1
|
Barea P, Melgosa R, Benito-Román Ó, Illera AE, Beltrán S, Sanz MT. Green fractionation and hydrolysis of fish meal to improve their techno-functional properties. Food Chem 2024; 452:139550. [PMID: 38735108 DOI: 10.1016/j.foodchem.2024.139550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
A green strategy employing water as solvent has been adopted to obtain protein hydrolysates from fish meal (FM), its water-soluble fraction (WSP), and its non-water-soluble fraction (NSP). The techno-functional properties of the hydrolysates have been investigated and compared to hydrolysates obtained with Alcalase®. In general, SWH hydrolysates presented higher content of free amino acids and higher degree of hydrolysis, which reflected on the molecular size distribution. However, Alcalase® hydrolysates presented better solubility (from 74 ± 4% for NSP at pH = 2 up to 99 ± 1% for WSP at pH = 4-7). According to fluorescence experiments, FM and NSP hydrolysates showed the highest surface hydrophobicity, which has been related to better emulsifying properties and higher emulsion stability. The emulsions stabilized with 2%wt. of SWH-treated NSP showed the smallest particle sizes, with D[4,3] = 155 nm at day 0, and good stability, with D[4,3] = 220 nm at day 7, proving that water fractionation followed by SWH treatment is a good method to improve the techno-functional properties of the hydrolysates.
Collapse
Affiliation(s)
- Pedro Barea
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Rodrigo Melgosa
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Óscar Benito-Román
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Alba Esther Illera
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Sagrario Beltrán
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - María Teresa Sanz
- Department of Biotechnology and Food Science (Chemical Engineering Division), University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
2
|
Zeng L, Peng Q, Li Q, Bi Y, Kong F, Wang Z, Tan S. Synthesis, characterization, biological activity, and in vitro digestion of selenium nanoparticles stabilized by Antarctic ice microalgae polypeptide. Bioorg Chem 2023; 141:106884. [PMID: 37774435 DOI: 10.1016/j.bioorg.2023.106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
A new type of uniformly dispersed selenium nanoparticles (SeNPs) was prepared using Antarctic ice microalgae polypeptides (AIMP) as the stabilizer and dispersant. Different characterization techniques and tests show that the SeNPs are effectively combined with AIMP through physical adsorption and hydrogen bonding to form a more stable structure. Orange-red, zero-valence, amorphous, and spherical AIMP-SeNPs with a diameter of 52.07 ± 1.011 nm and a zeta potential of -41.41 ± 0.882 mV were successfully prepared under the optimal conditions. The AIMP-SeNPs had significantly higher DPPH, ABTS and hydroxyl radicals scavenging abilities compared with AIMP and Na2SeO3, and prevented the growth of both Gram-negative and Gram-positive bacteria by disrupting the integrity of cell walls, cell membranes and mitochondrial membranes. The AIMP-SeNPs had higher gastrointestinal stability compared with SeNPs. Thus, this research highlights the crucial role of AIMP as a biopolymer framework in the dispersion, stabilization, and size management of SeNPs and concludes that AIMP-SeNPs can be exploited as a potent antioxidant supplement and antibacterial substance in foods and medicine.
Collapse
Affiliation(s)
- Lixia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Qiang Peng
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Qiao Li
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical University, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, China; Guangdong Dongshenglin Pharmaceutical Co., Ltd, China; Yunfu Traditional Chinese Medicine Hospital, China.
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical University, China
| | - Zhong Wang
- Yunfu Traditional Chinese Medicine Hospital, China
| | - Shaofan Tan
- Guangdong Dongshenglin Pharmaceutical Co., Ltd, China
| |
Collapse
|
3
|
Popoola JO, Ojuederie OB, Aworunse OS, Adelekan A, Oyelakin AS, Oyesola OL, Akinduti PA, Dahunsi SO, Adegboyega TT, Oranusi SU, Ayilara MS, Omonhinmin CA. Nutritional, functional, and bioactive properties of african underutilized legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1105364. [PMID: 37123863 PMCID: PMC10141332 DOI: 10.3389/fpls.2023.1105364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Globally, legumes are vital constituents of diet and perform critical roles in maintaining well-being owing to the dense nutritional contents and functional properties of their seeds. While much emphasis has been placed on the major grain legumes over the years, the neglected and underutilized legumes (NULs) are gaining significant recognition as probable crops to alleviate malnutrition and give a boost to food security in Africa. Consumption of these underutilized legumes has been associated with several health-promoting benefits and can be utilized as functional foods due to their rich dietary fibers, vitamins, polyunsaturated fatty acids (PUFAs), proteins/essential amino acids, micro-nutrients, and bioactive compounds. Despite the plethora of nutritional benefits, the underutilized legumes have not received much research attention compared to common mainstream grain legumes, thus hindering their adoption and utilization. Consequently, research efforts geared toward improvement, utilization, and incorporation into mainstream agriculture in Africa are more convincing than ever. This work reviews some selected NULs of Africa (Adzuki beans (Vigna angularis), African yam bean (Sphenostylis stenocarpa), Bambara groundnut (Vigna subterranea), Jack bean (Canavalia ensiformis), Kidney bean (Phaseolus vulgaris), Lima bean (Phaseolus lunatus), Marama bean (Tylosema esculentum), Mung bean, (Vigna radiata), Rice bean (Vigna Umbellata), and Winged bean (Psophocarpus tetragonolobus)), and their nutritional, and functional properties. Furthermore, we highlight the prospects and current challenges associated with the utilization of the NULs and discusses the strategies to facilitate their exploitation as not only sources of vital nutrients, but also their integration for the development of cheap and accessible functional foods.
