1
|
Liu B, Xie Q, Liu Y, Li S, Dong K, Su Y, Jiang Y, Yang X, Guo L. Effects of nisin loaded chitosan-pectin nanoparticles on shelf life and storage stability of room temperature stored processed cheese. Food Chem 2025; 473:143103. [PMID: 39879756 DOI: 10.1016/j.foodchem.2025.143103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025]
Abstract
Processed cheese faces challenges related to short shelf life and susceptibility to microbial contamination during room temperature storage. Nisin, a natural antimicrobial peptide used for food preservation, exhibits limited sustained activity and a narrow antimicrobial spectrum, making its enhancement essential. To address these issues, this study employed electrostatic self-assembly technology to develop chitosan-pectin nanoparticles loaded with nisin (CNP) to improve processed cheese stability at room temperature. The CNPs formed through electrostatic interactions and hydrogen bonding, exhibited ellipsoidal or polyhedral shapes. The encapsulation efficiency and loading capacity of CNPs were 73.93 % and 34.48 %. The CNPs provided sustained nisin release, significantly inhibiting the growth of Gram-negative bacteria such as Escherichia coli and Salmonella enterica. Notably, the addition of CNP, extended the shelf life of processed cheese by at least 21 days at room temperature, maintaining product stability. This study presents an innovative and efficient solution for processed cheese preservation at room temperature.
Collapse
Affiliation(s)
- Biqi Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Qinggang Xie
- Heilongjiang Feihe Dairy Co. Ltd, Qiqihar 164800, China
| | - Yang Liu
- Heilongjiang Feihe Dairy Co. Ltd, Qiqihar 164800, China
| | - Shihang Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Kai Dong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Su
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Infant Formula Food, State Administration for Market Regulation, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, China.
| |
Collapse
|
2
|
Gruskiene R, Lavelli V, Sereikaite J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr Polym 2024; 327:121670. [PMID: 38171683 DOI: 10.1016/j.carbpol.2023.121670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024]
Abstract
Inulin is a fructan biosynthesized mainly in plants of the Asteraceae family. It is also found in edible vegetables and fruits such as onion, garlic, leek, and banana. For the industrial production of inulin, chicory and Jerusalem artichoke are the main raw material. Inulin is used in the food, pharmaceutical, cosmetic as well biotechnological industries. It has a GRAS status and exhibits prebiotic properties. Inulin can be used as a wall material in the encapsulation process of drugs and other bioactive compounds and the development of their delivery systems. In the review, the use of inulin for the encapsulation of probiotics, essential and fatty oils, antioxidant compounds, natural colorant and other bioactive compounds is presented. The encapsulation techniques, materials and the properties of final products suitable for the delivery into food are discussed. Research limitations are also highlighted.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vera Lavelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Italy
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| |
Collapse
|
3
|
Dong J, Wang S, Li M, Liu J, Sun Z, Mandlaa, Chen Z. Application of a Chitosan-based Active Packaging Film Prepared with Cell-free Supernatant of Lacticaseibacillus paracasei ALAC-4 in Mongolian Cheese Preservation. J Food Prot 2023; 86:100158. [PMID: 37699510 DOI: 10.1016/j.jfp.2023.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/13/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023]
Abstract
Fungal spoilage of food is a worldwide concern prompting the development of many antimicrobial agents and applications. In this study, the cell-free supernatant (CFS) of Lacticaseibacillus paracasei ALAC-4 had a significant inhibition effect on fungi. The CFS with antifungal activities were combined with chitosan (CS) matrix to prepare an active packaging CS-CFS films by using a solvent casting method and used for the packaging of Mongolian cheese for 15 days during storage at 4 ± 1℃. The optimized formulation of the film were 1.25% (w/v) chitosan, 1.75% (w/v) gelatin, 0.3% (v/v) glycerol, and 9.6% (w/v) CFS. It was found that CS-CFS films exhibited strong antifungal activities against molds and yeasts, especially Candida albicans, and also had excellent mechanical properties. Additionally, FTIR spectroscopy indicated that hydrogen bonds between the CFS and CS formed, and there was a smooth surface, compact cross-section observed in SEM morphologies of CS-CFS films. Furthermore, CS-CFS film also displayed a strong antifungal effect against molds and yeasts on cheese surface. These results suggest that the chitosan-based CS-CFS film has a promising application for Mongolian cheese and food preservation.
