1
|
Jiang L, Song J, Qi M, Han F, Xu M, Li Y, Zhang D, Yu S, Li H. Exploring the influence of extruded rice adjunct on wort separation efficiency: A bio-macromolecule degradation perspective. Food Chem 2024; 464:141644. [PMID: 39423536 DOI: 10.1016/j.foodchem.2024.141644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/31/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Extruded rice adjunct (ERA) possesses promising potential in enhancing brewing efficiency, yet its impact on wort separation performance remains unclear, limiting its utilization in brewing. This study investigated the bio-macromolecule degradation mechanisms in rice adjuncts (RA) and ERA and their influence on wort separation performance, focusing on wort and adjunct residues (ARS) properties. Extrusion enhanced the bio-macromolecule degradation, increasing wort viscosity while reducing ARS complexity. Extrusion also reduced the particle size and modified ARS decomposition, impacting the structure of filter cake (FC). Smaller ERA residues tended to aggregate at the top of FC, leading to a shallower FC depth that facilitated the filtration efficiency and boosted the final wort production. Conversely, the larger compact RA residues settled at the bottom of FC, elevating FC depth and reducing filtration efficiency. Consequently, enhancing bio-macromolecule degradation of adjuncts through extrusion benefits wort filtration and provides valuable insights for ERA utilization in beer brewing.
Collapse
Affiliation(s)
- Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Jialin Song
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Feng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mei Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yueming Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Shifeng Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
2
|
Yang X, Fu W, Xiao L, Wei Z, Han L. Nutrition, health benefits, and processing of sand rice ( Agriophyllum squarrosum): Comparisons with quinoa and buckwheat. Food Sci Nutr 2024; 12:7060-7074. [PMID: 39479695 PMCID: PMC11521642 DOI: 10.1002/fsn3.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/08/2024] [Accepted: 08/13/2024] [Indexed: 11/02/2024] Open
Abstract
The dual pressures of climate change and population growth have made the development of new grains a necessity. Agriophyllum squarrosum (sand rice) has high adaptability to harsh environments and does not occupy agricultural land. It is widely cultivated and consumed in Central Asia. Sand rice, together with quinoa and buckwheat, belongs to the same pseudocereals group with rich nutritional value and gluten-free properties; however, its nutritional composition and health benefits differ from those of quinoa and buckwheat. Sand rice seeds are a rich source of nutrients and bioactive compounds, including proteins, amino acids, unsaturated fatty acids, and crude fiber, which are similar to those in buckwheat and quinoa; however, their starch content is relatively low. Sand rice seeds also possess phenolic acids and flavonoids, which exhibit antioxidant, anticancer, anti-diabetes, and anti-inflammatory properties. Furthermore, sand rice extracts are considered suitable for treating some chronic diseases. Overall, sand rice is considered a good plant-based food that can be used to develop various functional foods and beverages or mixed with other grains in different recipes. However, advancements in the processing technology of sand rice-based foods are required to fully exploit the potential of sand rice in the food industry to improve human health. This review analyzes the current understanding of the nutritional content of sand rice by comparing it with that of quinoa and buckwheat. Furthermore, its potential medicinal activity and feasibility as a functional ingredient to improve food quality is discussed.
Collapse
Affiliation(s)
- Xiaofan Yang
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Wenting Fu
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Liuyang Xiao
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Zhaojun Wei
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| | - Lihong Han
- The Collaborative Innovation Center for Food Production and Safety, College of Biological Science and EngineeringNorth Minzu UniversityYinchuanNingxiaChina
| |
Collapse
|
3
|
Gao L, Haesaert G, Van Bockstaele F, Vermeir P, Eeckhout M. Effects of Genotype, Nitrogen, and Sulfur Complex Fertilization on the Nutritional and Technological Characteristics of Buckwheat Flour. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20603-20614. [PMID: 38828918 DOI: 10.1021/acs.jafc.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The present study investigated the effect of nitrogen fertilization (NF) at the levels of 0, 45, and 90 kg·ha-1 combined with selected sulfur complex fertilization (SCF) levels of 0 and 45 kg·ha-1 on the nutritional and technological characteristics of buckwheat flour from five varieties. The results showed that the genotype was a critical factor affecting the chemical composition and physicochemical properties of buckwheat flour. NF significantly increased protein, total starch, and amylose content as well as mineral composition but decreased particle size, color value, and water hydration properties. However, SCF enhanced the ash content and decreased the protein content but had no significant effect on the pasting temperature. In addition, the combination of NF and SCF significantly reduced granule size, water solubility, viscosity, and rheological properties with increasing fertilization levels. This study can guide the cultivation of buckwheat with the desired physicochemical properties and provide information for buckwheat-based products in the food industry.
Collapse
Affiliation(s)
- Licheng Gao
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Geert Haesaert
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Cereal and Bakery Technology Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Nandan A, Koirala P, Dutt Tripathi A, Vikranta U, Shah K, Gupta AJ, Agarwal A, Nirmal N. Nutritional and functional perspectives of pseudocereals. Food Chem 2024; 448:139072. [PMID: 38547702 DOI: 10.1016/j.foodchem.2024.139072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/24/2024]
Abstract
An increase in the consumption of carbohydrate-rich cereals over past few decades has led to increased metabolic disorders in population. This nutritional imbalance in diets may be corrected by substituting cereal grains with pseudocereals that are richer in high-quality proteins, dietary fibers, unsaturated fats, and bioactive compounds (e.g., polyphenols and phytosterols) as compared to cereal grains. These nutrients have been associated with numerous health benefits, such as hypolipidemic, anti-inflammatory, anti-hypertensive, anti-cancer, and hepatoprotective properties, and benefits against obesity and diabetes. In this review, the nutritional composition and health benefits of quinoa, amaranth, and buckwheat are compared against wheat, maize, and rice. Subsequently, the processing treatments applied to quinoa, amaranth, and buckwheat and their applications into food products are discussed. This is relevant since there is substantial market potential for both pseudocereals and functional foods formulated with pseudocereals. Despite clear benefits, the current progress is slowed down by the fact that the cultivation of these pseudocereals is limited to its native regions. Therefore, to meet the global needs, it is imperative to support worldwide cultivation of these nutrient-rich pseudocereals.
Collapse
Affiliation(s)
- Alisha Nandan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Abhishek Dutt Tripathi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India.
| | - Urvashi Vikranta
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Aparna Agarwal
- Department of Food and Nutrition and Food Technology, Lady Irwin College, University of Delhi, New Delhi, India.
