (15 h) than by StLb or StLbLp (9 h). In ternary culture, TPC increased Lp viability, linoleic, and lactic acid concentrations by 3.8, 22.6, and 96.2%, respectively, whereas the cooling protocol did not influence Lp and St counts after in vitro gastrointestinal stress. Graphical abstract.
Collapse
Affiliation(s)
- Anna Carolina Meireles Piazentin
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil
| | - Thamires Maria Simões da Silva
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil
| | - Ana Carolina Florence-Franco
- French Institute of Health and Medical Research, Inserm, Toulouse Purpan Pathophysiology Center, CPTP, Toulouse, France
| | - Raquel Bedani
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Pole of Chemical Engineering, University of Genoa, Via Opera Pia 15, 16145, Genoa, Italy
| | - Ricardo Pinheiro de Souza Oliveira
- Department of Biochemical and Pharmaceutical Technology, University of São Paulo, Prof. Lineu Prestes, 580 - Bloco 16, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
8
|
Takei MN, Kuda T, Taniguchi M, Nakamura S, Hajime T, Kimura B. Detection and isolation of low molecular weight alginate- and laminaran-susceptible gut indigenous bacteria from ICR mice. Carbohydr Polym 2020; 238:116205. [PMID: 32299574 DOI: 10.1016/j.carbpol.2020.116205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022]
Abstract
Alginate and laminaran are the main water-soluble polysaccharides in edible brown algae such as arame Eisenia bicyclis. To determine the alginate- and/or laminaran-susceptible indigenous bacteria (SIB) in the gut, the caecal microbiomes of ICR mice fed a diet containing 2% low molecular weight (LMW ≒50 kDa) alginate or laminaran were analysed by 16S rRNA gene (V4) amplicon sequencing. At the phylum level abundances, compared to those in mice fed a no-fibre diet, Firmicutes was lower and Bacteroidetes was higher in both LMW alginate- or laminaran-fed mouse groups. At the operational taxonomic unit level, Bacteroides acidifaciens- and Bacteroides intestinalis-like bacteria were considered alginate- and laminaran-SIB, respectively. B. acidifaciens PS-4 isolated from the ICR mice fermented LMW alginate and laminaran and mainly produced succinate. B. intestinalis ALB-11 also isolated from these mice fermented laminaran and mainly produced lactate. These SIB might exert interactive effects with edible brown algal consumption and affect host health.
Collapse
Affiliation(s)
- Moemi Naito Takei
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Miyu Taniguchi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Saori Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Takahashi Hajime
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
9
|
Zhu Y, Wang Z, Zhang L. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Inhibitory effect of Lactobacillus plantarum Tennozu-SU2 and Lactococcus lactis subsp. lactis BF1 on Salmonella Typhimurium and Listeria monocytogenes during and post fermentation of soymilk. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Goto M, Kuda T, Shikano A, Charrouf Z, Yamauchi K, Yokozawa M, Takahashi H, Kimura B. Induction of superoxide anion radical-scavenging capacity in an argan press cake-suspension by fermentation using Lactobacillus plantarum Argan-L1. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Taniguchi M, Kuda T, Shibayama J, Sasaki T, Michihata T, Takahashi H, Kimura B. In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Mol Biol Rep 2019; 46:1775-1786. [PMID: 30694455 DOI: 10.1007/s11033-019-04628-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/19/2019] [Indexed: 12/14/2022]
Abstract
To clarify the antioxidant, anti-glycation and immunomodulatory capacities of fermented blue-green algae Aphanizomenon flos-aquae (AFA), hot aqueous extract suspensions made from 10% AFA were fermented by Lactobacillus plantarum AN7 and Lactococcus lactis subsp. lactis Kushiro-L2 strains isolated from a coastal region of Japan. The DPPH and O2- radical scavenging capacities and Fe-reducing power were increased in the fermented AFA. The increased DPPH radical scavenging capacity of the fermented AFA was fractionated to mainly < 3 kDa and 30-100 kDa. The increased O2- radical scavenging capacities were fractionated to mainly < 3 kDa. Anti-glycation activity in BSA-fructose model rather than BSA-methylglyoxal model was increased by the fermentation. The increased anti-glycation activity was fractionated to mainly 30-100 kDa. The NO concentration in the murine macrophage RAW264.7 culture media was high with the fermented AFA. The increased immunomodulation capacity was also fractionated to mainly 30-100 kDa. These results suggest that the fermented AFA is a more useful material for health foods and supplements.
Collapse
Affiliation(s)
- Miyu Taniguchi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan.
| | - Junna Shibayama
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Tetsuya Sasaki
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Toshihide Michihata
- Chemistry and Food Department, Industrial Research Institute of Ishikawa, 2-1 Kuratsuki, Kanazawa, Ishikawa, 920-8203, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo, 108-8477, Japan
| |
Collapse
|
13
|
Shikano A, Kuda T, Takahashi H, Kimura B. Effects of fermented green-loofah and green-papaya on nitric oxide secretion from murine macrophage raw 264.7 cells. Mol Biol Rep 2018; 45:1013-1021. [PMID: 30009342 DOI: 10.1007/s11033-018-4249-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
To clarify the effect of lactic acid bacteria (LAB) fermentation on the immunomodulation capacity of green-loofah and green-papaya, aqueous suspensions prepared from the fresh and dry-powdered vegetables were fermented by Lactococcus lactis subsp. lactis Uruma-SU1 and Lactobacillus plantarum Uruma-SU4. Fermented and non-fermented suspensions were added to murine macrophage RAW264.7 culture with and without Escherichia coli O111 lipopolysaccharide (LPS). In the absence of LPS, nitric oxide (NO) secretion was elevated significantly in LAB fermented suspensions compared to that in non-fermented suspensions. NO production in fermented suspensions was observed even at low sample concentrations, but it was attenuated in the centrifuged supernatant. With LPS treatment, inhibition of NO secretion was shown with the high concentration of the non-fermented and also fermented samples. These results suggest that fermented green-loofah and green-papaya suspensions can play both immunostimulatory and anti-inflammatory roles at low and high doses, respectively.
