1
|
Bekogianni M, Stamatoukos T, Nanou E, Couris S. Laser-Induced Breakdown Spectroscopy vs. Fluorescence Spectroscopy for Olive Oil Authentication. Foods 2025; 14:1045. [PMID: 40232056 PMCID: PMC11942084 DOI: 10.3390/foods14061045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
In the present work, laser-induced breakdown spectroscopy (LIBS) and fluorescence spectroscopy are used and assessed for the detection of EVOOs' adulteration with some non-EVOO edible oils (i.e., pomace, corn, sunflower, and soybean) and the discrimination of EVOOs based on geographical origin. For the direct comparison of the performance of the two techniques, the same set of EVOO samples was studied. The acquired spectroscopic data were analyzed by several machine learning algorithms, and the constructed predictive models are evaluated thoroughly for their reliability and robustness. In all cases, the high classification accuracies obtained support the potential and efficiency of both LIBS and fluorescence spectroscopy for the rapid, online, and in situ study of EVOOs' authentication issues, with LIBS being more advantageous as it operates much faster.
Collapse
Affiliation(s)
- Marios Bekogianni
- Department of Physics, University of Patras, 26504 Patras, Greece; (M.B.); (T.S.); (E.N.)
| | - Theodoros Stamatoukos
- Department of Physics, University of Patras, 26504 Patras, Greece; (M.B.); (T.S.); (E.N.)
| | - Eleni Nanou
- Department of Physics, University of Patras, 26504 Patras, Greece; (M.B.); (T.S.); (E.N.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| | - Stelios Couris
- Department of Physics, University of Patras, 26504 Patras, Greece; (M.B.); (T.S.); (E.N.)
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| |
Collapse
|
2
|
Fayek NM, Baky MH, Li Z, Khalifa I, Capanoglu E, Farag MA. Metabolome classification of olive by-products from different oil presses providing insights into its potential health benefits and valorization as analyzed via multiplex MS-based techniques coupled to chemometrics. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 38768954 DOI: 10.1002/pca.3385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/04/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION The Olive (Olea europaea L.) is one of the most popular edible oil-producing fruits, consumed worldwide for its myriad nutritional and health benefits. Olive oil production generates huge quantities of by-products from the fruit, which are considered environmental hazards. Recently, more and more efforts have been made to valorize olive by-products as a source of low-cost, value-added food applications. OBJECTIVE The main objective of this study was to globally assess the metabolome of olive fruit by-products, including olive mill wastewater, olive pomace, and olive seeds from fruits from two areas, Siwa and Anshas, Egypt. METHODS Gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography with mass spectrometry (UPLC-MS) were used for profiling primary and secondary metabolites in olive by-products. Also, multivariate data analyses were used to assess variations between olive by-product samples. RESULTS A total of 103 primary metabolites and 105 secondary metabolites were identified by GC-MS and UPLC-MS, respectively. Fatty acids amounted to a major class in the olive by-products at 53-91%, with oleic acid dominating, especially in the pomace of Siwa. Mill wastewater was discriminated from other by-products by the presence of phenolics mainly tyrosol, hydroxyl tyrosol, and α-tocopherol as analyzed by UPLC-MS indicating their potential antioxidant activity. Pomace and seeds were rich in fatty acids/esters and hydroxy fatty acids and not readily distinguishable from each other. CONCLUSION The current work discusses the metabolome profile of olive waste products for valorization purposes. Pomace and seeds were enriched in fatty acids/esters, though not readily distinguishable from each other.
Collapse
Affiliation(s)
- Nesrin M Fayek
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Zhenhao Li
- Zhejiang ShouXianGu Botanical Drug Institute Co. Ltd, Hangzhou, Zhejiang, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Ortiz-Romero C, Ríos-Reina R, García-González DL, Cardador MJ, Callejón RM, Arce L. Comparing the potential of IR-spectroscopic techniques to gas chromatography coupled to ion mobility spectrometry for classifying virgin olive oil categories. Food Chem X 2023; 19:100738. [PMID: 37389321 PMCID: PMC10300311 DOI: 10.1016/j.fochx.2023.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Virgin olive oil (OO) can be classified into three different categories: extra virgin, virgin and lampante. The official method for this classification, based on physicochemical analysis and sensory tasting, is considered useful and effective, although it is a costly and time-consuming process. The aim of this study was to assess the potential of some analytical techniques for classifying and predicting different OO categories to support official methods and to provide olive oil companies with a rapid tool to assess product quality. Thus, mid and near infrared spectroscopies (MIR and NIR) have been compared by using different instruments and with head-space gas chromatography coupled to an ion mobility spectrometer (HS-GC-IMS). High classification success rates in validation models were obtained using IR spectrometers (>70% and > 80% in average for ternary and binary classifications, respectively), although HS-GC-IMS showed greater classification potential (>85% and > 90%).
