1
|
Ermann Lundberg L, Mata Forsberg M, Lemanczyk J, Sverremark-Ekström E, Sandström C, Roos S, Håkansson S. Limosilactobacillus reuteri DSM 17938 Produce Bioactive Components during Formulation in Sucrose. Microorganisms 2024; 12:2058. [PMID: 39458367 PMCID: PMC11510291 DOI: 10.3390/microorganisms12102058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Improved efficacy of probiotics can be achieved by using different strategies, including the optimization of production parameters. The impact of fermentation parameters on bacterial physiology is a frequently investigated topic, but what happens during the formulation, i.e., the step where the lyoprotectants are added prior to freeze-drying, is less studied. In addition to this, the focus of process optimization has often been yield and stability, while effects on bioactivity have received less attention. In this work, we investigated different metabolic activities of the probiotic strain Limosilactobacillus reuteri DSM 17938 during formulation with the freeze-drying protectant sucrose. We discovered that the strain consumed large quantities of the added sucrose and produced an exopolysaccharide (EPS). Using NMR, we discovered that the produced EPS was a glucan with α-1,4 and α-1,6 glycosidic bonds, but also that other metabolites were produced. The conversion of the lyoprotectant is hereafter designated lyoconversion. By also analyzing the samples with GCMS, additional potential bioactive compounds could be detected. Among these were tryptamine, a ligand for the aryl hydrocarbon receptor, and glycerol, a precursor for the antimicrobial compound reuterin (3-hydroxypropionaldehyde). To exemplify the bioactivity potential of lyoconversion, lyoconverted samples as well as purified EPS were tested in a model for immunomodulation. Both lyoconverted samples and purified EPS induced higher expression levels of IL-10 (2 times) and IL-6 (4-6 times) in peripheral blood mononuclear cells than non-converted control samples. We further found that the initial cultivation of DSM 17938 with sucrose as a sugar substrate, instead of glucose, improved the ability to convert sucrose in the lyoprotectant into EPS and other metabolites. Lyoconversion did not affect the viability of the bacteria but was detrimental to freeze-drying survival, an issue that needs to be addressed in the future. In conclusion, we show that the metabolic activities of the bacteria during the formulation step can be used as a tool to alter the activity of the bacteria and thereby potentially improve probiotic efficacy.
Collapse
Affiliation(s)
- Ludwig Ermann Lundberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (C.S.); (S.R.)
- BioGaia AB, 112 27 Stockholm, Sweden; (J.L.); (S.H.)
| | - Manuel Mata Forsberg
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden; (M.M.F.); (E.S.-E.)
| | | | - Eva Sverremark-Ekström
- The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden; (M.M.F.); (E.S.-E.)
| | - Corine Sandström
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (C.S.); (S.R.)
| | - Stefan Roos
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; (C.S.); (S.R.)
- BioGaia AB, 112 27 Stockholm, Sweden; (J.L.); (S.H.)
| | - Sebastian Håkansson
- BioGaia AB, 112 27 Stockholm, Sweden; (J.L.); (S.H.)
- Division of Applied Microbiology, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
2
|
Pihurov M, Păcularu-Burada B, Cotârleț M, Grigore-Gurgu L, Borda D, Stănciuc N, Kluz M, Bahrim GE. Kombucha and Water Kefir Grains Microbiomes' Symbiotic Contribution to Postbiotics Enhancement. Foods 2023; 12:2581. [PMID: 37444320 DOI: 10.3390/foods12132581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Wild artisanal cultures, such as a symbiotic culture of bacteria and yeasts (SCOBY) and water kefir grains (WKG), represent a complex microorganism consortia that is composed of yeasts and lactic and acetic acid bacteria, with large strains of diversity and abundance. The fermented products (FPs) obtained by the microbiome's contribution can be included in functional products due to their meta-biotics (pre-, pro-, post-, and paraprobiotics) as a result of complex and synergistic associations as well as due to the metabolic functionality. In this study, consortia of both SCOBY and WKG were involved in the co-fermentation of a newly formulated substrate that was further analysed, aiming at increasing the postbiotic composition of the FPs. Plackett-Burman (PBD) and Response Surface Methodology (RSM) techniques were employed for the experimental designs to select and optimise several parameters that have an influence on the lyophilised starter cultures of SCOBY and WKG activity as a multiple inoculum. Tea concentration (1-3%), sugar concentration (5-10%), raisins concentration (3-6%), SCOBY lyophilised culture concentration (0.2-0.5%), WKG lyophilised culture concentration (0.2-0.5%), and fermentation time (5-7 days) were considered the independent variables for mathematical analysis and fermentation conditions' optimisation. Antimicrobial activity against Bacillus subtilis MIUG B1, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Aspergillus niger MIUG M5, antioxidant capacity (DPPH), pH and the total acidity (TA) were evaluated as responses. The rich postbiotic bioactive composition of the FP obtained in optimised biotechnological conditions highlighted the usefulness of the artisanal co-cultures, through their symbiotic metabolic interactions for the improvement of bioactive potential.