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
5
|
Zhang L, Meng Q, Zhao G, Ye F. Comparison of milling methods on the properties of common buckwheat flour and the quality of wantuan, a traditional Chinese buckwheat food. Food Chem X 2023; 19:100845. [PMID: 37780324 PMCID: PMC10534221 DOI: 10.1016/j.fochx.2023.100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
The microstructural and techno-functional properties of buckwheat flour and its processability for making wantuan, as affected by different milling methods, were investigated. Results showed that the particle sizes (d(0.5)) of the flours made by stone-milling (SM), hammer-milling (HM), laboratory grinding with steaming pretreatment for 5 min (LG-5) and 10 min (LG-10) were 95.5, 111.5, 35.4 and 41.1 μm, respectively. Moreover, SM and HM flours had less liberated starch granules and 20.84%-24.32% higher relative crystallinity than LG-10 flour. Slurries of laboratory-grinded flours showed excellent suspension stability. LG-10 flour had lowest pasting viscosities but greatest storage modulus and loss modulus. Color differences among the wantuan made from different flours were not visibly perceived (ΔE < 5). Wantuan made from LG-5 flour exhibited highest textual quality due to its greatest resilience (0.376), good springiness (0.933) and accepted chewiness (1093.31). Concluding, steaming prior to grinding could improve the qualities of buckwheat flour for wantuan making.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Westa College, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qifan Meng
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People’s Republic of China
| |
Collapse
|
6
|
He Y, Wang A, Qin W, Chen Z, Xi H, Nie M, Liu L, Wang L, Sun J, Bai Y, Huang Y, Sun P, Wang F, Tong LT. Effects of semidry milling on the properties of highland barley flour and the quality of highland barley bread. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:5077-5086. [PMID: 36990966 DOI: 10.1002/jsfa.12586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study aimed to investigate the effects of semidry milling on the quality attributes of highland barley flour and highland barley bread. Highland barley flours were prepared by dry (DBF), semidry (SBF), and wet (WBF) milling methods. The properties of different highland barley flours were analyzed, and highland barley breads made from different highland barley flours were evaluated. RESULTS The results showed that WBF had the lowest damaged starch content (15.2 g kg-1 ), and the contents of damaged starch in SBF-35 and SBF-40 (43.5 g kg-1 and 24.1 g kg-1 respectively) were lower than that of DBF (87.6 g kg-1 ). And SBF-35 and SBF-40 with large particles exhibited low hydration performance. In addition, SBF-35 and SBF-40 had higher pasting viscosity, pasting temperature, ΔH, and relative crystallinity, consequently resulting in better gel properties than other highland barley flours. These properties could help SBF-35 and SBF-40 develop high-quality bread with large specific volume and superior crumb structure and texture that is similar to the bread with WBF. CONCLUSION Overall, semidry milling not only could improve the characteristics of HBF, but also avoid high starch damage by dry milling and water wasting by wet milling. What is more, highland barley breads with SBF-35 and SBF-40 had preferable appearance and crumb texture. Therefore, semidry milling could be regarded as a feasible way to produce highland barley flour. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue He
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Aixia Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Wanyu Qin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Zhiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Huihan Xi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Mengzi Nie
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Liya Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Lili Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Jing Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Yajuan Bai
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Yatao Huang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Peipei Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| | - Li-Tao Tong
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Ministry of Agriculture, Beijing, China
| |
Collapse
|
7
|
Skřivan P, Chrpová D, Klitschová B, Švec I, Sluková M. Buckwheat Flour ( Fagopyrum esculentum Moench)-A Contemporary View on the Problems of Its Production for Human Nutrition. Foods 2023; 12:3055. [PMID: 37628054 PMCID: PMC10453499 DOI: 10.3390/foods12163055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Buckwheat is returning to the countries of Central Europe; there are several reasons for this: firstly, due to its interesting chemical composition (proteins, fibre, and phenolic compounds), which is reflected in its nutritional value and potential health benefits. Secondly, because buckwheat, and buckwheat flour especially, are suitable raw materials for the production of gluten-free foods. Buckwheat flours are classified similarly to wheat flours, but the different anatomy of wheat grains and buckwheat seeds makes this classification partly misleading. While wheat flours are largely produced by one standard process, the production process for buckwheat flours is more varied. For wheat and wheat flours, the basic quality parameters and their required ranges for different types of primary and secondary processing are clearly defined. This is not the case for buckwheat and buckwheat flours, and the definition of the parameters and their ranges that characterize its technological quality remain unclear. The standardization of quality parameters and production processes is likely to be necessary for the potential expansion of the use of buckwheat for food production and, in particular, for bakery products.
Collapse
Affiliation(s)
- Pavel Skřivan
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (P.S.); (B.K.); (I.Š.)
| | - Diana Chrpová
- Department of Microbiology, Nutrition and Dietetics, Czech University of Live Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Blanka Klitschová
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (P.S.); (B.K.); (I.Š.)
| | - Ivan Švec
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (P.S.); (B.K.); (I.Š.)
| | - Marcela Sluková
- Department of Carbohydrates and Cereals, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (P.S.); (B.K.); (I.Š.)
| |
Collapse
|
8
|
Ge F, Xia R, Wu D, Cheng W, Meng L, Wang Z, Tang X. Toward a comprehensive understanding of various milling methods on the physicochemical properties of highland barley flours and eating quality of corresponding sugar-free cookies. Food Chem 2023; 413:135657. [PMID: 36773359 DOI: 10.1016/j.foodchem.2023.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
Highland barley (HB) was subjected to dry-, semidry-, wet-milling methods and assessed for flour physicochemical properties and eating quality of corresponding sugar-free cookies. Results showed that there were significant differences between different milled flours in damaged starch content, particle size, hydration, pasting properties, and color. High a* values and poor hydration/pasting properties of wet-milled flours were associated with its smallest particle size and lowest content of damaged starch (25.3%), β-glucan (1.87%), and dietary fiber (10.87%), resulting in dark brown color, slightly high spread ratio, low hardness, and fast digestibility of the corresponding cookies. Conversely, the low digestibility of the cookies (predicted glycemic index 58.85) prepared from dry-milled flours was attributed to the higher content of dietary fiber, β-glucan and V-type starch-lipid complex, which would affect enzyme accessibility and may be beneficial for making HB sugar-free cookies. This study is expected to promote the development of HB functional foods.