Collapse
Affiliation(s)
- Clemente Ortiz-Romero
- Department of Analytical Chemistry, Campus of International Excellence in Agrifood (ceiA3), Marie Curie Annex Building, University of Córdoba, Campus de Rabanales, E-14071 Córdoba, Spain
| | - Rocío Ríos-Reina
- Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González n°2, E-41012 Sevilla, Spain
| | | | - María José Cardador
- Department of Analytical Chemistry, Campus of International Excellence in Agrifood (ceiA3), Marie Curie Annex Building, University of Córdoba, Campus de Rabanales, E-14071 Córdoba, Spain
| | - Raquel M Callejón
- Dpto. de Nutrición y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/P. García González n°2, E-41012 Sevilla, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Campus of International Excellence in Agrifood (ceiA3), Marie Curie Annex Building, University of Córdoba, Campus de Rabanales, E-14071 Córdoba, Spain
| |
Collapse
|
4
|
Hyperspectral Imaging and Chemometrics for Authentication of Extra Virgin Olive Oil: A Comparative Approach with FTIR, UV-VIS, Raman, and GC-MS. Foods 2023; 12:foods12030429. [PMID: 36765958 PMCID: PMC9914562 DOI: 10.3390/foods12030429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Limited information on monitoring adulteration in extra virgin olive oil (EVOO) by hyperspectral imaging (HSI) exists. This work presents a comparative study of chemometrics for the authentication and quantification of adulteration in EVOO with cheaper edible oils using GC-MS, HSI, FTIR, Raman and UV-Vis spectroscopies. The adulteration mixtures were prepared by separately blending safflower oil, corn oil, soybean oil, canola oil, sunflower oil, and sesame oil with authentic EVOO in different concentrations (0-20%, m/m). Partial least squares-discriminant analysis (PLS-DA) and PLS regression models were then built for the classification and quantification of adulteration in olive oil, respectively. HSI, FTIR, UV-Vis, Raman, and GC-MS combined with PLS-DA achieved correct classification accuracies of 100%, 99.8%, 99.6%, 96.6%, and 93.7%, respectively, in the discrimination of authentic and adulterated olive oil. The overall PLS regression model using HSI data was the best in predicting the concentration of adulterants in olive oil with a low root mean square error of prediction (RMSEP) of 1.1%, high R2pred (0.97), and high residual predictive deviation (RPD) of 6.0. The findings suggest the potential of HSI technology as a fast and non-destructive technique to control fraud in the olive oil industry.
Collapse
|
5
|
Rady A, Watson N. Detection and quantification of peanut contamination in garlic powder using NIR sensors and machine learning. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Zainal PW, Syukri D, Fahmy K, Imaizumi T, Thammawong M, Tsuta M, Nagata M, Nakano K. Lipidomic Profiling to Assess the Freshness of Stored Cabbage. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02422-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Quality assessment and geographical origin classification of extra-virgin olive oils imported into China. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zhuang Y, Dong J, He X, Wang J, Li C, Dong L, Zhang Y, Zhou X, Wang H, Yi Y, Wang S. Impact of Heating Temperature and Fatty Acid Type on the Formation of Lipid Oxidation Products During Thermal Processing. Front Nutr 2022; 9:913297. [PMID: 35719170 PMCID: PMC9201814 DOI: 10.3389/fnut.2022.913297] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal treatment of lipids rich in fatty acids contributes to the formation of lipid oxidation products (LOPs), which have potentially harmful effects on human health. This study included soybean oil (SO), palm oil (PO), olive oil (OO), and lard oil (LO) as the research objects, with an aim to investigate the impact of heating temperature and fatty acid type on the generation of LOPs (α-dicarbonyl compounds, malondialdehyde (MDA), α,β-unsaturated aldehydes, and 16 volatile aldehydes). Results showed that LOPs increased significantly (p < 0.05) with the increase in temperature (100 ~ 200°C). Furthermore, the amount of 2,3-butanedione (159.53 μg/g), MDA (3.15 μg/g), 4-hydroxy-hexenal (3.03 μg/g), 2-butenal (292.18%), 2-pentenal (102.26%), hexanal (898.72%), and 2,4-heptadienal (E, E) (2182.05%) were more at 200°C in SO rich in polyunsaturated fatty acids (PUFAs) than other oils. Results from heat map analysis indicated that the 2, 4-heptadienal, and glyoxal related to the myristic acid of oil. Moreover, the MDA was in close association with PUFAs. Based on the effect of temperature and fatty acid type on the generation of LOPs, this study could serve as a control method to reduce harmful LOPs.