Collapse
Affiliation(s)
- Jing Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuai Wang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Minyu Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jin Liu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ziyu Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mandlaa
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhongjun Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
4
|
Peng Z, Xiong T, Huang T, Xu X, Fan P, Qiao B, Xie M. Factors affecting production and effectiveness, performance improvement and mechanisms of action of bacteriocins as food preservative. Crit Rev Food Sci Nutr 2023; 63:12294-12307. [PMID: 35866501 DOI: 10.1080/10408398.2022.2100874] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Modern society is increasingly attracted with safe, natural, and additive-free food products, that gives preference to bacteriocins produced by General Recognized as Safe bacteria as a food preservative. Bacteriocins have been reported to be effective in extending shelf life of diverse foods such as meats, dairy products, wine, juice, and fruits and vegetables, whereas commercialized bacteriocins remain only nisin, pediocin, and Micocin. It is important that commercialized preservatives undergo an easy-to-handle manufacturing while maintaining high efficacy. Limited application of bacteriocins is most often caused by the absence of legislatives for use, low production, high cost and complicated purification process, reduced efficiency in the complex food matrix and insufficiently defined mechanism of action. Accordingly, this review provides an overview of bacteriocins, in relation to production stimulation, general purification scheme, impact of food matrix on bacteriocin effectiveness, and collaborative technology to improve bacteriocin performances. It is worth to note that purification and performance improvement technology remain the two challenging tasks in promoting bacteriocins as a widely used bio-preservative. Furthermore, this review for the first time divides bacteriocin receptors into specific classes (class I, II, III) and nonspecific class, to provide a basis for an in-depth understanding of the mechanism of action.
Collapse
Affiliation(s)
- Zhen Peng
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Xiong
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Tao Huang
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xiaoyan Xu
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Pengrong Fan
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Baoling Qiao
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- School of Food Science and Technology, Nanchang University, Nanchang, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Identification, Purification, Characterization and Biopreservation Potential of Antimicrobial Peptide of Pediococcus acidilactici NCDC 252. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-022-10485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Pectin Microspheres: Synthesis Methods, Properties, and Their Multidisciplinary Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is great contemporary interest in using cleaner technologies through green chemistry and utilizing biopolymers as raw material. Pectin is found on plant cell walls, and it is commonly extracted from fruit shells, mostly apples or citrus fruits. Pectin has applications in many areas of commercial relevance; for this reason, it is possible to find available information about novel methods to transform pectin and pursuing enhanced features, with the structuring of biopolymer microspheres being highly cited to enhance its activity. The structuring of polymers is a technique that has been growing in recent decades, due to its potential for diverse applications in various fields of science and technology. Several techniques are used for the synthesis of microspheres, such as ionotropic gelation, extrusion, aerosol drying, or emulsions, with the latter being the most commonly used method based on its reproducibility and simplicity. The most cited applications are in drug delivery, especially for the treatment of colon diseases and digestive-tract-related issues. In the industrial field, it is used for protecting encapsulated compounds; moreover, the environmental applications mainly include the bioremediation of toxic substances. However, there are still many possibilities for expanding the use of this biopolymer in the environmental field.
Collapse
|
7
|
Effect of inulin and date syrup from Kaluteh variety on the qualitative and microbial properties of prebiotic ketchup. Journal of Food Science and Technology 2021; 58:4127-4138. [PMID: 34538897 DOI: 10.1007/s13197-020-04877-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
The physicochemical, sensorial, and microbial properties related to the samples of ketchup containing different inulin (0, 3.75, and 7.5%) and date syrup values (0, 2.25, and 4.5%) were assessed in the present study and the results were analysed through statistical response surface method. Considering the mutual effect, an increase in inulin level led to a primary upward and secondary downward trend in brix and synersis, while the conditions were reversed by enhancing date syrup one. In addition, the mutual effect of inulin and date syrup on sensorial properties represented that flavour and overall acceptance first increased by improving inulin amount and decreased in the following, which was different to colour parameter, while adding date syrup affected colour factor in produced ketchup appropriately. Further, an enhancement in inulin value influenced a little the presence of acid-resistant bacteria, yeast, and mould, while increasing date syrup one led to the durability of microbial corruption. Finally, using the optimum levels of inulin (3.75%) and date syrup (1.13%) could affect ketchup formula properly.