Collapse
Affiliation(s)
- Jacob Olagbenro Popoola
- Pure and Applied Biology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | - Omena B. Ojuederie
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Jacob Olagbenro Popoola, ; Omena B. Ojuederie,
| | | | - Aminat Adelekan
- Department of Chemical and Food Sciences, College of Natural and Applied Sciences, Bells University of Technology, Ota, Ogun, Nigeria
| | - Abiodun S. Oyelakin
- Department of Pure and Applied Botany, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olusola Luke Oyesola
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Paul A. Akinduti
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Samuel Olatunde Dahunsi
- Microbiology Programme, College of Agriculture, Engineering and Science, Bowen University, Iwo, Osun, Nigeria
- The Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA, United States
| | - Taofeek T. Adegboyega
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Biology Unit, Faculty of Science, Air Force Institute of Technology, Kaduna, Nigeria
| | - Solomon U. Oranusi
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| | - Modupe S. Ayilara
- Department of Biological Sciences, Kings University, Ode-Omu, Osun, Nigeria
- Food Security and Safety Focus, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Conrad A. Omonhinmin
- Department of Biological Sciences/Biotechnology Cluster, Covenant University, Ota, Ogun, Nigeria
| |
Collapse
|
4
|
Physicochemical and functional properties of Pleurotus geesteranus proteins. Food Res Int 2022; 162:111978. [DOI: 10.1016/j.foodres.2022.111978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022]
|
5
|
Yu H, Chen Y, Zhu J. Osteogenic activities of four calcium-chelating microalgae peptides. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6643-6649. [PMID: 35603586 DOI: 10.1002/jsfa.12031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adequate calcium intake is necessary to prevent osteoporosis, which poses significant public health challenges. The natural bioactive peptide calcium chelates have been regarded as superior calcium supplements. Microalgae peptides are regarded as potential candidates for protection from bone loss in osteoporosis. This study aimed to prepare microalgae calcium-chelating peptides from four microalgae proteins and assess their osteogenic activities in osteoporosis-like zebrafish. RESULTS After in vitro gastrointestinal digestion, 4.42% Chlorella pyrenoidosa protein, 2.74% Nannochloropsis oceanica protein, 6.07% Arthospira platensis protein and 10.47% Dunaliella salina protein were retained. The calcium-chelating capacities of four microalgae protein hydrolysates (MPHs) ranged from 14.10 ± 7.16% to 34.11 ± 9.34%. CaCl2 addition increased the maximum absorption peaks, absorption intensities and particle sizes of MPHs. Calcium-chelating MPHs showed stronger osteogenic activities than MPHs in the osteoporosis-like zebrafish model, with significantly increased mineralized tissue area and integrated optical density. CONCLUSION Microalgae proteins have favorable digestibilities. Among the four MPHs, Nannochloropsis oceanica protein hydrolysates showed the highest calcium-chelating capacity, which might be due to its high degree of hydrolysis after in vitro digestion and high content of Ser, Tyr, Thr, Asp and Glu. The absorption intensities and particle sizes of MPHs both increased after calcium addition. MPH treatment could reverse dexamethasone-induced osteoporosis of zebrafish, and MPHs-Ca chelates showed higher osteogenic activities in osteoporosis-like phenotype zebrafish. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huilin Yu
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yixuan Chen
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Osemwota EC, Alashi AM, Aluko RE. Physicochemical and functional properties of albumin, globulin and glutelin fractions of green lentil seed. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Etinosa C. Osemwota
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- The Richardson Centre for Functional Foods and Nutraceuticals University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
7
|