Collapse
Affiliation(s)
- Marina Pihurov
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Bogdan Păcularu-Burada
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Mihaela Cotârleț
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| | - Maciej Kluz
- Department of Bioenergetics and Food Analysis and Microbiology, University of Rzeszow, 35601 Rzeszow, Poland
| | - Gabriela Elena Bahrim
- Faculty of Food Science and Engineering, Dunărea de Jos University of Galați, Domnească Street No. 111, 800201 Galați, Romania
| |
Collapse
|
3
|
Wu C, Jiang N, Wang R, Jiang S, Yuan Z, Luo X, Wu J, Shi H, Wu R. Linoleic acid enrichment of cheese by okara flour and Geotrichum candidum overexpressing Δ12 fatty acid desaturase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2960-2969. [PMID: 36534037 DOI: 10.1002/jsfa.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Mold-ripened cheeses have low levels of unsaturated fatty acids (UFAs). Geotrichum candidum is an adjunct culture for the development of Geotrichum-ripened cheese but has a low ability to produce high levels of UFAs. Δ12 fatty acid desaturase (FADS12) is a pivotal enzyme that converts oleic acid (OA) to linoleic acid (LA) and plays a vital role in UFA biosynthesis. By investigating FADS12 catalytic activity from various species with OA substrates, we found that FADS12 from Mucor circinelloides (McFADS12) had the highest catalytic activity for OA. RESULTS In the current study, a plasmid harboring McFADS12 was constructed and overexpressed in G. candidum. Our results showed that LA production increased to 31.1 ± 1.4% in engineered G. candidum - three times higher than that in wild-type G. candidum. To enhance LA production, an exogenous substrate (OA) was supplemented, and the yield of LA was increased to 154 ± 6 mg L-1 in engineered G. candidum. Engineered G. candidum was used as an adjunct culture for Geotrichum-ripened cheese production. The LA level reached 74.3 ± 5.4 g kg-1 cheese, whereas the level of saturated fatty acids (SFAs) decreased by 9.9 ± 0.5%. In addition, the soybean byproduct (okara) was introduced into the engineered G. candidum growth and the level of LA increased to 126 ± 4 g kg-1 cheese and the percentage of UFAs:SFAs increased from 0.8:1 to 1.3:1. CONCLUSION This study offers a suitable technology for converting SFAs to UFAs in Geotrichum-ripened cheeses and provides a novel trend for converting soybean waste into a value-added product. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ruhong Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Shanshan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Zhijia Yuan
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, People's Republic of China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, People's Republic of China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, People's Republic of China
| |
Collapse
|
4
|
Chaturvedi S, Chakraborty S. Optimization of fermentation conditions of synbiotic legume‐based beverages and study of their antimicrobial and proteolytic activity. J Food Sci 2022; 87:5070-5088. [DOI: 10.1111/1750-3841.16357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Smriti Chaturvedi
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| | - Snehasis Chakraborty
- Department of Food Engineering and Technology Institute of Chemical Technology Mumbai India
| |
Collapse
|
5
|
Tailoring the Optimized Fermentation Conditions of SCOBY-Based Membranes and Milk Kefir Grains to Promote Various Functional Properties. Foods 2022; 11:foods11193107. [PMID: 36230183 PMCID: PMC9563321 DOI: 10.3390/foods11193107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 10/01/2022] [Indexed: 11/23/2022] Open
Abstract
Kombucha culture (named SCOBY-Symbiotic Culture of Bacteria and Yeasts) and milk kefir grains represent multiple consortia of wild microorganisms that include lactic acid bacteria, acetic acid bacteria and yeasts with valuable functional properties. Their fermentative potential provides a wide range of derivate metabiotics (prebiotics, probiotics, postbiotics and paraprobiotics) with valuable in vitro and in vivo benefits. This study targeted the evaluation of the functionality of a co-culture of SCOBY-based membranes and milk kefir grains, used as freeze-dried starter cultures, for the fermentation of a newly formulated medium based on black tea infusion, supplemented with bovine colostrum and sugar, in order to produce bioactive compounds with functional properties. The design and optimization of the biotechnological process were achieved by using the Plackett–Burman experimental design (six factorial points, three center points) and the response surface methodology and central composite design (three factorial points, six axial points and two center points in axial) tools. The statistical analysis and the mathematical modelling of the responses such as the pH, titratable acidity, antioxidant activity and antimicrobial activity (against Bacillus subtilis, Escherichia coli, Staphylococcus aureus and Aspergillus niger) were investigated. Further, the composition of organic acids, polyphenols and flavonoids of the fermented product obtained under the optimized fermentation conditions was also analyzed. The fermentation of the medium containing 6.27% (w/v) bovine colostrum powder, 1.64% (w/v) black tea, 7.5% (w/w) sugar, pH 6.7, with an inoculum based of 0.36% (w/v) milk kefir grains powder and 0.5% (w/v) SCOBY-based membrane (both as freeze-dried culture), at 30 °C, for 5 days, in an aerobic stationary system, revealed an antifungal activity between 80 and 100% against Aspergillus niger, an antibacterial activity of 8–22 mm against Escherichia coli and Bacillus spp. And a titratable acidity of 445 °Th. The chemical composition of the obtained product had a positive impact on the functional properties of the fermented products in terms of the antimicrobial and antioxidant properties.
Collapse
|
6
|
Wang R, Thakur K, Feng JY, Zhu YY, Zhang F, Russo P, Spano G, Zhang JG, Wei ZJ. Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B 2 bio-enrichment and improved in vitro digestion. Food Chem 2022; 387:132947. [PMID: 35427869 DOI: 10.1016/j.foodchem.2022.132947] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/18/2022]
Abstract
The utilization of major edible soy-waste (okara) remains a challenge due to its poor digestion, nutritional imbalance (lack of B-vitamins), and undesirable off-flavors. Herein, fresh okara was enzymatically hydrolyzed and then fermented using the B2-overproducing Lactiplantibacillus plantarum UFG169 strain. SEM micrographs showed the microporous and honeycombed structures on the surface of okara. The off-flavors were reduced, and the essential amino acids content was significantly increased in fermented okara. The higher β-glucosidase activity, increased aglycone isoflavones, and in situ riboflavin (B2) were associated with the enhanced antioxidant potential of the fermented okara. The in vitro digestion of okara resulted in reduced particle size, higher protein digestibility, improved aggregation, lower protein molecular chains, and increased polyphenols. Overall, our study indicated the improved nutrition and digestibility of B2 bio-enriched okara.
Collapse
Affiliation(s)
- Rui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Pasquale Russo
- Department of Sciences of Agriculture, Food, and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Sciences of Agriculture, Food, and Environment, University of Foggia, via Napoli 25, 71122 Foggia, Italy
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
7
|
Mariscal M, Espinosa‐Ramírez J, Pérez‐Carrillo E, Santacruz A, Cervantes‐Astorga E, Serna‐Saldívar SO. Comparative lactic acid fermentation with five
Lactobacillus
strains of supernatants made of extruded and saccharified chickpea flour. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mireya Mariscal
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Johanan Espinosa‐Ramírez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Esther Pérez‐Carrillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Arlette Santacruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Enrique Cervantes‐Astorga
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Sergio O. Serna‐Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| |
Collapse
|
8
|
Kumari M, Kokkiligadda A, Dasriya V, Naithani H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J Appl Microbiol 2021; 133:104-119. [PMID: 34724304 DOI: 10.1111/jam.15342] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022]
Abstract
The growing interest of consumers towards nutritionally enriched, and health promoting foods, provoke interest in the eventual development of fermented functional foods. Soymilk is a growing trend that can serve as a low-cost non-dairy alternative with improved functional and nutritional properties. Soymilk acts as a good nutrition media for the growth and proliferation of the micro-organism as well as for their bioactivities. The bioactive compounds produced by fermentation of soymilk with lactic acid bacteria (LAB) exhibit enhanced nutritional values, and several improved health benefits including antihypertensive, antioxidant, antidiabetic, anticancer and hypocholesterolaemic effects. The fermented soymilk is acquiring a significant position in the functional food industry due to its increased techno-functional qualities as well as ensuring the survivability of probiotic bacteria producing diverse metabolites. This review covers the important benefits conferred by the consumption of soymilk fermented by LAB producing bioactive compounds. It provides a holistic approach to obtain existing knowledge on the biofunctional attributes of fermented soymilk, with a focus on the functionality of soymilk fermented by LAB.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Anusha Kokkiligadda
- Department of Dairy Microbiology, College of Dairy Technology, Sri Venkateswara Veterinary University, Tirupti, Andhra Pradesh, India
| | - Vaishali Dasriya
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, Dairy Microbiology Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
9
|
Feng JY, Wang R, Thakur K, Ni ZJ, Zhu YY, Hu F, Zhang JG, Wei ZJ. Evolution of okara from waste to value added food ingredient: An account of its bio-valorization for improved nutritional and functional effects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Feng JY, Thakur K, Ni ZJ, Zhu YY, Hu F, Zhang JG, Wei ZJ. Effects of okara and vitamin B 2 bioenrichment on the functional properties and in vitro digestion of fermented soy milk. Food Res Int 2021; 145:110419. [PMID: 34112422 DOI: 10.1016/j.foodres.2021.110419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 01/29/2023]
Abstract
Due to highly nutritious and well-known prebiotic nature, okara (soy by-product) can improve the physiological benefits of probiotic consumption by enhancing the physicochemical stability and bioavailability of bacteria and metabolites, partially in food matrices and then in gastrointestinal tract. Initially, vitamin B2 producing probiotic Lactobacillus plantarum UFG10 was immobilized with 4% okara for soy milk fermentation. SEM micrographs showed firm adherence of UFG10 to okara surface depicting efficient immobilization. Soy milk fermented with okara immobilized UFG10 showed enhanced β-glucosidase activity, stimulating the biotransformation of isoflavones from glucosides (daidzin, from 27.78 to 9.84 μg/mL; genistin, from 32.58 to 8.33 μg/mL) to aglycones (daidzein, from 0.19 to 30.84 μg/mL; genistein, from 1.42 to 33.10 μg/mL) and higher B2 production (1.53 μg/mL, 12 h) confirmed by HPLC. Okara addition and B2 enrichment could yield relatively higher antioxidant strength than control soy milk. PLSR correlation revealed the effects of okara and B2 on the functional properties of soy milk. After okara immobilization, soy milk showed higher soy protein digestibility after in vitro digestion for 225 min, higher aggregation, and lower protein molecular chains, qualitatively confirmed with Atomic force microscope. Okara immobilized bacterial cells exhibited relatively greater resistance up to 55.1% (p < 0.05) in simulated GIT, indicating okara as an ideal substrate for an efficient immobilization which ultimately improved the fate of soy B2 and protein bioaccessibility and functional products such as isoflavones for micro structural design of soy milk with improved nutrition and digestibility.
Collapse
Affiliation(s)
- Jing-Yu Feng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Yun-Yang Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, People's Republic of China.
| |
Collapse
|
11
|
Privatti RT, Rodrigues CEDC. An Overview of the Composition, Applications, and Recovery Techniques of the Components of Okara Aimed at the Biovalorization of This Soybean Processing Residue. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rafaela Torrezan Privatti
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| | - Christianne Elisabete da Costa Rodrigues
- Laboratório De Engenharia De Separações (LES), Departamento De Engenharia De Alimentos (ZEA), Faculdade De Zootecnia E Engenharia De Alimentos (FZEA), Universidade De Sao Paulo (USP), Pirassununga, Brazil
| |
Collapse
|
12
|
Hadj Saadoun J, Calani L, Cirlini M, Bernini V, Neviani E, Del Rio D, Galaverna G, Lazzi C. Effect of fermentation with single and co-culture of lactic acid bacteria on okara: evaluation of bioactive compounds and volatile profiles. Food Funct 2021; 12:3033-3043. [PMID: 33710215 DOI: 10.1039/d0fo02916e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Okara is the main soybean by-product resulting from the processing of soy milk and tofu. Despite being a product with a lot of potential and rich in many bioactive compounds such as polyphenols, it presents an unpleasant, rancid aroma. For this reason its use in the food industry is limited. In this study, we have reported the integral use of okara in a solid state fermentation process, conducted with wild strains of lactic acid bacteria, to evaluate the effect of bacterial metabolism on the volatile and polyphenolic profiles. Strains belonging to Lactobacillus acidophilus, Lacticaseibacillus rhamnosus and Pediococcus acidilactici species were used in monoculture and, for the first time, in co-culture. The results showed an improvement in the aromatic fraction showing a decrease in hexanal, responsible for off-flavour, and an increase in ketones with fruity and buttery notes in fermented okara. Polyphenols were also affected, and, in particular, a bioconversion of glucoside isoflavones to the aglycone forms was highlighted in all fermented substrates. In addition, the appearance of both phenyllactic and p-hydroxyphenyllactic acids as well as the increase in indole-3-lactic acid was observed for the first time upon okara fermentation. Overall, the co-culture appears to be the most promising for biovalorization of okara, thereby opening the possibility of its use in the development of functional ingredients.
Collapse
|
13
|
Voss GB, Monteiro MJP, Jauregi P, Valente LMP, Pintado ME. Functional characterisation and sensory evaluation of a novel synbiotic okara beverage. Food Chem 2021; 340:127793. [PMID: 32916402 DOI: 10.1016/j.foodchem.2020.127793] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
Abstract
This study aimed to produce four different beverages from okara (soybean by-product) previously hydrolyzed by Cynara cardunculus enzymes and fermented by probiotic bacteria or unfermented beverage. The probiotic viable cells, the isoflavones profile and organic acids were evaluated in the okara beverage. In addition, total phenolic content, antioxidant and ACE inhibitory activities were evaluated at storage time and during in vitro gastrointestinal digestion of all beverages. The probiotic was viable throughout storage in all fermented beverages. The significant bioconversion of the isoflavone glycosides into their corresponding bioactive aglycones was observed in fermented beverage. Furthermore, the beverages showed a good ACE inhibitory activity. After gastrointestinal tract, all beverages showed an increase in the antioxidant and ACE inhibitory activities. In conclusion, this study shows that the application of okara for a multifunctional beverage could be a promising strategy in the disease prevention and contribution to a zero waste approach in food industry.
Collapse
Affiliation(s)
- Glenise B Voss
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; CIIMAR/CIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria João P Monteiro
- CIIMAR/CIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, Harry Nursten Building, Whiteknigts, The University of Reading, Reading RG6 6AP, UK
| | - Luísa M P Valente
- CIIMAR/CIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Manuela E Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
14
|
Davy P, Vuong QV. Soy Milk By-product: Its Composition and Utilisation. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1855191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Philip Davy
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NSW, Australia
| | - Quan V. Vuong
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Ourimbah, NSW, Australia
| |
Collapse
|
15
|
Zhu YY, Thakur K, Feng JY, Cai JS, Zhang JG, Hu F, Wei ZJ. B-vitamin enriched fermented soymilk: A novel strategy for soy-based functional foods development. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zheng Y, Fei Y, Yang Y, Jin Z, Yu B, Li L. A potential flavor culture: Lactobacillus harbinensis M1 improves the organoleptic quality of fermented soymilk by high production of 2,3-butanedione and acetoin. Food Microbiol 2020; 91:103540. [DOI: 10.1016/j.fm.2020.103540] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
|
17
|
Shi H, Zhang M, Wang W, Devahastin S. Solid-state fermentation with probiotics and mixed yeast on properties of okara. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100610] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
18
|
Cotârleț M, Stănciuc N, Bahrim GE. Yarrowia lipolytica and Lactobacillus paracasei Solid State Fermentation as a Valuable Biotechnological Tool for the Pork Lard and Okara's Biotransformation. Microorganisms 2020; 8:microorganisms8081098. [PMID: 32708033 PMCID: PMC7464363 DOI: 10.3390/microorganisms8081098] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
This study reports the biovalorization of the two agri-food by-products (pork lard and freeze-dried okara) through solid-state fermentation using a monoculture of Yarrowia lipolytica or a co-culture of Y. lipolytica and Lactobacillus paracasei, for developing a valuable fermented product with antioxidant and antimicrobial activity. First, some yeast strains were selected based on their properties to produce enzymes (protease and lipase) by cultivation on 5% (w/v) pork lard or 2% (w/v) freeze-dried okara. Two selected strains, Y. lipolytica MIUG D5 and Y. lipolytica ATCC 18942, were further used for the fermentation alone or in a co-culture with L. paracasei MIUG BL2. The Plackett–Burman experimental design was used to establish the effects of the fermentation parameters in order to obtain a fermented product with improved antioxidant and antimicrobial activities. As the Plackett–Burman experimental design are independent variables, the concentrations of the freeze-dried okara, pork lard, glycerol, inoculums type, inoculum concentration, and the fermentation time were analyzed. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging potential and the antimicrobial activity against aerobic spore-forming microorganisms were assessed as responses. For the fermented products, an antioxidant potential between 6.77–17.78 mM TE/g was obtained while the antimicrobial activity against Aspergillus niger ranged from 24 to 64%. Based on the statistical analysis, the time of the yeast fermentation and the concentration of pork lard were selected as variables with the influence on the SSF fermentation process and the functional properties of the fermented product. In the general context of a circular economy, the results demonstrate the possibility of bio-transforming the freeze-dried okara and the pork lard using Y. lipolytica as a valuable workhorse for the lactic acid bacteria (LAB) metabolism and postbiotics production into a fermented product, which is recommended for use as a food and feed ingredient with biotic properties.
Collapse
|
19
|
Guimarães RM, Ida EI, Falcão HG, Rezende TAMD, Silva JDS, Alves CCF, Silva MAPD, Egea MB. Evaluating technological quality of okara flours obtained by different drying processes. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109062] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Zhu Y, Wang Z, Zhang L. Optimization of lactic acid fermentation conditions for fermented tofu whey beverage with high-isoflavone aglycones. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Voss GB, Osorio H, Valente LM, Pintado ME. Impact of thermal treatment and hydrolysis by Alcalase and Cynara cardunculus enzymes on the functional and nutritional value of Okara. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Mauro CSI, Garcia S. Coconut milk beverage fermented by Lactobacillus reuteri: optimization process and stability during refrigerated storage. Journal of Food Science and Technology 2019; 56:854-864. [PMID: 30906043 DOI: 10.1007/s13197-018-3545-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/29/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
This study aimed to establish the optimal conditions of temperature (31-43 °C) and coconut pulp concentration in water 1:3-1:9 (w/v) for the growth of Lactobacillus reuteri LR 92 or DSM 17938 in coconut milk beverage, using a central composite face centered design. The optimized conditions were used for analysis of the viability during the fermentation process, pH, production of sugars and organic acids by High Performance Liquid Chromatography (HPLC) and reuterin production. Coconut milk provided adequate substrate for L. reuteri growth without supplementation. The optimal parameters for L. reuteri viability were: concentration 1:3 (w/v) and 37 °C for LR 92 and concentration 1:3 (w/v) and 34 °C for DSM 17938. Chemical analysis showed that the naturally occurring sucrose in the matrix (ca. 4.4 g/L) was used for cell multiplication and the strains differed in the production and content of organic acids. After fermentation until pH 4.5 ± 0.1, the samples were stored at 4 °C for 30 days and the final cell viability in coconut milk was 7.55 ± 0.07 log CFU/mL for L. reuteri LR 92 and 8.57 ± 0.09 log CFU/mL for DSM 17938. It was detected 0.15 ± 0.03 mM and 0.14 ± 0.04 mM of reuterin produced by DSM 17938 and LR 92, respectively. L. reuteri DSM 17938 presented a great decrease of pH and post acidification after storage. The LR 92 strain showed low post acidification. These results showed that coconut milk provides adequate matrix for the development of new fermented functional beverages.
Collapse
Affiliation(s)
| | - Sandra Garcia
- Department of Food Science and Technology, State University of Londrina, 86057-970 Londrina, PR Brazil
| |
Collapse
|
23
|
Guo Q, Zabed H, Zhang H, Wang X, Yun J, Zhang G, Yang M, Sun W, Qi X. Optimization of fermentation medium for a newly isolated yeast strain (Zygosaccharomyces rouxii JM-C46) and evaluation of factors affecting biosynthesis of D-arabitol. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.09.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
de Moraes Filho ML, Busanello M, Prudencio SH, Garcia S. Soymilk with okara flour fermented by Lactobacillus acidophilus: Simplex-centroid mixture design applied in the elaboration of probiotic creamy sauce and storage stability. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|