Collapse
|
8
|
Millan-Linares MC, Montserrat-de la Paz S, Martin ME. Pectins and Olive Pectins: From Biotechnology to Human Health. BIOLOGY 2021; 10:biology10090860. [PMID: 34571737 PMCID: PMC8470263 DOI: 10.3390/biology10090860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Pectins comprise complex polysaccharides rich in galacturonic acid, that exert many functions in higher plants as components of the cell walls, together with cellulose or lignin. The food industry has traditionally used pectins as an additive due to their gelling or thickening properties. Pharmaceutical research is also taking advantage of pectin bioactivity, providing evidence of the role of these polysaccharides as health promoters. Fruits and vegetables are natural sources of pectins that can be obtained as by-products during food or beverage production. In line with this, the aim of our study is gathering data on the current methods to extract pectins from fruit or vegetable wastes, optimizing yield and environmentally friendly protocols. Updated information about pectin applications in food or non-food industries are provided. We also point to olives as novel source of pectins that strengthen the evidence that this fruit is as remarkably healthy part of the Mediterranean diet. This work exhibits the need to explore natural bioactive components of our daily intake to improve our health, or prevent or treat chronical diseases present in our society. Abstract Pectins are a component of the complex heteropolysaccharide mixture present in the cell wall of higher plants. Structurally, the pectin backbone includes galacturonic acid to which neutral sugars are attached, resulting in functional regions in which the esterification of residues is crucial. Pectins influence many physiological processes in plants and are used industrially for both food and non-food applications. Pectin-based compounds are also a promising natural source of health-beneficial bioactive molecules. The properties of pectins have generated interest in the extraction of these polysaccharides from natural sources using environmentally friendly protocols that maintain the native pectin structure. Many fruit by-products are sources of pectins; however, owing to the wide range of applications in various fields, novel plants are now being explored as potential sources. Olives, the fruit of the olive tree, are consumed as part of the healthy Mediterranean diet or processed into olive oil. Pectins from olives have recently emerged as promising compounds with health-beneficial effects. This review details the current knowledge on the structure of pectins and describes the conventional and novel techniques of pectin extraction. The versatile properties of pectins, which make them promising bioactive compounds for industry and health promotion, are also considered.
Collapse
Affiliation(s)
- Maria C. Millan-Linares
- Department of Food & Health, Instituto de la Grasa, CSIC. Ctra. de Utrera Km. 1, 41013 Seville, Spain;
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, Universidad de Sevilla, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
- Correspondence: ; Tel.: +34-955421051
| | - Maria E. Martin
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Seville, Spain;
| |
Collapse
|
9
|
Qian J, Chen Y, Wang Q, Zhao X, Yang H, Gong F, Guo H. Preparation and antimicrobial activity of pectin-chitosan embedding nisin microcapsules. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110676] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Improvement of nisin production by using the integration strategy of co-cultivation fermentation, foam fractionation and pervaporation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Abid Y, Ben Amara C, Gharsallah H, Dumas E, Chihib NE, Attia H, Azabou S, Gharsallaoui A. Effect of electrostatic interactions and complexes formation between nisin and bacterial exopolysaccharides on nisin antimicrobial efficacy. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Wu D, Ye X, Linhardt RJ, Liu X, Zhu K, Yu C, Ding T, Liu D, He Q, Chen S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr Rev Food Sci Food Saf 2021; 20:2015-2039. [PMID: 33594822 DOI: 10.1111/1541-4337.12723] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Pectic substances, one of the cell wall polysaccharides, exist widespread in vegetables and fruits. A surge of recent research has revealed that pectic substances can inhibit gut inflammation and relieve inflammatory bowel disease symptoms. However, physiological functions of pectins are strongly structure dependent. Pectic substances are essentially heteropolysaccharides composed of homogalacturonan and rhamnogalacturonan backbones substituted by various neutral sugar sidechains. Subtle changes in the architecture of pectic substances may remarkably influence the nutritional function of gut microbiota and the host homeostasis of immune system. In this context, developing a structure-function understanding of how pectic substances have an impact on an inflammatory bowel is of primary importance for diet therapy and new drugs. Therefore, the present review has summarized the polycomponent nature of pectic substances, the activities of different pectic polymers, the effects of molecular characteristics and the underlying mechanisms of pectic substances. The immunomodulated property of pectic substances depends on not only the chemical composition but also the physical structure characteristics, such as molecular weight (Mw ) and chain conformation. The potential mechanisms by which pectic substances exert their protective effects are mainly reversing the disordered gut microbiota, regulating immune cells, enhancing barrier function, and inhibiting pathogen adhesion. The manipulation of pectic substances on gut health is sophisticated, and the link between structural specificity of pectins and selective regulation needs further exploration.