Liu FF, Li YQ, Wang CY, Zhao XZ, Liang Y, He JX, Mo HZ. Impact of pH on the physicochemical and rheological properties of mung bean (Vigna radiata L.) protein. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Osemwota EC, Alashi AM, Aluko RE. Comparative Study of the Structural and Functional Properties of Membrane-Isolated and Isoelectric pH Precipitated Green Lentil Seed Protein Isolates. MEMBRANES 2021; 11:694. [PMID: 34564511 PMCID: PMC8471907 DOI: 10.3390/membranes11090694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023]
Abstract
The demand for isolated seed proteins continues to increase but functionality in food systems can be greatly dependent on the extraction method. In this work, we report the physicochemical and functional properties of lentil seed proteins isolated using various protocols. Lentil flour was defatted followed by protein extraction using isoelectric pH precipitation (ISO) as well as NaOH (MEM_NaOH) and NaCl (MEM_NaCl) extractions coupled with membrane ultrafiltration. The MEM_NaCl had significantly (p < 0.05) higher protein content (90.28%) than the ISO (86.13%) and MEM_NaOH (82.55%). At pH 3-5, the ISO was less soluble (2.26-11.84%) when compared to the MEM_NaOH (25.74-27.22%) and MEM_NaCl (27.78-40.98%). However, the ISO had higher yield and protein digestibility (48.45% and 89.82%) than MEM_NaOH (35.05% and 77.87%) and MEM_NaCl (13.35% and 77.61%), respectively. Near-UV circular dichroism spectra showed that the MEM_NaOH had loose tertiary conformation at pH 3, 5, 7 and 9 while ISO and MEM_NaCl had more compact structures at pH 7 and 9. The three protein isolates formed better emulsions (lower oil droplet sizes) at pH 7 and 9 when compared to pH 3 and 5. In contrast, foaming capacity was better at pH 5 than pH 3, 7, and 9.
Collapse
Affiliation(s)
- Etinosa C. Osemwota
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.C.O.); (A.M.A.)
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.C.O.); (A.M.A.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (E.C.O.); (A.M.A.)
- The Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Arogundade LA, Mu T, Zhang M, Khan NM. Impact of dextran conjugation on physicochemical and gelling properties of sweet potato protein through Maillard reaction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lawrence A. Arogundade
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Chemistry Department College of Physical Sciences Federal University of Agriculture Alabata Abeokuta Ogun State110109Nigeria
| | - Tai‐Hua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
| | - Nasir M. Khan
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing100193China
- Department of Chemistry Shaheed Benazir Bhutto University Dir18000Pakistan
| |
Collapse
|
11
|
Yu XY, Zou Y, Zheng QW, Lu FX, Li DH, Guo LQ, Lin JF. Physicochemical, functional and structural properties of the major protein fractions extracted from Cordyceps militaris fruit body. Food Res Int 2021; 142:110211. [PMID: 33773685 DOI: 10.1016/j.foodres.2021.110211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023]
Abstract
The physicochemical and functional as well as structural properties of major protein fractions (albumin, globulin, glutelin) sequentially extracted in water, salt, alkaline solution respectively from Cordyceps militaris Minfu20 fruit body were investigated. The glutelin (43.11%, w/w) was the predominant protein component of C. militaris fruit body followed by albumin (36.47%) and globulin (17.94%). The three proteins extracted from different solvents showed different characteristics, which were related to the alternation of amino acid composition, surface hydrophobicity, and structural feature. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the albumin and globulin mainly consisted of polypeptides with size < 20 kDa. The glutelin showed serious staining on the lane which may have a relatively bigger molecular weight. Intrinsic fluorescence intensity (FI) suggested glutelin contained more unfolding conformations (highest FI) which were probably resulted in a better foaming capacity of 151% and emulsion formation with the smallest size oil droplets (10.410 µm). The protein fractions showed great nutritional quality since they satisfied all recommended essential amino acid allowances for adults of Food & Agriculture Organization (FAO)/World Health Organization (WHO). Therefore, Cordyceps militaris Minfu20 fruit body proteins have potential alternative renewable edible fungi (mushroom) protein and could be used effectively as a food ingredient to improve food nutrition and product diversification compared with plant proteins.