Collapse
Affiliation(s)
- Fei Ge
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Ruhui Xia
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Di Wu
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weiwei Cheng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Linghan Meng
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory3 of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
9
|
Plumier B, Kenar JA, Felker FC, Winkler-Moser J, Singh M, Byars JA, Liu SX. Effect of subcritical water flash release processing on buckwheat flour properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2088-2097. [PMID: 36543748 DOI: 10.1002/jsfa.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Buckwheat (Fagopyrum esculentum) is rich in bioactive components. However, many of these components are trapped within cellular structures, making them inaccessible. Buckwheat flour was hydrothermally modified using subcritical water coupled with a flash pressure release (SCWF). The effects of the SCWF parameters (120, 140, and 160 °C and hold times of 0, 15, and 30 min) on the flour's structure, physicochemical, and functional properties were studied relative to the raw flour. RESULTS Treatment deepened the flour color with increasing processing temperatures and hold times. Starch content remained unchanged though its granular structure was disrupted. SCWF treatments lowered total phenolic content compared with the raw flour, except for 160 °C-30 min, where total phenolic content increased by 12.7%. The corresponding antioxidant activities were found consistent with phenolic content. Soluble and insoluble dietary fiber amounts were not substantially influenced at 120 and 140 °C, whereas treatments at 160 °C (15 and 30 min hold) decreased soluble dietary fiber while increasing insoluble dietary fiber. Protein content increased 70-109% in some treatments, suggesting greater protein accessibility. Water-holding capacity significantly increased for flour treated at 120 °C, whereas only slight improvements occurred at 140 and 160 °C. CONCLUSIONS Subcritical water flash processing can modify the compositional and functional properties of buckwheat flour depending on the choice of reaction conditions. Observed changes were consistent with alteration of the flour's cellular structure and allow some components to become more accessible. The resulting SCWF-modified buckwheat flours provide new food ingredients for potential use in ready-to-eat foods and spreads with improved health benefits. Published 2022. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Benjamin Plumier
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Dairy and Functional Foods Research Unit, Wyndmoor, PA, USA
| | - James A Kenar
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
| | - Frederick C Felker
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
| | - Jill Winkler-Moser
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
| | - Mukti Singh
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
| | - Jeffrey A Byars
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
| | - Sean X Liu
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Food Research Unit, Peoria, IL, USA
| |
Collapse
|
10
|
Asiamah I, Obiri SA, Tamekloe W, Armah FA, Borquaye LS. Applications of Molecular Docking in Natural Products-Based Drug Discovery. SCIENTIFIC AFRICAN 2023. [DOI: 10.1016/j.sciaf.2023.e01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
11
|
Yu S, Wu Y, Li Z, Wang C, Zhang D, Wang L. Effect of different milling methods on physicochemical and functional properties of mung bean flour. Front Nutr 2023; 10:1117385. [PMID: 36908915 PMCID: PMC9998992 DOI: 10.3389/fnut.2023.1117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
There needs to be more information concerning the effect of different milling methods on the physicochemical properties of whole-grain mung bean flour. Therefore, the physicochemical properties of whole grain mung bean flour were analyzed using universal grinders (UGMB), ball mills (BMMB), and vibration mills (VMMB). The results showed that the particle size of the sample after ultrafine grinding treatment was significantly reduced to 21.34 μm (BMMB) and 26.55 μm (VMMB), and the specific surface area was increased. The particle distribution was uniform to a greater extent, and the color was white after treatment. Moreover, the water holding capacity (WHC), oil holding capacity (OHC), and swelling power (SP) increased, and the bulk density and solubility (S) decreased. The Rapid Viscosity Analyzer (RVA) indicated that the final viscosity of the sample after ultrafine grinding was high. Furthermore, rheological tests demonstrated that the consistency coefficient K, shear resistance, and viscosity were decreased. The results of functional experiments showed that the treated samples (BMMB and VMMB) increased their capacity for cation exchange by 0.59 and 8.28%, respectively, bile acid salt adsorption capacity increased from 25.56 to 27.27 mg/g and 26.38 mg/g, and nitrite adsorption capacity increased from 0.58 to 1.17 mg/g and 1.12 mg/g.
Collapse
Affiliation(s)
- Shibo Yu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanchun Wu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenjiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Changyuan Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lidong Wang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,Quality Supervision, Inspection and Testing Center of Agricultural Processed Products Ministry of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
12
|
Characterization of the Key Aroma Compounds of Shandong Matcha Using HS-SPME-GC/MS and SAFE-GC/MS. Foods 2022; 11:foods11192964. [PMID: 36230044 PMCID: PMC9562185 DOI: 10.3390/foods11192964] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Shandong matcha has the quality characteristics of bright green color, seaweed-like aroma and strong, fresh and brisk taste. In order to identify the characteristic aroma components and clarify the contribution of the grinding process to the aroma of Shandong matcha. Three grades of Shandong matcha and corresponding tencha material were firstly tested with sensory evaluation, and the volatile components were extracted with headspace solid-phase microextraction (HS-SPME) and solvent-assisted flavor evaporation (SAFE) and analyzed using GC–MS. The sensory evaluation results showed that high-grade matcha (M-GS) had prominent seaweed-like, fresh and roasted notes, whereas medium and low-grade matcha (M-G1, M-G2) were gradually coupled with grassy, fatty and high-fired aromas. GC–MS results showed that in the HS-SPME method, heterocyclic compounds (45.84–65.35%) were the highest in Shandong matcha, followed by terpenoids (7.44–16.92%) and esters (6.91–15.27%), while in the safe method, esters were the highest (12.96–24.99%), followed by terpenoids (10.76–25.09%) and heterocyclic compounds (12.12–17.07%). As a whole, the composition of volatile components between M-G1 and M-G2 is relatively close, and there are more differences in volatile components between them and M-GS. The volatile components unique to M-GS were screened using the odor activity value (OAV) evaluation method, with components such as 3-methyl-2-butene-1-thiol, 3-ethyl-Phenol, 2-thiophenemethanethiol, 2,4-undecadienal, (E,E)-2,6-nonadienal, (E,Z)- being evaluated. There were other differentially volatile components, that is, volatile components that coexist in the three grades of matcha, but with different concentrations and proportions. M-G1 and M-G2 contained more volatile substances with high-fired aroma, such as 2-ethyl-3-methyl-pyrazine, coumarin and 5,6,7,8-tetrahydroquinoxaline. The grinding process not only changes the appearance of tencha, but also increases the content of volatile components of matcha as a whole, enhancing the aroma and flavor characteristics of matcha. In this study, the contents of 24 volatile components in matcha were mainly increased, such as benzene, (2,2-dimethoxyethyl)-, cis-7-decen-1-al, safranal and fenchyl acetate. The dual factors of material tencha and matcha grinding technology are indispensable in forming the differences in aroma and flavor of Shandong matcha at different levels.