Collapse
Affiliation(s)
- Dongmei Wu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Xuwei Liu
- UMR408, Sécurité et Qualité des Produits d'Origine Végétale (SQPOV), INRAE, Avignon, France
| | - Kai Zhu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chengxiao Yu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Tian Ding
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Fuli Institute of Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Gedarawatte ST, Ravensdale JT, Al-Salami H, Dykes GA, Coorey R. Antimicrobial efficacy of nisin-loaded bacterial cellulose nanocrystals against selected meat spoilage lactic acid bacteria. Carbohydr Polym 2021; 251:117096. [DOI: 10.1016/j.carbpol.2020.117096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
|
14
|
Gullón P, del Río PG, Gullón B, Oliveira D, Costa P, Lorenzo JM. Pectooligosaccharides as Emerging Functional Ingredients: Sources, Extraction Technologies, and Biological Activities. SUSTAINABLE PRODUCTION TECHNOLOGY IN FOOD 2021:71-92. [DOI: 10.1016/b978-0-12-821233-2.00004-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Microencapsulation of Lactobacillus rhamnosus ATCC 7469 in whey protein isolate-crystalline nanocellulose-inulin composite enhanced gastrointestinal survivability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109224] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Jiao D, Liu Y, Liu Y, Zeng R, Hou X, Nie G, Sun L, Fang Z. Preparation of phosphatidylcholine nanovesicles containing bacteriocin CAMT2 and their anti-listerial activity. Food Chem 2020; 314:126244. [PMID: 31982854 DOI: 10.1016/j.foodchem.2020.126244] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/10/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
A novel bacteriocin CAMT2, produced by Bacillus amyloliquefaciens ZJHD3-06, has potential as a natural biopreservative for the control of food-borne spoilage and pathogenic bacteria. To avoid interaction of CAMT2 with components of food that may adversely impact its antibacterial activity, CAMT2 was encapsulated into nanovesicles prepared from soybean phosphatidylcholine. The encapsulation of CAMT2 exhibited a limited impact on functional structure and crystallinity of bacteriocin CAMT2, but a high anti-listerial activity in agar, and increase its stability in food at refrigeration temperature (4 °C). The results also showed that both encapsulated and free CAMT2 had good anti-listerial effect in skim milk at refrigeration temperature. However, encapsulated CAMT2 performed better than free CAMT2 against Listeria in whole milk. These results showed that nano-encapsulation is an effective method of protecting bacteriocin from fat in milk and retaining its antimicrobial efficacy.
Collapse
Affiliation(s)
- Dongdong Jiao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ruchun Zeng
- School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
| | - Xiaoqin Hou
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guochao Nie
- School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Charoenwongpaiboon T, Wangpaiboon K, Panpetch P, Field RA, Barclay JE, Pichyangkura R, Kuttiyawong K. Temperature-dependent inulin nanoparticles synthesized by Lactobacillus reuteri 121 inulosucrase and complex formation with flavonoids. Carbohydr Polym 2019; 223:115044. [DOI: 10.1016/j.carbpol.2019.115044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 11/25/2022]
|
18
|
Minzanova ST, Arkhipova DM, Khabibullina AV, Mironova LG, Voloshina AD, Sapunova AS, Kulik NV, Milyukov VA, Mironov VF. Synthesis of New Sodium Pectinate Metal Complexes with Cobalt and Nickel Ions and Their Antimicrobial Activity. DOKLADY CHEMISTRY 2019. [DOI: 10.1134/s0012500819080044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Spray-drying microencapsulation of nisin by complexation with exopolysaccharides produced by probiotic Bacillus tequilensis-GM and Leuconostoc citreum-BMS. Colloids Surf B Biointerfaces 2019; 181:25-30. [DOI: 10.1016/j.colsurfb.2019.05.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/24/2022]
|
20
|
Lopes NA, Barreto Pinilla CM, Brandelli A. Antimicrobial activity of lysozyme-nisin co-encapsulated in liposomes coated with polysaccharides. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Novel Inulin Derivatives Modified with Schiff Bases: Synthesis, Characterization, and Antifungal Activity. Polymers (Basel) 2019; 11:polym11060998. [PMID: 31167475 PMCID: PMC6631190 DOI: 10.3390/polym11060998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 12/17/2022] Open
Abstract
In this paper, we report chemical modifications of inulin by seven kinds of aromatic Schiff bases, which are different from their substituent groups. The obtained inulin derivatives were confirmed by FTIR, 1H NMR, and 13C NMR. Then, we studied their antifungal activity against four kinds of plant pathogens involving Botrytis cinerea, Fusarium oxysporum f. sp. cucumerium Owen, Fusarium oxysporum f. sp. niveum, and Phomopsis asparagi by the mycelium growth rate method. The results revealed that all inulin derivatives were endowed with significant antifungal activity compared to inulin. Among them, 6-amino-(N-4-chlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (4CBSAIL) and 6-amino-(N-3,4-dichlorobenzylidene)-6-deoxy-3,4-di-O-acetyl inulin (3,4DCBSAIL), which were synthesized from p-chlorobenzaldehyde and 3,4-dichlorobenzaldehyde, could completely inhibit the growth of the test fungi at 1.0 mg/mL. The inhibitory indices of the inulin derivatives were related to the type, position, and number of substituent groups (halogens) on the Schiff bases. The results confirmed that it was feasible to chemically modify inulin with Schiff bases to confer high antifungal activity to inulin. The products described in this paper have great potential as alternatives to some harmful pesticides used for plant disease control.