Collapse
Affiliation(s)
- Xiao-Ying Yu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qian-Wang Zheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Feng-Xian Lu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - De-Huai Li
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou 510640, China; Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China.
| |
Collapse
|
12
|
Arogundade LA, Mu TH, Zhang M, Chen JW, Sun HN, Zhang D. Improving sweet potato protein gel properties through ε-(γ-glutamy)-lysine isopeptide cross-link catalyzed by transglutaminase. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Zhigang X, Lishuang W, Yirui Z, Yanwen W, Saleh AS, Minpeng Z, Yuzhe G, Caihong X, Hassan ME, Qingyu Y, Yumin D. Synthesis and characterization of a novel rice bran protein-cerium complex for the removal of organophosphorus pesticide residues from wastewater. Food Chem 2020; 320:126604. [DOI: 10.1016/j.foodchem.2020.126604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022]
|
14
|
Pan L, Zhang X, Fan X, Li H, Xu B, Li X. Whey Protein Isolate Coated Liposomes as Novel Carrier Systems for Astaxanthin. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Li Pan
- Province Key Laboratory of Transformation and Utilization of Cereal ResourceHenan University of Technology Zhengzhou 450001 P. R. China
| | - Xin Zhang
- Province Key Laboratory of Transformation and Utilization of Cereal ResourceHenan University of Technology Zhengzhou 450001 P. R. China
| | - Xiaozu Fan
- Province Key Laboratory of Transformation and Utilization of Cereal ResourceHenan University of Technology Zhengzhou 450001 P. R. China
| | - Hua Li
- Province Key Laboratory of Transformation and Utilization of Cereal ResourceHenan University of Technology Zhengzhou 450001 P. R. China
| | - Baocheng Xu
- College of Food and BioengineeringHenan University of Science and Technology Luoyang 471003 P. R. China
| | - Xueqin Li
- Province Key Laboratory of Transformation and Utilization of Cereal ResourceHenan University of Technology Zhengzhou 450001 P. R. China
| |
Collapse
|
15
|
Yang JY, Peng B, Wang M, Zou XG, Yin YL, Deng ZY. Characteristics and emulsifying properties of two protein fractions derived from the emulsion formed during aqueous extraction of Camellia oil. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Heat treatment of sunflower protein isolates near isoelectric point: Effect on rheological and structural properties. Food Chem 2018; 276:554-561. [PMID: 30409632 DOI: 10.1016/j.foodchem.2018.10.060] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/06/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022]
Abstract
In the present study sunflower protein isolates were subjected to heat treatment (80 °C for 5 min, 15 min and 25 min) at three pH values (3.5, 4.5 and 5.5). The strength of gel prepared from treated protein isolates was lower than the gels from native protein isolates and gel strength increased with increase in temperature treatment. Higher denaturation temperatures were observed in treated protein isolates than native protein isolates and increased with increase in thermal treatment time. Treated protein isolates showed more resistance against thermal degradation than native protein isolates as was evident from thermal gravimetric analysis. Secondary and tertiary structure determined by circular dichroism and intrinsic fluorescence respectively were significantly altered after thermal treatment. Lower crystal size along with reduced crystallinity was observed in treated protein isolates than native protein isolates and was further reduced with increase in heating time as was determined by X-ray diffraction.
Collapse
|
17
|
Chen J, Mu T, Zhang M, Goffin D, Sun H, Ma M, Liu X, Zhang D. Structure, physicochemical, and functional properties of protein isolates and major fractions from cumin (Cuminum cyminum) seeds. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1454467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jingwang Chen
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
- Laboratory of Gastronomical Science, Department of d’Agronomie, Bio-ingénierie et Chimie, University of Liege - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Dorothée Goffin
- Laboratory of Gastronomical Science, Department of d’Agronomie, Bio-ingénierie et Chimie, University of Liege - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Mengmei Ma
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Xingli Liu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| | - Duqin Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing, PR China
| |
Collapse
|
18
|
Ma M, Ren Y, Xie W, Zhou D, Tang S, Kuang M, Wang Y, Du SK. Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem 2017; 240:856-862. [PMID: 28946352 DOI: 10.1016/j.foodchem.2017.08.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/01/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
To investigate the effect of preparation methods of cottonseed meals on protein properties, the physicochemical and functional properties of proteins isolated from hot-pressed solvent extraction cottonseed meal (HCM), cold-pressed solvent extraction cottonseed meal (CCM) and subcritical fluid extraction cottonseed meal (SCM) were investigated. Cottonseed proteins had two major bands (at about 45 and 50kD), two X-ray diffraction peaks (8.5° and 19.5°) and one endothermic peak (94.31°C-97.72°C). Proteins of HCM showed relatively more β-sheet (38.3%-40.5%), and less β-turn (22.2%-25.8%) and α-helix (15.8%-19.5%), indicating the presence of highly denatured protein molecules. Proteins of CCM and SCM exhibited high water/oil absorption capacity, emulsifying abilities, surface hydrophobicity and fluorescence intensity, suggesting that the proteins have potential as functional ingredients in the food industry.
Collapse
Affiliation(s)
- Mengting Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanjing Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Xie
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dayun Zhou
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Shurong Tang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Meng Kuang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China.
| | - Yanqin Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences, State Key Laboratory of Cotton Biology, Anyang 455000, Henan, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|