1
|
Li H, Xu W, Hu X, Tian X, Li B, Du Y, Chen J. The surface protein GroEl of lactic acid bacteria mediates its modulation of the intestinal barrier in Penaeus vannamei. Int J Biol Macromol 2024; 278:134624. [PMID: 39134191 DOI: 10.1016/j.ijbiomac.2024.134624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The molecular chaperone GroEL, commonly found in various bacterial species, exhibits heightened expression levels in response to high temperatures and increased levels of oxygen free radicals. Limited literature currently exists on the probiotic role of GroEL in invertebrates. This study sought to explore how the surface protein GroEL from Lactobacillus plantarum Ep-M17 impacts the intestinal barrier function of Penaeus vannamei. Through pull-down and immunofluorescence assays, the interaction between GroEL and Act1 in the gastrointestinal tract of P. vannamei was confirmed. Results from bacterial binding assays demonstrated that rGroEL can bind to pathogens like Vibrio parahaemolyticus E1 (V. p-E1). In vitro experiments revealed that the administration of rGroEL significantly decreased the levels of inflammatory cytokines induced by pathogens while preserving the integrity of tight junctions between intestinal epithelial cells and reducing bacteria-induced apoptosis. Additionally, rGroEL notably lessened the intestinal loading of V. p-E1 in P. vannamei, downregulated immune-related gene expression, and upregulated BCL/BAX expression in the intestines following V. p-E1 challenge. Mechanistic investigations further showed that rGroEL treatment effectively suppressed the expression and phosphorylation of proteins involved in the NF-κB and PI3K-AKT-mTOR signalling pathways in the intestines of bacteria-infected P. vannamei. Furthermore, GroEL reinforces protection against bacterial infections by enhancing the phagocytic and anti-apoptotic capabilities of P. vannamei hemocytes. These results suggest that GroEL may impede the interaction between pathogens and the intestinal mucosa through its competitive binding characteristics, ultimately reducing bacterial infections.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Wenlong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xiangrong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Bin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Du Y, Li H, Shao J, Wu T, Xu W, Hu X, Chen J. Adhesion and Colonization of the Probiotic Lactobacillus plantarum HC-2 in the Intestine of Litopenaeus Vannamei Are Associated With Bacterial Surface Proteins. Front Microbiol 2022; 13:878874. [PMID: 35535252 PMCID: PMC9076606 DOI: 10.3389/fmicb.2022.878874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Surface proteins are a type of proteins expressed on the surface of bacteria that play an important role in cell wall synthesis, maintenance of cell morphology, and signaling with the host. Our previous study showed that the probiotic Lactobacillus plantarum HC-2 improved the growth performance and immune response of Litopenaeus vannamei. To further investigate the probiotic mechanism, we determined the automatic aggregation ability of the bacteria and surface hydrophobicity of HC-2 after being treated with 5 M of lithium chloride (LiCl) and observed the morphology and adhesion of the bacteria to HCT116 cells. The results showed that with the removal of the HC-2 surface protein, the auto-aggregation ability and surface hydrophobicity of HC-2 decreased, and the crude mucus layer coated on the bacterial surface gradually dissociated. The adhesion rate of HC-2 to HCT116 cells decreased from 98.1 to 20.9%. Moreover, a total of 201 unique proteins were identified from the mixture of the surface proteins by mass spectrometry (MS). Several proteins are involved in transcription and translation, biosynthetic or metabolic process, cell cycle or division, cell wall synthesis, and emergency response. Meanwhile, a quantitative real-time PCR qPCR_ showed that HC-2 was mainly colonized in the midgut of shrimp, and the colonization numbers were 15 times higher than that in the foregut, while the colonization rate in the hindgut was lower. The adhesion activity measurement showed that the adhesion level of HC-2 to crude intestinal mucus of L. vannamei was higher than that of bovine serum albumin (BSA) and collagen, and the adhesion capacity of the bacterial cells decreased with the extension of LiCl-treatment time. Finally, we identified the elongation factor Tu, Type I glyceraldehyde-3-phosphate dehydrogenase, small heat shock protein, and 30S ribosomal protein from the surface proteins, which may be the adhesion proteins of HC-2 colonization in the shrimp intestine. The above results indicate that surface proteins play an important role in maintaining the cell structure stability and cell adhesion. Surface proteomics analysis contributes to describing potential protein-mediated probiotic-host interactions. The identification of some interacting proteins in this work may be beneficial to further understand the adhesion/colonization mechanism and probiotic properties of L. plantarum HC-2 in the shrimp intestine.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - WenLong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
3
|
Salvador PBU, Dalmacio LMM, Kim SH, Kang DK, Balolong MP. Immunomodulatory potential of four candidate probiotic Lactobacillus strains from plant and animal origin using comparative genomic analysis. Access Microbiol 2022; 3:000299. [PMID: 35024559 PMCID: PMC8749136 DOI: 10.1099/acmi.0.000299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Probiotic strains from different origins have shown promise in recent decades for their health benefits, for example in promoting and regulating the immune system. The immunomodulatory potential of four Lactobacillus strains from animal and plant origins was evaluated in this paper based on their genomic information. Comparative genomic analysis was performed through genome alignment, average nucleotide identity (ANI) analysis and gene mining for putative immunomodulatory genes. The genomes of the four Lactobacillus strains show relative similarities in multiple regions, as observed in the genome alignment. However, ANI analysis showed that L. mucosae LM1 and L. fermentum SK152 are the most similar when considering their nucleotide sequences alone. Gene mining of putative immunomodulatory genes studied from L. plantarum WCFS1 yielded multiple results in the four potential probiotic strains, with L. plantarum SK151 showing the largest number of genes at around 74 hits, followed by L. johnsonii PF01 at 41 genes when adjusted for matches with at least 30 % identity. Looking at the immunomodulatory genes in each strain, L. plantarum SK151 and L. johnsonii PF01 may have wider activity, covering both immune activation and immune suppression, as compared to L. mucosae LM1 and L. fermentum SK152, which could be more effective in activating immune cells and the pro-inflammatory cascade rather than suppressing it. The similarities and differences between the four Lactobacillus species showed that there is no definitive trend based on the origin of isolation alone. Moreover, higher percentage identities between genomes do not directly correlate with higher similarities in potential activity, such as in immunomodulation. The immunomodulatory function of each of the four Lactobacillus strains should be observed and verified experimentally in the future, since some the activity of some genes may be strain-specific, which would not be identified through comparative genomics alone.
Collapse
Affiliation(s)
- Paul Benedic U Salvador
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| | - Sang Hoon Kim
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, College of Biotechnology and Bioengineering, Dankook University, Republic of Korea
| | - Marilen P Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines Manila, Ermita, Manila 1000, Philippines
| |
Collapse
|
4
|
Pimentel TC, de Oliveira LIG, de Souza RC, Magnani M. Probiotic ice cream: A literature overview of the technological and sensory aspects and health properties. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatiana Colombo Pimentel
- Federal Institute of Paraná Campus Paranavaí Paranavaí PR 87736‐536Brazil
- State University of Maringá Food Engineering Post‐Graduation Maringá PR 87020‐900Brazil
| | | | | | - Marciane Magnani
- Department of Food Engineering University of Paraíba João Pessoa PB 58051‐900 Brazil
| |
Collapse
|
5
|
Exploring the Bile Stress Response of Lactobacillus mucosae LM1 through Exoproteome Analysis. Molecules 2021; 26:molecules26185695. [PMID: 34577166 PMCID: PMC8467624 DOI: 10.3390/molecules26185695] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 09/16/2021] [Indexed: 11/27/2022] Open
Abstract
Lactobacillus sp. have long been studied for their great potential in probiotic applications. Recently, proteomics analysis has become a useful tool for studies on potential lactobacilli probiotics. Specifically, proteomics has helped determine and describe the physiological changes that lactic acid bacteria undergo in specific conditions, especially in the host gut. In particular, the extracellular proteome, or exoproteome, of lactobacilli contains proteins specific to host– or environment–microbe interactions. Using gel-free, label-free ultra-high performance liquid chromatography tandem mass spectrometry, we explored the exoproteome of the probiotic candidate Lactobacillus mucosae LM1 subjected to bile treatment, to determine the proteins it may use against bile stress in the gut. Bile stress increased the size of the LM1 exoproteome, secreting ribosomal proteins (50S ribosomal protein L27 and L16) and metabolic proteins (lactate dehydrogenase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenases, among others) that might have moonlighting functions in the LM1 bile stress response. Interestingly, membrane-associated proteins (transporters, peptidase, ligase and cell division protein ftsH) were among the key proteins whose secretion were induced by the LM1 bile stress response. These specific proteins from LM1 exoproteome will be useful in observing the proposed bile response mechanisms via in vitro experiments. Our data also reveal the possible beneficial effects of LM1 to the host gut.
Collapse
|
6
|
Health benefits and technological effects of Lacticaseibacillus casei-01: An overview of the scientific literature. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Bagon BB, Valeriano VDV, Oh JK, Pajarillo EAB, Lee JY, Kang DK. Exoproteome Perspective on the Bile Stress Response of Lactobacillus johnsonii. Proteomes 2021; 9:proteomes9010010. [PMID: 33578796 PMCID: PMC7931105 DOI: 10.3390/proteomes9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022] Open
Abstract
Probiotics must not only exert a health-promoting effect but also be capable of adapting to the harsh environment of the gastrointestinal (GI) tract. Probiotics in the GI tract must survive the cell wall-disrupting effect of bile acids. We investigated the exoproteome of Lactobacillus johnsonii PF01 and C1-10 under bile stress. A comparative analysis revealed the similarities between the two L. johnsonii exoproteomes, as well as their different responses to bile. The large number of metabolic proteins in L. johnsonii revealed its metabolic adaptation to meet protein synthesis requirements under bile stress. In addition, cell wall modifications occurred in response to bile. Furthermore, some extracellular proteins of L. johnsonii may have moonlighting function in the presence of bile. Enolase, L-lactate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, triosephosphate isomerase, 50s ribosomal protein L7/L12, and cellobiose-specific phosphotransferase system (PTS) sugar transporter were significantly upregulated under bile stress, suggesting a leading role in the collective bile stress response of L. johnsonii from its exoproteome perspective.
Collapse
Affiliation(s)
- Bernadette B. Bagon
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Valerie Diane V. Valeriano
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Edward Alain B. Pajarillo
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
| | - Ji Yoon Lee
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea;
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Korea; (B.B.B.); (V.D.V.V.); (J.K.O.); (E.A.B.P.)
- Correspondence:
| |
Collapse
|
8
|
Pimentel TC, Gomes de Oliveira LI, Carvalho de Souza R, Magnani M. Probiotic non-dairy frozen dessert: Technological and sensory aspects and industrial challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Castillo-Escandón V, Fernández-Michel SG, Cueto- Wong MC, Ramos-Clamont Montfort G. Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Los alimentos a los que se les añaden probióticos (bacterias benéficas) constituyen uno de los sectores más importantes de los alimentos funcionales. Los productos lácteos son los principales vehículos para estas bacterias que producen un efecto benéfico a la salud, cuando se consumen vivas y en cantidades suficientes para adherirse al colon. Sin embargo, cada día crece el interés por desarrollar alimentos no lácteos como vehículo para probióticos. Los productos de origen vegetal son una buena alternativa para estas innovaciones. Tienen la ventaja de que son muy aceptados y accesibles para la población. Adicionalmente, representan una alternativa de consumo para poblaciones con dietas restringidas. Sin embargo, la incorporación de probióticos a estos productos requiere considerar varios criterios y vencer retos tecnológicos con la finalidad de conservarlos funcionalmente activos.
Collapse
|