Collapse
|
13
|
He Y, Xi H, Chen Z, Nie M, Qin W, Wang A, Liu L, Wang L, Sun J, Bai Y, Huang Y, Wang F, Tong L. Effects of wet milling on the properties of highland barley flour and the quality of highland barley bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yue He
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Huihan Xi
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Zhiying Chen
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Mengzi Nie
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Wanyu Qin
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Aixia Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Liya Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Lili Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Jing Sun
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Yajuan Bai
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Yatao Huang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Li‐Tao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Beijing 100193 China
| |
Collapse
|
14
|
Cheng J, Lei S, Gao L, Zhang Y, Cheng W, Wang Z, Tang X. Effects of Jet Milling on the Physicochemical Properties of Buckwheat Flour and the Quality Characteristics of Extruded Whole Buckwheat Noodles. Foods 2022; 11:foods11182722. [PMID: 36140850 PMCID: PMC9497559 DOI: 10.3390/foods11182722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 12/05/2022] Open
Abstract
The effects of jet milling on the physicochemical properties of buckwheat flour and the quality characteristics of extruded whole buckwheat noodles (WBN) were investigated in this study. The results reveal that the application of jet milling significantly reduced the particle size of buckwheat flour. As a result, the damaged starch content, water solubility index, water absorption index and swelling power of buckwheat flour all increased. It was worth noting that moderately ground buckwheat flour powder (D50 = 65.86 μm) had the highest pasting viscosity and gel hardness. The breaking rate and cooking loss of extruded whole buckwheat noodles made from the above powder were reduced by 33% and 16%, respectively. Meanwhile, they possessed the highest lightness and firmest network structure. Jet milling increased the soluble dietary fiber (SDF) content from 3.45% to 4.39%, and SDF further increased to 5.28% after noodle extrusion. This study was expected to provide a reference for exploiting high-quality gluten-free noodles from the perspective of milling.
Collapse
Affiliation(s)
- Jiayu Cheng
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Sijia Lei
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Li Gao
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yingquan Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiwei Cheng
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhenjiong Wang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaozhi Tang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- Correspondence: ; Tel./Fax: +86-25-8671-8507
| |
Collapse
|
15
|
Zhang Z, Zhu M, Xing B, Liang Y, Zou L, Li M, Fan X, Ren G, Zhang L, Qin P. Effects of extrusion on structural properties, physicochemical properties and in vitro starch digestibility of Tartary buckwheat flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Effects of milling methods on the properties of rice flour and steamed rice cakes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Grain phenolics: critical role in quality, storage stability and effects of processing in major grain crops—a concise review. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Use of ImageJ Software for Assessment of Mechanical Damage to Starch Granules. Processes (Basel) 2022. [DOI: 10.3390/pr10040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study attempted to assess the influence of mechanical forces on potato, tapioca, wheat, rice, and maize starch granules. For this purpose, we used digital analysis of microscopic images of starch granules before and after starch grinding using ImageJ software. Additionally, we studied the influence of temperature on the size and shape of starch granules by drying the starches for 30 min at 60 °C. Our results indicate that mechanical forces very rarely cause damage to starch granules, such as breaking or cracking. In most cases, the action of mechanical forces results only in smoother shape of starch granules and their shrinking, linked with rising temperature. Results of this study show that ImageJ software can be successfully used to assess starch granule size and shape.
Collapse
|
19
|
Insights into the Potential of Buckwheat Flour Fractions in Wheat Bread Dough. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Buckwheat flour fractions with different particle sizes (PS), comprising various concentrations of valuable nutritional components, represent an opportunity to enhance refined wheat bakery products. The aim of this research was to assess the potential of buckwheat flour (BF) fractions (large, L > 300 μm, medium, 180 μm < M < 300 μm and small, S < 180 μm) to substitute refined wheat flour at 0, 5, 10, 15, and 20% in wheat bread dough and to establish the optimal amount for each fraction. The results revealed significant changes during different bread-making stages and on the finished product. A decrease in falling number index, water absorption, starch gelatinization, elastic modulus, and bread hardness with increasing PS was observed. The increase of BF amount led to an increase in dough development time, speed of protein weakening, gel starch stability, alveograph ratio, rheofermentation properties, maximum creep-recovery compliance, and bread hardness. The optimal values for falling number, mixing–heating–cooling dough parameters, dough biaxial extension, rheofermentation, storage and loss moduli, creep-recovery compliance, loaf volume, and bread hardness were obtained depending on PS based on the generation of predictive models. It was established that the best formulations, with respect to dough rheology and bread characteristics, included BF at 9.13% for large, 10.57% for medium, and 10.25% for small PS.
Collapse
|
20
|
Ma J, Ma L, Chen X, Zhou H, Wang Z, He Y, Fujita K, Luan G. Rheological behavior of batter and quality of gluten‐free bread based on nonglutinous rice flour and tartary buckwheat flour. Cereal Chem 2022. [DOI: 10.1002/cche.10517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Ma
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Lei Ma
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xi Chen
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Haiyan Zhou
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Zhan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yun He
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Kaori Fujita
- Japan International Research Center for Agricultural Science Ibaraki Japan
| | - Guangzhong Luan
- College of Food Science and Engineering Northwest A&F University Yangling China
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province Yangling China
| |
Collapse
|
21
|
Tian X, Wang X, Ma S, Sun B, Li L, Wang Z. Study of the ball milling condition effect on physicochemical and structural characteristics of wheat flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoling Tian
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Binghua Sun
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Li Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Zhen Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| |
Collapse
|
22
|
Chaloulos P, Bazanis AE, Georgiadou M, Protonotariou S, Mandala I. Effect of drying and grinding or micro-grinding process on physical and rheological properties of whole cladode (Opuntia ficus-indica) flour. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Xu Q, Huang R, Yang P, Wang L, Xing Y, Liu H, Wu L, Che Z, Zhang P. Effect of different superfine grinding technologies on the physicochemical and antioxidant properties of tartary buckwheat bran powder. RSC Adv 2021; 11:30898-30910. [PMID: 35498947 PMCID: PMC9041412 DOI: 10.1039/d1ra05093a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022] Open
Abstract
The effect of shear crushing, airflow comminution, and wet grinding on the physical and chemical properties of Tartary buckwheat bran (TBB) powder was compared. Superfine grinding significantly reduces the particle size of bran (1.644 μm), while increasing the protein content (23.60%), water-holding capacity (4.38 g g-1), solubility (21.077 g 100 g-1), bulk density (0.34 g mL-1), and tap density (0.53 g mL-1) providing good processing characteristics. The antioxidant properties of bran powder prepared by the three methods mentioned above were compared. The results showed that different bran powders subjected to superfine grinding displayed varying levels of antioxidant capacity. The quercetin content (2.18 g 100 g-1) of the wet-grinding bran powder (WGBP) was twice that of the control group, while no rutin was detected. The total flavonoid content (TFC) and total phenolic content (TPC) were significantly different from those of other groups. The DPPH, ˙OH, and ABTS+ removal rates were 60.74%, 86.62%, and 92.98%, respectively, while that of ˙OH was significantly higher than in the other treatment groups. The control group, shear crushed, and airflow comminution bran exhibited no significant differences in TFC, TPC, and oxidation resistance, except for the ability to remove ˙OH. TBB powder obtained via superfine grinding displayed superior taste and functional characteristics, providing a theoretical reference for the processing of this bran.