Collapse
|
22
|
Esmaeilnejad Moghadam B, Keivaninahr F, Fouladi M, Rezaei Mokarram R, Nazemi A. Inulin addition to yoghurt: Prebiotic activity, health effects and sensory properties. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12579] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Fatemeh Keivaninahr
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| | - Masoumeh Fouladi
- Department of Chemical Engineering University of Sistan and Baluchestan Zahedan Iran
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| | - Aylar Nazemi
- Department of Food Science and Technology Faculty of Agriculture Tabriz University TabrizIran
| |
Collapse
|
23
|
Minzanova ST, Mironov VF, Arkhipova DM, Khabibullina AV, Mironova LG, Zakirova YM, Milyukov VA. Biological Activity and Pharmacological Application of Pectic Polysaccharides: A Review. Polymers (Basel) 2018; 10:E1407. [PMID: 30961332 PMCID: PMC6401843 DOI: 10.3390/polym10121407] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 01/07/2023] Open
Abstract
Pectin is a polymer with a core of alternating α-1,4-linked d-galacturonic acid and α-1,2-l-rhamnose units, as well as a variety of neutral sugars such as arabinose, galactose, and lesser amounts of other sugars. Currently, native pectins have been compared to modified ones due to the development of natural medicines and health products. In this review, the results of a study of the bioactivity of pectic polysaccharides, including its various pharmacological applications, such as its immunoregulatory, anti-inflammatory, hypoglycemic, antibacterial, antioxidant and antitumor activities, have been summarized. The potential of pectins to contribute to the enhancement of drug delivery systems has been observed.
Collapse
Affiliation(s)
- Salima T Minzanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Daria M Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Anna V Khabibullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Lubov G Mironova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| | - Yulia M Zakirova
- Kazan (Volga region) Federal University, Kazan University, KFU, Kazan 420008, Russia.
| | - Vasili A Milyukov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia.
| |
Collapse
|
24
|
Gruskiene R, Krivorotova T, Staneviciene R, Ratautas D, Serviene E, Sereikaite J. Preparation and characterization of iron oxide magnetic nanoparticles functionalized by nisin. Colloids Surf B Biointerfaces 2018; 169:126-134. [DOI: 10.1016/j.colsurfb.2018.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 01/09/2023]
|
25
|
Zimet P, Mombrú ÁW, Faccio R, Brugnini G, Miraballes I, Rufo C, Pardo H. Optimization and characterization of nisin-loaded alginate-chitosan nanoparticles with antimicrobial activity in lean beef. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Wu T, Wu C, Fang Z, Ma X, Chen S, Hu Y. Effect of chitosan microcapsules loaded with nisin on the preservation of small yellow croaker. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Gruskiene R, Krivorotova T, Sereikaite J. Nisin-loaded pectin and nisin-loaded pectin-inulin particles: Comparison of their proteolytic stability with free nisin. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.04.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Emerging concepts in the nutraceutical and functional properties of pectin-A Review. Carbohydr Polym 2017; 168:227-239. [PMID: 28457445 DOI: 10.1016/j.carbpol.2017.03.058] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 01/30/2023]
Abstract
Pectin is a structural heteropolysaccharide found ubiquitously in terrestrial plants. It finds diverse food applications such as that of a gelling agent, stabilizer, and fat replacer. In the pharmaceutical arena, pectin exhibits a number of functions, from decreasing blood fat to combating various types of cancers. This review shows the shift of pectin from its conventional roles to its progressive applications. Insights into the advances in the production of pectin, the role it plays as a nutraceutical, possible prebiotic potential and a delivery vehicle for probiotics, and food applications are highlighted. Bioactive and functional properties of pectin are discussed and how the structural built up defines them, is emphasized. As a biopolymer, the applications of pectin in active packaging are also mentioned.
Collapse
|