Collapse
Affiliation(s)
- Ayane Shikano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| |
Collapse
|
14
|
Kuda T, Yokota Y, Haraguchi Y, Takahashi H, Kimura B. Susceptibility of gut indigenous lactic acid bacteria in BALB/c mice to oral administered Lactobacillus plantarum. Int J Food Sci Nutr 2018; 70:53-62. [DOI: 10.1080/09637486.2018.1471590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yasushi Yokota
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yutaka Haraguchi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
15
|
Yokota Y, Shikano A, Kuda T, Takei M, Takahashi H, Kimura B. Lactobacillus plantarum AN1 cells increase caecal L. reuteri in an ICR mouse model of dextran sodium sulphate-induced inflammatory bowel disease. Int Immunopharmacol 2018; 56:119-127. [PMID: 29414641 DOI: 10.1016/j.intimp.2018.01.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/06/2018] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
To clarify the different effects of live and heat-killed probiotics on inflammatory bowel disease (IBD), the anti-inflammatory and protective effects of Lactobacillus plantarum AN1 cells isolated from the fermented fish aji-narezushi on murine macrophage RAW264.7 cells and in ICR mice with dextran sodium sulphate (DSS)-induced IBD were determined. L. plantarum AN1 cells showed anti-inflammatory activities in vitro, indicated by secretion of nitric oxide (NO) from RAW264.7 cells in the presence and absence of Escherichia coli 0111 lipopolysaccharide (LPS). L. plantarum AN1 cells also protected RAW264.7 cells against hydrogen peroxide toxicity. There was no difference between these effects in heat-killed and ultraviolet irradiation-killed cells. In the murine IBD model, both live and heat-killed L. plantarum AN1 cells via drinking water tended to ameliorate atrophy of colon length, mucosal tissue damage, and spleen enlargement. Amplicon sequencing of 16S rDNA (V4) revealed that both live and heat-killed AN1 cells increased abundance of indigenous lactic acid bacteria, particularly Lactobacillus reuteri. The results suggest that increased indigenous lactic acid bacterial abundance and feeding with L. plantarum AN1 cells synergistically improve effects against IBD.
Collapse
Affiliation(s)
- Yasushi Yokota
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo 108-8477, Japan
| | - Ayane Shikano
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo 108-8477, Japan.
| | - Moemi Takei
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-city, Tokyo 108-8477, Japan
| |
Collapse
|
16
|
Nemoto M, Kuda T, Eda M, Yamakawa H, Takahashi H, Kimura B. Protective Effects of Mekabu Aqueous Solution Fermented by Lactobacillus plantarum Sanriku-SU7 on Human Enterocyte-Like HT-29-luc Cells and DSS-Induced Murine IBD Model. Probiotics Antimicrob Proteins 2017; 9:48-55. [PMID: 27535691 DOI: 10.1007/s12602-016-9226-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most wakame Undaria pinnatifida, a brown algae, products are made from the frond portion. In this study, the polysaccharide content and antioxidant property of aqueous extract solutions (AESs) of the four parts (frond: wakame, stem of the frond: kuki-wakame, sporophyll: mekabu, and kuki-mekabu) of wakame were investigated. Polysaccharide content was high in both the wakame and mekabu. Superoxide anion (O2-) radical-scavenging capacities were high in the mekabu. These AESs could be fermented by Lactobacillus plantarum Sanriku-SU7. The O2- radical-scavenging activity of the kuki-wakame, mekabu, and kuki-mekabu were increased by the fermentation. Fermented mekabu clearly showed a protective effect on human enterocyte-like HT-29-luc cells and in a mouse model of dextran sodium sulphate-induced inflammatory bowel disease (IBD). These results suggest that the mekabu fermented by L. plantarum Sanriku-SU7 has anti-IBD effect related to O2- radical-scavenging.
Collapse
Affiliation(s)
- Maki Nemoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-City, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-City, Tokyo, 108-8477, Japan.
| | - Mika Eda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-City, Tokyo, 108-8477, Japan
| | - Hiroshi Yamakawa
- Office of Liaison and Cooperative Research, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-City, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-City, Tokyo, 108-8477, Japan
| | - Bon Kimura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-City, Tokyo, 108-8477, Japan
| |
Collapse
|
17
|
Hirano S, Yokota Y, Eda M, Kuda T, Shikano A, Takahashi H, Kimura B. Effect of Lactobacillus plantarum Tennozu-SU2 on Salmonella Typhimurium Infection in Human Enterocyte-Like HT-29-Luc Cells and BALB/c Mice. Probiotics Antimicrob Proteins 2016; 9:64-70. [DOI: 10.1007/s12602-016-9243-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|