Collapse
Affiliation(s)
- Qinglian Xu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Ruihan Huang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Ping Yang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China .,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute Yibin 644004 China
| | - Li Wang
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Yage Xing
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Hong Liu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Lin Wu
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China .,Key Laboratory of Food Non-Thermal Technology, Engineering Technology Research Center of Food Non-Thermal, Yibin Xihua University Research Institute Yibin 644004 China
| | - Zhenming Che
- Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China
| | - Ping Zhang
- Huantai Biotechnology Co., Ltd. Chengdu 610225 China
| |
Collapse
|
24
|
Han XM, Xing JJ, Han C, Guo XN, Zhu KX. The effects of extruded endogenous starch on the processing properties of gluten-free Tartary buckwheat noodles. Carbohydr Polym 2021; 267:118170. [PMID: 34119142 DOI: 10.1016/j.carbpol.2021.118170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 01/29/2023]
Abstract
The lack of gluten in Tartary buckwheat has always been the main limiting factor of their development. This paper explored how to improve the processing quality of gluten-free Tartary buckwheat noodles (GF-TBNs) by introducing extruded starch into Tartary buckwheat flour (TBF) and the underlying mechanism was also elucidated. Extruded Tartary buckwheat starch (ETBS) was obtained under different extrusion conditions. The thermal properties, molecular weight, and viscosity of ETBS were examined to determine the key parameters closely related to the water distribution and rheological properties of the dough sheet, and tensile properties of GF-TBNs. The results showed that ETBS with a low molecular weight and high viscosity contributed greatly to the GF-TBNs with good tensile properties. It is proposed that ETBS with a low molecular weight and high viscosity might form a gel-entrapped network inside GF-TBNs, which was confirmed by the morphology of GF-TBNs.
Collapse
Affiliation(s)
- Xiao-Miao Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, PR China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, PR China
| | - Cong Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800, Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, PR China; Qingdao Special Food Research Institute, Qingdao 266109, Shandong Province, PR China.
| |
Collapse
|
25
|
Saeed F, Afzaal M, Ikram A, Imran A, Hussain S, Mohamed AA, Alamri MS, Hussain M. Exploring the amino acid composition and vitamin‐B profile of buckwheat varieties. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Farhan Saeed
- Department of Food Science Government College University Faisalabad Pakistan
| | - Muhammad Afzaal
- Department of Food Science Government College University Faisalabad Pakistan
| | - Ali Ikram
- Department of Food Science Government College University Faisalabad Pakistan
| | - Ali Imran
- Department of Food Science Government College University Faisalabad Pakistan
| | - Shahzad Hussain
- Department of Food Science & Nutrition King Saud University Riyadh Saudi Arabia
| | | | - Mohamed S. Alamri
- Department of Food Science & Nutrition King Saud University Riyadh Saudi Arabia
| | - Muzzamal Hussain
- Department of Food Science Government College University Faisalabad Pakistan
| |
Collapse
|
26
|
Wang Y, Zhang Q, Guo Y, Xu F. Effect of flour particle size on the qualities of semi‐dried noodles and fine dried noodles. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yuan‐Hui Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Qiong‐Qiong Zhang
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Yu‐Ying Guo
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| | - Fei Xu
- College of Food Science and Engineering Henan University of Technology Zhengzhou China
| |
Collapse
|
27
|
Wang L, Wang L, Wang A, Qiu J, Li Z. Inhibiting effect of superheated steam processing on milling characteristics deterioration induced by storage of common buckwheat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Arslan A, Haros CM, Yalçın E, Güneş A. Wet milling of buckwheat cultivars and some quality properties of the fractions. FOOD SCI TECHNOL INT 2021; 28:320-330. [PMID: 33940966 DOI: 10.1177/10820132211011303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The hulled buckwheat cultivars (Aktaş cv. and Güneş cv.) were wet-milled, and then some chemical, yields, colour, functional properties, phenolic compound, antioxidant activity, and pasting, thermal and retrogradation properties of starches were investigated and compared with the wholegrain buckwheat flour (with hull) and buckwheat groat flour (without hull) of the same cultivars. Sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns of flours and protein fractions were examined under reducing and non-reducing conditions. The hull, germ+dietary fibre, protein and starch fractions were collected. The total recovery for Aktaş cv. and Güneş cv. cultivars were 98.1% and 96.1%; total starch yields were 51.6% and 49.7%; pasting temperatures of the starches were found as 83.7 and 85.7°C; and final viscosities of starches were determined as 3.5 and 3.4 Pa·s, respectively. The resistant starch contents of starch fractions of Aktaş cv. ve Güneş cv. were found as 3.28% and 3.62%, respectively. The highest total phenolic compound contents were detected with dimethyl sulphoxide extraction in the germ+dietary fibre fractions. The highest 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity and trolox equivalent antioxidant capacity were found in the hull fraction (as 81.7%) and germ+dietary fibre fraction (as 11.8 mmol/kg) of Aktaş cv. cultivar.
Collapse
Affiliation(s)
- Ayşenur Arslan
- Department of Food Engineering, Bolu Abant İzzet Baysal University, Bolu, Turkey.,IATA-CSIC, Cereal Research Group, Valencia, Spain
| | | | - Erkan Yalçın
- Department of Food Engineering, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Ahmet Güneş
- Department of Plant Breeding and Genetics, Bahri Dağdaş International Agricultural Research Institute, Konya, Turkey
| |
Collapse
|
29
|
Zhang H, Wu F, Xu D, Xu X. Effects of milling methods on the properties of glutinous rice flour and sweet dumplings. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1848-1857. [PMID: 33897021 DOI: 10.1007/s13197-020-04696-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/18/2020] [Accepted: 08/04/2020] [Indexed: 01/10/2023]
Abstract
Glutinous rice flour (GRF) was prepared using three milling process (wet milling, low temperature impact milling (dry milling), and roller milling (dry milling)) to investigate their effects on the physicochemical properties of glutinous rice flour and sweet dumplings prepared with that flour. Results revealed that a method of grinding used in the milling process had a significant (P < 0.05) effect on the properties of GRF and the resulting sweet dumplings. Dry milling (low temperature impact milling and roller milling) resulted in higher damaged starch content and coarser particle size than wet milling. Dry-milled flour exhibited a significantly lower hunter whiter value, apparent viscosity, pasting temperature, enthalpy value, and degree of crystalline compared to the wet-milling method. Dry milling significantly decreased the smoothness of the surface, whiteness value, transmittance of soup, resilience of dumplings, as well as increased the cracking rate and water loss during the fast-freeze. The obtained results could be used as reference for improving sweet dumpling made from dry-milled GRF.