Collapse
Affiliation(s)
- Yuan Zhuang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Jun Dong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaomei He
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Junping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Changmo Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
| | - Xiaofei Zhou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
| | - Hongxun Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yang Yi
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Shuo Wang
| |
Collapse
|
9
|
Dou X, Zhang L, Yang R, Wang X, Yu L, Yue X, Ma F, Mao J, Wang X, Zhang W, Li P. Mass spectrometry in food authentication and origin traceability. MASS SPECTROMETRY REVIEWS 2022:e21779. [PMID: 35532212 DOI: 10.1002/mas.21779] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/10/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Food authentication and origin traceability are popular research topics, especially as concerns about food quality continue to increase. Mass spectrometry (MS) plays an indispensable role in food authentication and origin traceability. In this review, the applications of MS in food authentication and origin traceability by analyzing the main components and chemical fingerprints or profiles are summarized. In addition, the characteristic markers for food authentication are also reviewed, and the advantages and disadvantages of MS-based techniques for food authentication, as well as the current trends and challenges, are discussed. The fingerprinting and profiling methods, in combination with multivariate statistical analysis, are more suitable for the authentication of high-value foods, while characteristic marker-based methods are more suitable for adulteration detection. Several new techniques have been introduced to the field, such as proton transfer reaction mass spectrometry, ambient ionization mass spectrometry (AIMS), and ion mobility mass spectrometry, for the determination of food adulteration due to their fast and convenient analysis. As an important trend, the miniaturization of MS offers advantages, such as small and portable instrumentation and fast and nondestructive analysis. Moreover, many applications in food authentication are using AIMS, which can help food authentication in food inspection/field analysis. This review provides a reference and guide for food authentication and traceability based on MS.
Collapse
Affiliation(s)
- Xinjing Dou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
10
|
Psathas D, Lioupi A, Rebholz AM, Zinoviadou K, Tsaftaris A, Theodoridis G, Papoti VT. Volatile profile and quality characteristics of the Greek “Chondrolia Chalkidikis” virgin olive oils: effect of ripening stage. Eur Food Res Technol 2022; 248:1977-1990. [PMID: 35462632 PMCID: PMC9016700 DOI: 10.1007/s00217-022-04020-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
Abstract
Among the various parameters affecting olive oil quality, ripening stage is one of the most important. Optimal harvest time ensuring target quality for the final product varies in relation to the effect of many intrinsic and extrinsic factors. Therefore, its determination necessitates thorough examination of each case. The present study explores the impact of six harvest times on volatile profile and quality attributes of olive oils from “Chondrolia Chalkidikis” Greek cultivar. All samples examined were classified “Virgin Olive Oils” (VOOs) according to findings of acidity, peroxide, and K values. The low values for the principal official quality indices, the high oleic acid percentages (76–78%), the high oxidative stabilities (up to 36 h induction period), and phenols content (606–290 mg/kg) were considered nutritionally promising. Total phenols, carotenoids and chlorophylls contents, as well as oxidative stability (induction period values) decreased with ripening. Harvest time had a strong impact on HS-SPME–GC–MS volatile fingerprint. Optimal volatile profiles were related to intermediate examined ripening stages. Fatty acid composition did not show remarkable trends. Chondrolia Chalkidikis VOOs perform as interesting candidates of high quality. Findings of the study may support existing databases with scientific records for Chondrolia Chalkidikis VOOs, boost their competitiveness in the global market, and encourage worldwide exploitation of VOOs from similar cultivars (table olives oriented).
Collapse
|
11
|
García Martín JF. Potential of Near-Infrared Spectroscopy for the Determination of Olive Oil Quality. SENSORS 2022; 22:s22082831. [PMID: 35458818 PMCID: PMC9031905 DOI: 10.3390/s22082831] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/10/2022]
Abstract
The analysis of the physico-chemical parameters of quality of olive oil is still carried out in laboratories using chemicals and generating waste, which is relatively costly and time-consuming. Among the various alternatives for the online or on-site measurement of these parameters, the available literature highlights the use of near-infrared spectroscopy (NIRS). This article intends to comprehensively review the state-of-the-art research and the actual potential of NIRS for the analysis of olive oil. A description of the features of the infrared spectrum of olive oil and a quick explanation of the fundamentals of NIRS and chemometrics are also included. From the results available in the literature, it can be concluded that the four most usual physico-chemical parameters that define the quality of olive oils, namely free acidity, peroxide value, K232, and K270, can be measured by NIRS with high precision. In addition, NIRS is suitable for the nutritional labeling of olive oil because of its great performance in predicting the contents in total fat, total saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids in olive oils. Other parameters of interest have the potential to be analyzed by NIRS, but the improvement of the mathematical models for their determination is required, since the errors of prediction reported so far are a bit high for practical application.
Collapse
Affiliation(s)
- Juan Francisco García Martín
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Seville, Spain;
- University Institute of Research on Olive Groves and Olive Oils, GEOLIT Science and Technology Park, University of Jaén, 23620 Mengíbar, Spain
| |
Collapse
|
12
|
Pizzo JS, Cruz VH, Santos PD, Silva GR, Souza PM, Manin LP, Santos OO, Visentainer JV. Instantaneous characterization of crude vegetable oils via triacylglycerols fingerprint by atmospheric solids analysis probe tandem mass spectrometry with multiple neutral loss scans. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Kritikou AS, Aalizadeh R, Damalas DE, Barla IV, Baessmann C, Thomaidis NS. MALDI-TOF-MS integrated workflow for food authenticity investigations: An untargeted protein-based approach for rapid detection of PDO feta cheese adulteration. Food Chem 2022; 370:131057. [PMID: 34536781 DOI: 10.1016/j.foodchem.2021.131057] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/25/2023]
Abstract
Advances in Matrix-assisted Laser Desorption/Ionization -Time-Of-Flight Mass Spectrometry (MALDI-TOF-MS) have led to its supremacy for complex assessment of food authenticity studies, like dairy products fraud, holding promise for the discovery of potential authenticity (bio)markers. In this study, an integrated untargeted protein-based workflow in combination with advanced chemometrics is presented, to address authenticity challenges in PDO feta cheese which is legally manufactured by the mixture of sheep/goat milk. Potential markers attributed to specific animal origin were found from protein profiles acquired for authentic feta and white cheeses (prepared from cow milk), belonging to 4 kDa-18.5 kDa mass area. Rapid detection of feta cheese adulteration from cow milk was also achieved down to 1% adulteration level. The discriminative models showed high predictive ability for feta cheese authenticity (Q2 = 0.920, RMSEE = 0.053) and its adulteration (Q2 = 0.835, RMSEE = 0.121), introducing a reliable approach in routine analysis. The methodology was successfully applied in detection of cow milk in sheep yoghurt.
Collapse
Affiliation(s)
- Anastasia S Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Dimitrios E Damalas
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioanna V Barla
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | | | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
14
|
Geographical Origin Assessment of Extra Virgin Olive Oil via NMR and MS Combined with Chemometrics as Analytical Approaches. Foods 2022; 11:foods11010113. [PMID: 35010239 PMCID: PMC8750049 DOI: 10.3390/foods11010113] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/06/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Geographical origin assessment of extra virgin olive oil (EVOO) is recognised worldwide as raising consumers’ awareness of product authenticity and the need to protect top-quality products. The need for geographical origin assessment is also related to mandatory legislation and/or the obligations of true labelling in some countries. Nevertheless, official methods for such specific authentication of EVOOs are still missing. Among the analytical techniques useful for certification of geographical origin, nuclear magnetic resonance (NMR) and mass spectroscopy (MS), combined with chemometrics, have been widely used. This review considers published works describing the use of these analytical methods, supported by statistical protocols such as multivariate analysis (MVA), for EVOO origin assessment. The research has shown that some specific countries, generally corresponding to the main worldwide producers, are more interested than others in origin assessment and certification. Some specific producers such as Italian EVOO producers may have been focused on this area because of consumers’ interest and/or intrinsic economical value, as testified also by the national concern on the topic. Both NMR- and MS-based approaches represent a mature field where a general validation method for EVOOs geographic origin assessment could be established as a reference recognised procedure.
Collapse
|
15
|
Newly marketed seed oils. What we can learn from the current status of authentication of edible oils. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
The use of analytical techniques coupled with chemometrics for tracing the geographical origin of oils: A systematic review (2013-2020). Food Chem 2021; 366:130633. [PMID: 34332421 DOI: 10.1016/j.foodchem.2021.130633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 11/20/2022]
Abstract
The global market for imported, high-quality priced foods has grown dramatically in the last decade, as consumers become more conscious of food originating from around the world. Many countries require the origin label of food to protect consumers need about true characteristics and origin. Regulatory authorities are looking for an extended and updated list of the analytical techniques for verification of authentic oils and to support law implementation. This review aims to introduce the efforts made using various analytical tools in combination with the multivariate analysis for the verification of the geographical origin of oils. The popular analytical tools have been discussed, and scientometric assessment that underlines research trends in geographical authentication and preferred journals used for dissemination has been indicated. Overall, we believe this article will be a good guideline for food industries and food quality control authority to assist in the selection of appropriate methods to authenticate oils.
Collapse
|
17
|
Jurado-Campos N, Rodríguez-Gómez R, Arroyo-Manzanares N, Arce L. Instrumental Techniques to Classify Olive Oils according to Their Quality. Crit Rev Anal Chem 2021; 53:139-160. [PMID: 34260314 DOI: 10.1080/10408347.2021.1940829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review includes an update of the publications on quality classification of olive oils into extra, virgin or lampante olive oil categories. Nowadays, the official method to carry out this classification is time-consuming and, sometimes, it is not systematic and/or objective. It is based on conventional physicochemical analysis and on a sensorial tasting of olive oils carried out by a panel of experts. The aim of this review was to explore and give value to the alternative techniques reported in the bibliography to complement the current official methods established for that classification of olive oils. Specifically considered were non-separation and separation analytical techniques which could contribute to correctly classify olive oils according to their physicochemical and/or sensorial characteristics. An in-depth description has been written on the methods used to differentiate these three types of olive oils and the main advantages and disadvantages of the proposed procedures. The techniques here reviewed could be a real and fast option to complement or even substitute some of the analysis included in the official method. Finally, general trends and detected difficulties found to address this issue have been discussed throughout the article.
Collapse
Affiliation(s)
- Natividad Jurado-Campos
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Rocío Rodríguez-Gómez
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare-Nostrum", University of Murcia, Murcia, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Institute of Fine Chemistry and Nanochemistry, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| |
Collapse
|
18
|
Jukić Špika M, Perica S, Žanetić M, Škevin D. Virgin Olive Oil Phenols, Fatty Acid Composition and Sensory Profile: Can Cultivar Overpower Environmental and Ripening Effect? Antioxidants (Basel) 2021; 10:antiox10050689. [PMID: 33925722 PMCID: PMC8144995 DOI: 10.3390/antiox10050689] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 01/18/2023] Open
Abstract
The authenticity and typicity of monocultivar oils and knowledge of the changes that environmental olive growing conditions bring to naturally present antioxidants and sensory attributes of virgin olive oils (VOO) are important for quality and safety improvement. This study delivers a comprehensive evaluation of the factors affecting phenolics, fatty acid composition and sensory characteristics of cultivars Oblica and Leccino VOOs throughout ripening season at two distinct olive growing environments during three consecutive crop years, and ranks the importance of each factor. Specified parameters were significantly influenced by olive growing environmental conditions. At the colder location of higher altitude, both cultivars gained higher amount of stearic, linoleic and linolenic fatty acids, as well as a higher proportion of phenolic compounds, but lower amounts of oleic fatty acid. At the warmer location of lower altitude, both cultivars had oils with lower level of fruitiness, bitterness and pungency. Analysis of the main components showed that VOOs were primarily differentiated by the cultivar, then main groups were divided with regard to the growing site, while harvest period affected the biosynthesis of natural VOOs antioxidants but had the least impact. These results reveal that the composition of fatty acids, phenolic content and sensory profile are predominantly characteristics of a cultivar.
Collapse
Affiliation(s)
- Maja Jukić Špika
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (S.P.); (M.Ž.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-21-434-482
| | - Slavko Perica
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (S.P.); (M.Ž.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Mirella Žanetić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia; (S.P.); (M.Ž.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding (CoE CroP-BioDiv), Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Dubravka Škevin
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| |
Collapse
|
19
|
MALDI-TOF Mass Spectrometry Applications for Food Fraud Detection. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chemical analysis of food products relating to the detection of the most common frauds is a complex task due to the complexity of the matrices and the unknown nature of most processes. Moreover, frauds are becoming more and more sophisticated, making the development of reliable, rapid, cost-effective new analytical methods for food control even more pressing. Over the years, MALDI-TOF MS has demonstrated the potential to meet this need, also due to a series of undeniable intrinsic advantages including ease of use, fast data collection, and capability to obtain valuable information even from complex samples subjected to simple pre-treatment procedures. These features have been conveniently exploited in the field of food frauds in several matrices, including milk and dairy products, oils, fish and seafood, meat, fruit, vegetables, and a few other categories. The present review provides a comprehensive overview of the existing MALDI-based applications for food quality assessment and detection of adulterations.
Collapse
|
20
|
Development of Chemometric Models Based on a LC-qToF-MS Approach to Verify the Geographic Origin of Virgin Olive Oil. Foods 2021; 10:foods10020479. [PMID: 33672359 PMCID: PMC7926913 DOI: 10.3390/foods10020479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023] Open
Abstract
In the presented study a non-targeted approach using high-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (HPLC-ESI-qToF-MS) combined with chemometric techniques was used to build a statistical model to verify the geographic origin of virgin olive oils. The sample preparation by means of liquid/liquid extraction of polar compounds was optimized regarding the number of multiple extractions, application of ultrasonic treatment and temperature during concentration of the analytes. The presented workflow for data processing aimed to identify the most predictive features and was applied to a set of 95 olive oils from Spain, Italy, Portugal and Greece. Different strategies for data reduction and multivariate analysis were compared. Stepwise variable selection showed for both applied multivariate models—linear discriminant analysis (LDA) and logit regression (LR)—to be the most suitable variable selection strategy. The 10-fold cross validation of the LDA showed a classification rate of 83.1% for the test set. For the LR models the prediction accuracy of the test set was even higher with values of 90.4% (Portugal), 86.2% (Italy), 93.8% (Greece) and 88.3% (Spain). Moreover, the reduction of features allows an easier following up strategy for identification of the unknowns and defining marker substances.
Collapse
|
21
|
Fatty Acid Profile of Lipid Fractions of Mangalitza ( Sus scrofa domesticus) from Northern Romania: A GC-MS-PCA Approach. Foods 2021; 10:foods10020242. [PMID: 33530301 PMCID: PMC7912583 DOI: 10.3390/foods10020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/12/2023] Open
Abstract
Mangalitza pig (Sus scrofa domesticus) becomes more popular in European countries. The goal of this study was to evaluate the fatty acid profile of the raw and thermally processed Mangalitza hard fat from Northern Romania. For the first time, the gas chromatography-mass spectrometry-Principal component analysis technique (GC-MS-PCA)—was applied to evaluate the dissimilarity of Mangalitza lipid fractions. Three specific layers of the hard fat of Mangalitza from Northern Romania were subjected to thermal treatment at 130 °C for 30 min. Derivatized samples were analyzed by GC-MS. The highest relative content was obtained for oleic acid (methyl ester) in all hard fat layers (36.1–42.4%), while palmitic acid was found at a half (21.3–24.1%). Vaccenic or elaidic acids (trans) were found at important concentrations of 0.3–4.1% and confirmed by Fourier-transform infrared spectroscopy. These concentrations are consistently higher in thermally processed top and middle lipid layers, even at double values. The GC-MS-PCA coupled technique allows us to classify the unprocessed and processed Mangalitza hard fat specific layers, especially through the relative concentrations of vaccenic/elaidic, palmitic, and stearic acids. Further studies are needed in order to evaluate the level of degradation of various animal fats by the GC-MS-PCA technique.
Collapse
|
22
|
Polari JJ, Mori M, Wang SC. Virgin Olive Oils from Super‐High‐Density Orchards in California: Impact of Cultivar, Harvest Time, and Crop Season on Quality and Chemical Composition. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Juan J. Polari
- Department of Food Science and Technology University of California Davis One Shields Avenue Davis CA 95616 USA
| | - