1
|
Coimbra-Gomes J, Reis PJM, Tavares TG, Faria MA, Malcata FX, Macedo AC. Evaluating the Probiotic Potential of Lactic Acid Bacteria Implicated in Natural Fermentation of Table Olives, cv. Cobrançosa. Molecules 2023; 28:molecules28083285. [PMID: 37110519 PMCID: PMC10142741 DOI: 10.3390/molecules28083285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The probiotic features of Lactiplantibacillus (L.) pentosus and L. paraplantarum strains, endogenous in Cobrançosa table olives from northeast Portugal, were assessed in terms of functional properties and health benefits. Fourteen lactic acid bacteria strains were compared with Lacticaseibacillus casei from a commercial brand of probiotic yoghurt and L. pentosus B281 from Greek probiotic table olives, in attempts to select strains with higher probiotic performances than those references. For functional properties, the i53 and i106 strains, respectively, exhibited: 22.2 ± 2.2% and 23.0 ± 2.2% for Caco-2 cell adhesion capacity; 21.6 ± 7.8% and 21.5 ± 1.4% for hydrophobicity; 93.0 ± 3.0% and 88.5 ± 4.5% for autoaggregation ability by 24 h of incubation; and ability to co-aggregate with selected pathogens-from 29 to 40% to Gram+ (e.g., Staphylococcus aureus ATCC 25923 and Enterococcus faecalis ATCC 29212); and from 16 to 44% for Gram- (e.g., Escherichia coli ATCC 25922 and Salmonella enteritidis ATCC 25928). The strains proved to be resistant (i.e., halo zone ≤14 mm) to some antibiotics (e.g., vancomycin, ofloxacin, and streptomycin), but susceptible (i.e., halo zone ≥ 20 mm) to others (e.g., ampicillin and cephalothin). The strains exhibited health-beneficial enzymatic activity (such as acid phosphatase and naphthol-AS-BI-phosphohydrolase), but not health-harmful enzymatic activity (such as β-glucuronidase and N-acetyl-β-glucosaminidase). Additionally, the antioxidant activity and cholesterol assimilation features, respectively, of the strains were 19.6 ± 2.8% and 77.5 ± 0.5% for i53, and 19.6 ± 1.8% and 72.2 ± 0.9% for i106. This study indicated that the addition of L. pentosus strains i53 and/or i106 to Cobrançosa table olives is likely to enhance the added value of the final product, in view of the associated potential benefits upon human health.
Collapse
Affiliation(s)
- Joana Coimbra-Gomes
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Patrícia J M Reis
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia G Tavares
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Miguel A Faria
- LAQV/REQUIMTE, Laboratory of Food Science and Hydrology/Rede de Química e Tecnologia, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - F Xavier Malcata
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Angela C Macedo
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- UNICES-UMAIA-Research Unit in Management Sciences and Sustainability, University of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal
| |
Collapse
|
2
|
Chessa L, Paba A, Dupré I, Daga E, Fozzi MC, Comunian R. A Strategy for the Recovery of Raw Ewe's Milk Microbiodiversity to Develop Natural Starter Cultures for Traditional Foods. Microorganisms 2023; 11:microorganisms11040823. [PMID: 37110245 PMCID: PMC10142512 DOI: 10.3390/microorganisms11040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Commercial starter cultures, composed of high concentrations of a few species/strains of lactic acid bacteria (LAB), selected based on their strong technological aptitudes, have been developed to easily and safely carry out food fermentations. Frequently applied to industrial productions, selected starter LAB easily become the dominant microbiota of products, causing a dramatic decrease in biodiversity. On the contrary, natural starter cultures, which usually characterize the most typical and Protected Designation of Origin (PDO) food products, are constituted by a multitude and an indefinite number of LAB species and strains, both starter and nonstarter, thus contributing to preserving microbial biodiversity. However, their use is not risk-free since, if obtained without heat treatment application, natural cultures can contain, together with useful, also spoilage microorganisms or pathogens that could be allowed to multiply during fermentation. In the present study, an innovative method for the production of a natural starter culture directly from raw ewe's milk, inhibiting the growth of spoilage and potentially pathogenic bacteria without applying any heat treatment, was described. The culture developed show a good degree of microbial biodiversity and could be applied to both artisanal and industrial scales, guaranteeing safety, quality constancy, technological performance reproducibility, preserving biodiversity and peculiar sensory characteristics, usually linked to traditional products, while overcoming the problems associated with the daily propagation of natural cultures.
Collapse
Affiliation(s)
- Luigi Chessa
- Agris Sardegna, Servizio per la Ricerca nelle Produzioni Animali, Associated Member of the JRU MIRRI-IT, Loc. Bonassai SS 291 km 18.600, 07100 Sassari, Italy
| | - Antonio Paba
- Agris Sardegna, Servizio per la Ricerca nelle Produzioni Animali, Associated Member of the JRU MIRRI-IT, Loc. Bonassai SS 291 km 18.600, 07100 Sassari, Italy
| | - Ilaria Dupré
- Agris Sardegna, Servizio per la Ricerca nelle Produzioni Animali, Associated Member of the JRU MIRRI-IT, Loc. Bonassai SS 291 km 18.600, 07100 Sassari, Italy
| | - Elisabetta Daga
- Agris Sardegna, Servizio per la Ricerca nelle Produzioni Animali, Associated Member of the JRU MIRRI-IT, Loc. Bonassai SS 291 km 18.600, 07100 Sassari, Italy
| | - Maria Carmen Fozzi
- Agris Sardegna, Servizio per la Ricerca nelle Produzioni Animali, Associated Member of the JRU MIRRI-IT, Loc. Bonassai SS 291 km 18.600, 07100 Sassari, Italy
| | - Roberta Comunian
- Agris Sardegna, Servizio per la Ricerca nelle Produzioni Animali, Associated Member of the JRU MIRRI-IT, Loc. Bonassai SS 291 km 18.600, 07100 Sassari, Italy
| |
Collapse
|
3
|
Bacterial metataxonomic analysis of industrial Spanish-style green table olive fermentations. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Anagnostopoulos DA, Tsaltas D. Current Status, Recent Advances, and Main Challenges on Table Olive Fermentation: The Present Meets the Future. Front Microbiol 2022; 12:797295. [PMID: 35095807 PMCID: PMC8793684 DOI: 10.3389/fmicb.2021.797295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 01/18/2023] Open
Abstract
Table olives are among the most well-known fermented foods, being a vital part of the Mediterranean pyramid diet. They constitute a noteworthy economic factor for the producing countries since both their production and consumption are exponentially increasing year by year, worldwide. Despite its significance, olive’s processing is still craft based, not changed since antiquity, leading to the production of an unstable final product with potential risk concerns, especially related to deterioration. However, based on industrial needs and market demands for reproducible, safe, and healthy products, the modernization of olive fermentation processing is the most important challenge of the current decade. In this sense, the reduction of sodium content and more importantly the use of suitable starter cultures, exhibiting both technological and potential probiotic features, to drive the process may extremely contribute to this need. Prior, to achieve in this effort, the full understanding of table olive microbial ecology during fermentation, including an in-depth determination of microbiota presence and/or dominance and its functionality (genes responsible for metabolite production) that shape the sensorial characteristics of the final product, is a pre-requisite. The advent of meta-omics technology could provide a thorough study of this complex ecosystem, opening in parallel new insights in the field, such as the concept of microbial terroir. Herein, we provide an updated overview in the field of olive fermentation, pointing out some important challenges/perspectives that could be the key to the olive sector’s advancement and modernization.
Collapse
Affiliation(s)
- Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
5
|
Erdemir Tıraş Z, Kalkan Yıldırım H. Application of mixed starter culture for table olive production. GRASAS Y ACEITES 2021. [DOI: 10.3989/gya.0220201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The fermentation of olives is usually carried out spontaneously by natural microbiota. Spontaneous fermentation has some disadvantages, such as the formation of defects in the end product due to the activities of undesirable microorganisms. The use of starter cultures could be a promising option to provide a more controlled fermentation environment and to reduce the risk of spoilage. Mixed starter culture use (generally selected Lactobacillus strains with or without yeasts) could reduce pH in a shorter time, producing a higher amount of lactic acid and enhancing microbial safety compared to fermentation with starter cultures containing single species or natural fermentation. Their use could also enhance the organoleptical properties of table olives. Particularly the use of yeast (such as strains of W. anomolus, S. cerevisiae) in the fermentation of olives, in combination or sequentially with lactic acid bacteria could result in an increase in volatile compounds and a more aromatic final product.
Collapse
|
6
|
Towards a starter culture of Lactobacillus plantarum AFS13: Assessment of more relevant effects for in vitro production and preservation thereof, via fractional factorial design methodology. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
A Review on Adventitious Lactic Acid Bacteria from Table Olives. Foods 2020; 9:foods9070948. [PMID: 32709144 PMCID: PMC7404733 DOI: 10.3390/foods9070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
Spontaneous fermentation constitutes the basis of the chief natural method of processing of table olives, where autochthonous strains of lactic acid bacteria (LAB) play a dominant role. A thorough literature search has unfolded 197 reports worldwide, published in the last two decades, that indicate an increasing interest in table olive-borne LAB, especially in Mediterranean countries. This review attempted to extract extra information from such a large body of work, namely, in terms of correlations between LAB strains isolated, manufacture processes, olive types, and geographical regions. Spain produces mostly green olives by Spanish-style treatment, whereas Italy and Greece produce mainly green and black olives, respectively, by both natural and Spanish-style. More than 40 species belonging to nine genera of LAB have been described; the genus most often cited is Lactobacillus, with L. plantarum and L. pentosus as most frequent species—irrespective of country, processing method, or olive type. Certain LAB species are typically associated with cultivar, e.g., Lactobacillus parafarraginis with Spanish Manzanilla, or L. paraplantarum with Greek Kalamata and Conservolea, Portuguese Galega, and Italian Tonda di Cagliari. Despite the potential of native LAB to serve as starter cultures, extensive research and development efforts are still needed before this becomes a commercial reality in table olive fermentation.
Collapse
|
8
|
A Preliminary Report for the Design of MoS (Micro-Olive-Spreadsheet), a User-Friendly Spreadsheet for the Evaluation of the Microbiological Quality of Spanish-Style Bella di Cerignola Olives from Apulia (Southern Italy). Foods 2020; 9:foods9070848. [PMID: 32610531 PMCID: PMC7404787 DOI: 10.3390/foods9070848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022] Open
Abstract
A user friendly spreadsheet (Excel interface), designated MoS (Micro-Olive-Spreadsheet), is proposed in this paper as a tool to point out spoiling phenomena in Bella di Cerignola olive brines. The spreadsheet was designed as a protected Excel worksheet, where users input values for the microbiological criteria and pH of brines, and the output is a visual code, much like a traffic light: three red cells indicate a spoiling event, while two red cells indicate the possibility of a spoiling event. The input values are: (a) Total Aerobic Count (TAC); (b) Lactic Acid Bacteria (LAB); (c) yeasts; (d) staphylococci; (e) pH. TAC, LAB, yeasts, and pH are the input values for the first section (quality), while staphylococci count is the input for the second section (technological history). The worksheet can be modified by adding other indices or by setting different breakpoints; however, it is a simple tool for an effective application of hazard analysis and predictive microbiology in table olive production.
Collapse
|
9
|
Table Olives: An Overview on Effects of Processing on Nutritional and Sensory Quality. Foods 2020; 9:foods9040514. [PMID: 32325961 PMCID: PMC7231206 DOI: 10.3390/foods9040514] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 12/17/2022] Open
Abstract
Table olives are a pickled food product obtained by a partial/total debittering and subsequent fermentation of drupes. Their peculiar sensory properties have led to a their widespread use, especially in Europe, as an appetizer or an ingredient for culinary use. The most relevant literature of the last twenty years has been analyzed in this review with the aim of giving an up-to-date overview of the processing and storage effects on the nutritional and sensory properties of table olives. Analysis of the literature has revealed that the nutritional properties of table olives are mainly influenced by the processing method used, even if preharvest-factors such as irrigation and fruit ripening stage may have a certain weight. Data revealed that the nutritional value of table olives depends mostly on the balanced profile of polyunsaturated and monounsaturated fatty acids and the contents of health-promoting phenolic compounds, which are best retained in natural table olives. Studies on the use of low salt brines and of selected starter cultures have shown the possibility of producing table olives with an improved nutritional profile. Sensory characteristics are mostly process-dependent, and a relevant contribute is achieved by starters, not only for reducing the bitterness of fruits, but also for imparting new and typical taste to table olives. Findings reported in this review confirm, in conclusion, that table olives surely constitute an important food source for their balanced nutritional profile and unique sensory characteristics.
Collapse
|
10
|
Perpetuini G, Prete R, Garcia-Gonzalez N, Khairul Alam M, Corsetti A. Table Olives More than a Fermented Food. Foods 2020; 9:E178. [PMID: 32059387 PMCID: PMC7073621 DOI: 10.3390/foods9020178] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/31/2022] Open
Abstract
Table olives are one of the oldest vegetable fermented foods in the Mediterranean area. Beside their economic impact, fermented table olives represent also an important healthy food in the Mediterranean diet, because of their high content of bioactive and health-promoting compounds. However, olive fermentation is still craft-based following traditional processes, which can lead to a not fully predictable final product with the risk of spontaneous alterations. Nowadays, food industries have to face consumer demands for safe and healthy products. This review offers an overview about the main technologies used for olive fermentation and the role of lactic acid bacteria and yeasts characterizing this niche during the fermentation. Particular attention is offered to the selection and use of microorganisms as starter cultures to fasten and improve the safety of table olives. The development and implementation of multifunctional starter cultures in order to obtain heath-oriented table olives is also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Aldo Corsetti
- Faculty of BioScience and Technology for Food, Agriculture and Environment, University of Teramo, 641000 Teramo, Italy; (G.P.); (R.P.); (N.G.-G.); (M.K.A.)
| |
Collapse
|
11
|
Do Best-Selected Strains Perform Table Olive Fermentation Better than Undefined Biodiverse Starters? A Comparative Study. Foods 2020; 9:foods9020135. [PMID: 32012829 PMCID: PMC7073759 DOI: 10.3390/foods9020135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 11/17/2022] Open
Abstract
Twenty-seven Lactobacillus pentosus strains, and the undefined starter for table olives from which they were isolated, were characterised for their technological properties: tolerance to low temperature, high salt concentration, alkaline pH, and olive leaf extract; acidifying ability; oleuropein degradation; hydrogen peroxide and lactic acid production. Two strains with appropriate technological properties were selected. Then, table olive fermentation in vats, with the original starter, the selected strains, and without starter (spontaneous fermentation) were compared. Starters affected some texture profile parameters. The undefined culture resulted in the most effective Enterobacteriaceae reduction, acidification and olive debittering, while the selected strains batch showed the lowest antioxidant activity. Our results show that the best candidate strains cannot guarantee better fermentation performance than the undefined biodiverse mix from which they originate.
Collapse
|
12
|
Lanza B, Amoruso F. Panel performance, discrimination power of descriptors, and sensory characterization of table olive samples. J SENS STUD 2019. [DOI: 10.1111/joss.12542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Barbara Lanza
- Council for Agricultural Research and Economics (CREA)Research Centre for Engineering and Agro‐Food Processing (CREA‐IT) Cepagatti (PE) Italy
| | - Filomena Amoruso
- Council for Agricultural Research and Economics (CREA)Research Centre for Engineering and Agro‐Food Processing (CREA‐IT) Cepagatti (PE) Italy
| |
Collapse
|
13
|
Benítez-Cabello A, Calero-Delgado B, Rodríguez-Gómez F, Garrido-Fernández A, Jiménez-Díaz R, Arroyo-López FN. Biodiversity and Multifunctional Features of Lactic Acid Bacteria Isolated From Table Olive Biofilms. Front Microbiol 2019; 10:836. [PMID: 31057529 PMCID: PMC6479189 DOI: 10.3389/fmicb.2019.00836] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/01/2019] [Indexed: 01/24/2023] Open
Abstract
In the present study, a total of 554 lactic acid bacteria (LAB) isolates were obtained from the olive surface of Manzanilla, Gordal, and Aloreña cultivars processed as green Spanish-style or directly brined (natural) olives. The isolates obtained from industrial processes were genotyped by rep-PCR with primer GTG5, collecting a total of 79 different genotypes. The α-biodiversity indexes showed that the LAB diversity was higher in the biofilms on the fruits which followed the Spanish-style process than in those just brined. Sixteen genotypes had a frequency higher >1% and were identified, by multiplex PCR recA gene and 16S gene sequencing, as belonging to Lactobacillus pentosus (n = 13) and Lactobacillus plantarum (n = 3) species. A multivariate analysis based on a dataset with 89,744 cells, including technological (resistance to salt and pH, production of lactic acid, auto and co-aggregation with yeast species, β-glucosidase and esterase activities), and potential probiotic characteristics (survival to gastric and pancreatic digestions, resistance to antibiotics, inhibition of pathogens, presence of bsh genes, cholesterol removal, hemolytic, α-glucosidase, β-galactosidase, and phytase activities) showed that the 16 genotypes could be grouped into 3 great phenotypes. Thus, the genotype biodiversity in table olive biofilms was limited but, at phenotype level, it was even lower since L. pentosus predominated clearly (80.15% isolates). L. pentosus Lp13 was the genotype with the most promising characteristics for its use as a multifunctional starter, with this strain being and ubiquitous microorganism present in both natural and lye-treated olive fermentations.
Collapse
Affiliation(s)
- Antonio Benítez-Cabello
- Department of Food Biotechnology, Instituto de la Grasa, Agencia Estatal Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Beatriz Calero-Delgado
- Department of Food Biotechnology, Instituto de la Grasa, Agencia Estatal Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Francisco Rodríguez-Gómez
- Department of Food Biotechnology, Instituto de la Grasa, Agencia Estatal Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Antonio Garrido-Fernández
- Department of Food Biotechnology, Instituto de la Grasa, Agencia Estatal Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Rufino Jiménez-Díaz
- Department of Food Biotechnology, Instituto de la Grasa, Agencia Estatal Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| | - Francisco Noé Arroyo-López
- Department of Food Biotechnology, Instituto de la Grasa, Agencia Estatal Consejo Superior de Investigaciones Científicas, Pablo de Olavide University, Seville, Spain
| |
Collapse
|
14
|
Liew WPP, Mohd-Redzwan S, Than LTL. Gut Microbiota Profiling of Aflatoxin B1-Induced Rats Treated with Lactobacillus casei Shirota. Toxins (Basel) 2019; 11:E49. [PMID: 30658400 PMCID: PMC6357033 DOI: 10.3390/toxins11010049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous carcinogenic food contaminant. Gut microbiota is of vital importance for the host's health, regrettably, limited studies have reported the effects of xenobiotic toxins towards gut microbiota. Thus, the present study aims to investigate the interactions between AFB1 and the gut microbiota. Besides, an AFB1-binding microorganism, Lactobacillus casei Shirota (Lcs) was tested on its ability to ameliorate the changes on gut microbiota induced by AFB1. The fecal contents of three groups of rats included an untreated control group, an AFB1 group, as well as an Lcs + AFB1 group, were analyzed. Using the MiSeq platform, the PCR products of 16S rDNA gene extracted from the feces were subjected to next-generation sequencing. The alpha diversity index (Shannon) showed that the richness of communities increased significantly in the Lcs + AFB1 group compared to the control and AFB1 groups. Meanwhile, beta diversity indices demonstrated that AFB1 group significantly deviated from the control and Lcs + AFB1 groups. AFB1-exposed rats were especially high in Alloprevotella spp. abundance. Such alteration in the bacterial composition might give an insight on the interactions of AFB1 towards gut microbiota and how Lcs plays its role in detoxification of AFB1.
Collapse
Affiliation(s)
- Winnie-Pui-Pui Liew
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Sabran Mohd-Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Leslie Thian Lung Than
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Campus M, Değirmencioğlu N, Comunian R. Technologies and Trends to Improve Table Olive Quality and Safety. Front Microbiol 2018; 9:617. [PMID: 29670593 PMCID: PMC5894437 DOI: 10.3389/fmicb.2018.00617] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Table olives are the most widely consumed fermented food in the Mediterranean countries. Peculiar processing technologies are used to process olives, which are aimed at the debittering of the fruits and improvement of their sensory characteristics, ensuring safety of consumption at the same time. Processors demand for novel techniques to improve industrial performances, while consumers' attention for natural and healthy foods has increased in recent years. From field to table, new techniques have been developed to decrease microbial load of potential spoilage microorganisms, improve fermentation kinetics and ensure safety of consumption of the packed products. This review article depicts current technologies and recent advances in the processing technology of table olives. Attention has been paid on pre processing technologies, some of which are still under-researched, expecially physical techniques, such ad ionizing radiations, ultrasounds and electrolyzed water solutions, which are interesting also to ensure pesticide decontamination. The selections and use of starter cultures have been extensively reviewed, particularly the characterization of Lactic Acid Bacteria and Yeasts to fasten and safely drive the fermentation process. The selection and use of probiotic strains to address the request for functional foods has been reported, along with salt reduction strategies to address health concerns, associated with table olives consumption. In this respect, probiotics enriched table olives and strategies to reduce sodium intake are the main topics discussed. New processing technologies and post packaging interventions to extend the shelf life are illustrated, and main findings in modified atmosphere packaging, high pressure processing and biopreservaton applied to table olive, are reported and discussed.
Collapse
Affiliation(s)
- Marco Campus
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| | - Nurcan Değirmencioğlu
- Department of Food Processing, Bandirma Vocational High School, Bandirma Onyedi Eylül University, Bandirma, Turkey
| | - Roberta Comunian
- Agris Sardegna, Agricultural Research Agency of Sardinia, Sassari, Italy
| |
Collapse
|
16
|
Cosmai L, Campanella D, De Angelis M, Summo C, Paradiso VM, Pasqualone A, Caponio F. Use of starter cultures for table olives fermentation as possibility to improve the quality of thermally stabilized olive-based paste. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Gao W, Zhang L. Genotypic diversity of bacteria and yeasts isolated from Tibetan kefir. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Wei Gao
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150000 Heilongjiang China
| | - Lanwei Zhang
- Department of Food Science and Engineering; School of Chemistry and Chemical Engineering; Harbin Institute of Technology; Harbin 150000 Heilongjiang China
- College of Food Science and Engineering; Ocean University of China; Qingdao 266003 Shandong China
| |
Collapse
|
18
|
|