Collapse
Affiliation(s)
- Huang Zhang
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122 People's Republic of China.,Henan University of Animal Husbandry and Economy, No. 6, Longzihu North Road, Zhengzhou, 450046 Henan Province People's Republic of China
| | - Fengfeng Wu
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122 People's Republic of China
| | - Dan Xu
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122 People's Republic of China
| | - Xueming Xu
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, 214122 People's Republic of China
| |
Collapse
|
30
|
Gao L, Bai W, Xia M, Wan C, Wang M, Wang P, Gao X, Gao J. Diverse effects of nitrogen fertilizer on the structural, pasting, and thermal properties of common buckwheat starch. Int J Biol Macromol 2021; 179:542-549. [PMID: 33716128 DOI: 10.1016/j.ijbiomac.2021.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022]
Abstract
At present, the yield of common buckwheat, which is mainly grown in northern Shaanxi of China, is low and the grain quality is poor. Nitrogen is an important nutrient for the growth of common buckwheat, and appropriate nitrogen application can improve the grain quality. Nitrogen fertilizer could alter the starch granule morphology shapes and the granule size distribution. With increasing nitrogen levels, branch number, flower clusters number, grain number per plant, contents of protein and fat, size distribution of "C" granules, and percentages of light transmittance significantly increased, whereas amylose content and retrogradation decreased. All the samples displayed typical A-type X-ray diffraction patterns. Starch showed higher pasting temperature and gelatinization enthalpy but lower trough and final viscosities under high nitrogen levels. These results suggested N2 treatment was more suitable for common buckwheat growth, principal components and correlation analysis revealed that nitrogen fertilizer significantly affected the physicochemical properties of common buckwheat starches.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Wenming Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meijuan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meng Wang
- Yu'lin Institute of Agricultural Sciences, Yulin, Shaanxi Province 719000, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
31
|
Yang B, Yin Y, Liu C, Zhao Z, Guo M. Effect of germination time on the compositional, functional and antioxidant properties of whole wheat malt and its end-use evaluation in cookie-making. Food Chem 2021; 349:129125. [PMID: 33535111 DOI: 10.1016/j.foodchem.2021.129125] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
This study investigated the effect of germination time on compositional changes and functionality of whole wheat malt flour (WMF) as well as its influence on cookie quality. The results illustrated that malting resulted in decreases of starch, protein, fat and ash, while it increased dietary fiber, carbohydrate and energy. Gel hydration, emulsifying and foaming ability, pasting viscosity decreased significantly, particularly during the first 2 days of germination. Both bound and immobilized water in WMF decreased with increasing germination time while the concentration and antioxidant capacity of extractable and hydrolyzable phenolic compounds (EPP and HPP) increased significantly in WMF and malt-based cookies. Flours changed from an integrated granular to an irregular tousy structure during germination. The incorporation of WMF induced a distorted "honey-like" comb structure to the cookies. Conclusively, controlled germination not only improves the physicochemical, functional properties of WMF but also increases nutrition value and technological performance of malt-based cookies.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yanjing Yin
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng Liu
- Shandong Taishan Beer Company, Tai'an 271000, China; Shandong Institute of Pomology, Tai'an 271018, Shandong, China
| | - Zhengtao Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Mengmeng Guo
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
32
|
Zhang K, Zhao D, Song J, Guo D, Xiao Y, Shen R. Effects of green wheat flour on textural properties, digestive and flavor characteristics of the noodles. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences Zhengzhou China
| | - Di Zhao
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou China
| | - Jiangfeng Song
- Center of Agricultural Products Processing Jiangsu Academy of Agricultural Sciences Nanjing China
| | - Dongxu Guo
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences Zhengzhou China
| | - Yadong Xiao
- Center of Agricultural Products Processing Henan Academy of Agricultural Sciences Zhengzhou China
| | - Ruiling Shen
- School of food and Bioengineering Zhengzhou Institute of light industry Zhengzhou China
| |
Collapse
|
33
|
Huang Y, Sun X, Guo H, He X, Jiang J, Zhang G, Li W. Changes in the thermal, pasting, morphological and structural characteristic of common buckwheat starch after ultrafine milling. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14899] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yawei Huang
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Xiangxiang Sun
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Hongmei Guo
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Xueshu He
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Jiang Jiang
- College of Food Science and Engineering Henan University of Technology Zhengzhou450001China
| | - Guoquan Zhang
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| | - Wenhao Li
- College of Food Science and Engineering Northwest A&F University Yangling712100China
| |
Collapse
|
34
|
Guan E, Pang J, Yang Y, Zhang T, Li M, Bian K. Effects of wheat flour particle size on physicochemical properties and quality of noodles. J Food Sci 2020; 85:4209-4214. [PMID: 33151559 DOI: 10.1111/1750-3841.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022]
Abstract
The effect of particle size on the physicochemical and noodle quality of wheat flours was investigated. Granular wheat flour was ground by adjusting the distance between the rolls (0.02, 0.04, 0.06, 0.08, and 0.1 mm) of the flour mill to obtain wheat flour in five different particle sizes. The results showed that milling intensity significantly reduced the particle size and increased the damaged starch content and sedimentation value, but there were no significant differences in protein or ash contents. The reduction of wheat flour particle size significantly decreased the peak viscosity, trough viscosity, final viscosity, breakdown, and setback of the blends, while there were no significant differences in pasting temperature. Stress relaxation characteristics indicated that as the particle size of wheat flour decreased, dough hardness increased. The noodles made from wheat flour with a smaller particle size had a higher water absorption rate and cooking loss rate. Textural profile analysis parameters showed that as the particle size of wheat flour decreased, the hardness, chewiness, recovery, and adhesiveness of noodles showed increasing trends, and there was no significant difference in elasticity. In summary, it is found that the quality of the noodles made by sample C (D50 : 78.47 µm) is better.
Collapse
Affiliation(s)
- Erqi Guan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China.,Henan Food Crop Collaborative Innovation Center, Zhengzhou, 450001, China
| | - Jinyue Pang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yuling Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Tingjing Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengmeng Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Ke Bian
- Henan Food Crop Collaborative Innovation Center, Zhengzhou, 450001, China
| |
Collapse
|
35
|
Chen Z, Huang Q, Xia Q, Zha B, Sun J, Xu B, Shi YC. Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro. Food Chem 2020; 330:127318. [DOI: 10.1016/j.foodchem.2020.127318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/25/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
|
36
|
Gao L, Wang H, Wan C, Leng J, Wang P, Yang P, Gao X, Gao J. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure. Int J Biol Macromol 2020; 156:120-126. [PMID: 32289422 DOI: 10.1016/j.ijbiomac.2020.04.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022]
Abstract
Common buckwheat starch (CBS) has extensive using value in the human diet. In this study, the molecular structure and physicochemical properties of CBS isolated from five cultivars collected from three regions of China were studied. Variations in molecular structure, crystalline structure, complexity, water solubility (WS), swelling power (SP), pasting properties, and thermal characteristics were recorded among the starches. The CBS had both similarities and differences in its properties by comparison with maize starch (MS) and potato starch (PS). The average molecular weight (MW) and amylopectin average chain length (ACL) of CBS ranged from 3.86 × 107 g/mol to 4.68 × 107 g/mol and from 21.29% to 22.68%, respectively. CBS and MS were divided into one subgroup and showed typical A diffraction patterns, while PS was divided into two subgroups and exhibited a typical B polymorphic pattern. The WS and SP of all the starches significantly increased with increasing temperature and had great variation at 70 °C and 90 °C. Pearson's correlation analysis showed that the molecular structure of starches greatly affected the physicochemical properties. This study revealed that the physicochemical properties of CBS could be affected by the molecular structures.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Chenxi Wan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jiajun Leng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
37
|
Harasym J, Satta E, Kaim U. Ultrasound Treatment of Buckwheat Grains Impacts Important Functional Properties of Resulting Flour. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25133012. [PMID: 32630230 PMCID: PMC7412278 DOI: 10.3390/molecules25133012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
The benefit of not containing the gluten complex protein also provides problems with the achievement of typical and proper texture, especially in bakery products. Ultrasound (US) treatment has been previously studied on buckwheat as assistance treatment facilitating the release of antioxidant compounds. However, there is no study regarding the changes occurring in US-treated buckwheat grains regarding the structure-creating capacity, like water absorption, gelling, and pasting. The aim of this study is to the impact of US-treatment of buckwheat grains at 1:10, 1:5, and 1:2.5 solid: liquid ratio (in water). The particle size distribution, water absorption index (WAI), water solubility index (WSI), swelling power (SP), pasting characteristics, color, soluble, insoluble and total polyphenols content (SPC, IPC, TPC) and antioxidant activity (DPPH) were assessed in resulting flours. US-treatment caused specific agglomeration, resulting in bigger particles for 1:5, and 1:2.5 ratio treated samples, while higher dilution (1:10) increased smaller particle size fractions. The WAI and SP were the highest for the1:5 solid: liquid ratio sample, and the same sample revealed the highest peak viscosity, breakdown, and setback values. The ultrasound treatment increased the WSI, which was positively correlated with insoluble polyphenols content. The soluble polyphenols content decreased, and insoluble polyphenols content increased in all ultrasound treated samples. The DPPH scavenging activity remaining in grain after US treatment was lowered compared to the control sample. The relocation of pigments resulted in a redness and yellowish increase in all treated samples, while lightness was also increased but was most pronounced for a 1:10 ratio treated sample. The results suggest that ultrasound treatment of grain can improve the essential functional properties of buckwheat flour.
Collapse
Affiliation(s)
- Joanna Harasym
- Adaptive Food Systems Accelerator–Science Centre, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
- Department of Biotechnology and Food Analysis, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
- Correspondence: ; Tel.: +48-7136-08-0249
| | - Elena Satta
- Department of Agricultural and Food Science, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy;
| | - Urszula Kaim
- Adaptive Food Systems Accelerator–Science Centre, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
- Department of Biotechnology and Food Analysis, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| |
Collapse
|
38
|
Gao W, Chen F, Wang X, Meng Q. Recent advances in processing food powders by using superfine grinding techniques: A review. Compr Rev Food Sci Food Saf 2020; 19:2222-2255. [DOI: 10.1111/1541-4337.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Wenjie Gao
- School of Ecological Technology and EngineeringShanghai Institute of Technology Shanghai China
| | - Feng Chen
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
| | - Xi Wang
- Department of Food, Nutrition and Packaging SciencesClemson University Clemson South Carolina
- Nutra Manufacturing Greenville South Carolina
| | - Qingran Meng
- Engineering Research Center of Perfume & Aroma and Cosmetics of Ministry of Education, School of Perfume and Aroma TechnologyShanghai Institute of Technology Shanghai China
| |
Collapse
|
39
|
A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem 2020; 315:126267. [DOI: 10.1016/j.foodchem.2020.126267] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
|
40
|
Ballester-Sánchez J, Fernández-Espinar M, Haros C. Isolation of red quinoa fibre by wet and dry milling and application as a potential functional bakery ingredient. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105513] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
41
|
Impact of particle size on functional, physicochemical properties and antioxidant activity of cladode powder ( Opuntia ficus-indica). JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:943-954. [PMID: 32123415 DOI: 10.1007/s13197-019-04127-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Particle size is an important quality parameter of pharmaceutical and processed food products. The present study aimed at evaluating the effect of powder fractionation on the functional, physicochemical properties and antioxidant activity of cladode powder with particle size ranging from < 45 to 500 µm. Granulometric study presented bimodal granules' volume distribution explaining the irregular shape of particles. The results indicated that functional properties were significantly (p < 0.05) affected by particle size distribution and the critical fraction size was 63-80 µm. Scanning electron microscopy showed that morphology of cladode powder granules was highly related to the grinding treatment. Physicochemical analysis showed that ash content and soluble solids were more affected contrary to moisture, pH and titratable acidity. Chlorophylls (a, b) and carotenoids content of fractionated powder were affected significantly unlike color (b* value). The granulometric classes (80-100 µm) had the highest polyphenol and flavonoids content (605.30 mg GAE/100 g and 476.33 mg CE/100 g respectively). Two fractions "100-200 µm" and "80-100 µm" exhibited a high rise in the antioxidant activity as determined by the DPPH, ABTS and FRAP essays compared to other fractions. The chemical composition and bioactive compounds analysis of cladode powder confirmed a differential distribution of chemical composition and bioactive compounds according to particle size.
Collapse
|
42
|
Yan X, Liu C, Huang A, Chen R, Chen J, Luo S. The nutritional components and physicochemical properties of brown rice flour ground by a novel low temperature impact mill. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102927] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Gao L, Xia M, Li Z, Wang M, Wang P, Yang P, Gao X, Gao J. Common buckwheat-resistant starch as a suitable raw material for food production: A structural and physicochemical investigation. Int J Biol Macromol 2019; 145:145-153. [PMID: 31846660 DOI: 10.1016/j.ijbiomac.2019.12.116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 11/25/2022]
Abstract
Heat-moisture treatment (HMT) of starch is defined as a physical method to change its properties. Compared with maize and potato, starches from common buckwheat (Xinong9976 and Pingqiao2) were isolated and its morphology and physicochemical properties investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), ATR-FTIR analysis, rapid viscosity analyzer (RVA) and differential scanning calorimeter (DSC) were studied before and after HMT. The experimental results showed that there were obvious differences between native starch (NS) and resistant starch (RS) of common buckwheat. HMT altered the A-type crystalline pattern and the degree of short-range order of common buckwheat starches and significantly decreased water solubility, swelling power (70-90 °C), freeze-thaw stability and pasting properties and increased oil and water absorption capacities, light transmittance as well as thermal stability. This study shows that the NS and RS of common buckwheat can be used as the suitable raw materials in food processing.
Collapse
Affiliation(s)
- Licheng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meijuan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zhonghao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Meng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pengke Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Pu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xiaoli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Jinfeng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| |
Collapse
|
45
|
The Effect of Drying Temperature on the Phenolic Content and Functional Behavior of Flours Obtained from Lemon Wastes. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090474] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lemon processing generates thousands of tons of residues that can be preserved as flours by thermal treatment to obtain phenolic compounds with beneficial bioactivities. In this study, the effect of different drying temperatures (40, 50, 60, 70, 80, 90, 100 and 110 °C) on the Total Phenolic Content (TPC), antioxidant and antimicrobial activities of phenolic compounds present in Citrus. lemon (L.) Burn f waste was determined. Identification and quantification of phenolic compounds were also performed by UPLC-PDA and UPLC-ESI-MS analysis. Eriocitrin (19.79–27.29 mg g−1 DW) and hesperidin (7.63–9.10 mg g−1 DW) were detected as the major phenolic compounds in the flours by UPLC-PDA and confirmed by UPLC-ESI-MS. Antimicrobial activity determined by Minimum Inhibitory Concentration (MIC) against Salmonella typhimurium, Escherichia coli and Staphylococcus aureus was observed. Accordingly, a stable functional flour as a source of bioactive phenolic compounds obtained from lemon residues at 50 °C may be produced as a value-added product useful in various industrial sectors.
Collapse
|
46
|
Meng X, Liu F, Xiao Y, Cao J, Wang M, Duan X. Alterations in physicochemical and functional properties of buckwheat straw insoluble dietary fiber by alkaline hydrogen peroxide treatment. FOOD CHEMISTRY-X 2019; 3:100029. [PMID: 31432021 PMCID: PMC6694851 DOI: 10.1016/j.fochx.2019.100029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 01/05/2023]
Abstract
The untreated IDF tended to strong antioxidant properties in vitro. The changes of antioxidation might be related to specific substrates. AHP treatment could led to redistribution of monosaccharide in IDF. AHP treatment could improve physicochemical properties of IDF.
To enhance the physicochemical and functional properties of insoluble dietary fiber (IDF) from buckwheat straw, we investigated the effects of alkaline hydrogen peroxide (AHP) treatment. Electron microscopy showed that the IDF had regular and compact tubes that turned into wrinkled lamellar products. After AHP treatment, X-ray diffraction indicated that the crystalline structure of the IDF was perturbed. And an undesirable decrease was observed in the content of hydroxybenzoic acid derivatives, hydroxycinnamic acid derivatives, flavonoids and the antioxidant capacity of IDF modified by AHP; however, the hydration properties (such as water holding capacity), α-amylase inhibition activity and glucose adsorption capacity of IDF were significantly enhanced by AHP. Furthermore, AHP led to a redistribution of monosaccharides in soluble dietary fiber and IDF, an interesting finding hinting at the mechanism and potential applications of AHP modification of IDF. In this study, AHP enhanced the physiological and functional properties of buckwheat straw IDF.
Collapse
Affiliation(s)
- Xuemei Meng
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Fang Liu
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Junwei Cao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, PR China
| |
Collapse
|
47
|
Singh JP, Kaur A, Singh B, Singh N, Singh B. Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2019; 56:2205-2212. [PMID: 30996454 PMCID: PMC6443704 DOI: 10.1007/s13197-019-03703-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 01/05/2023]
Abstract
This study analyzed the characteristics (physicochemical properties as well as antioxidant activity) of corn grit extrudates containing buckwheat flour at various levels (0, 10, 20 and 30% w/w) extruded at various temperatures (130, 150 and 170 °C). Effect of roasting (92 °C for 15 min) on the extrudates was also studied. Buckwheat incorporation at different levels mainly increased the diameter, a* value (indicating redness), phenolic content and antioxidant capacity, while decreased bulk density and water absorption index of the extruded products. On the other hand, increment in extrusion temperature primarily increased the L* values (lightness), a* values and antioxidant activity but decreased the phenolic content of extrudates. Roasting improved the flavor and texture of the extrudates which was desirable. Extrudates prepared from corn grit with incorporation of buckwheat up to 20% level and extrusion cooking at 150 °C showed best sensory scores.
Collapse
Affiliation(s)
- Jatinder Pal Singh
- Department of Food Processing and Preservation, Dev Samaj College for Women, Ferozepur City, Punjab 152002 India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Balwinder Singh
- P.G. Department of Biotechnology, Khalsa College, Amritsar, Punjab 143002 India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Baljit Singh
- Department of Food Science and Technology, Punjab Agricultural University, Ludhiana, Punjab 141005 India
| |
Collapse
|
48
|
Sun X, Yu C, Fu M, Wu D, Gao C, Feng X, Cheng W, Shen X, Tang X. Extruded whole buckwheat noodles: effects of processing variables on the degree of starch gelatinization, changes of nutritional components, cooking characteristics and in vitro starch digestibility. Food Funct 2019; 10:6362-6373. [DOI: 10.1039/c9fo01111k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of processing variables on the degree of gelatinization (DG), changes of nutritional components, cooking characteristics and in vitro starch digestibility of extruded whole buckwheat noodles were investigated.
Collapse
Affiliation(s)
- Xuyang Sun
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Chen Yu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Meixia Fu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Di Wu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Chengcheng Gao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Weiwei Cheng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing
- Nanjing University of Finance and Economics
- Nanjing 210023
- China
| |
Collapse
|
49
|
Nevara GA, Yea CS, Karim R, Muhammad K, Mohd Ghazali H. Effects of moist-heat treatments on color improvement, physicochemical, antioxidant, and resistant starch properties of drum-dried purple sweet potato powder. J FOOD PROCESS ENG 2018. [DOI: 10.1111/jfpe.12951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Gita Addelia Nevara
- Department of Food Technology, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor Malaysia
- Department of Nutrition, Universitas Mohammad Natsir Bukittinggi; Jl. Tan Malaka Bukit Cangang/Belakang Balok Bukittinggi; Bukittinggi Sumatera Barat Indonesia
| | - Chay Shyan Yea
- Department of Food Science, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - Roselina Karim
- Department of Food Technology, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - Kharidah Muhammad
- Department of Food Science, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor Malaysia
| | - Hasanah Mohd Ghazali
- Department of Food Science, Faculty of Food Science and Technology; Universiti Putra Malaysia; Serdang Selangor Malaysia
| |
Collapse
|
50
|
The application of ohmic heating for inulin extraction from the wet-milled and dry-milled powders of Jerusalem artichoke (Helianthus tuberosus L.) tuber. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|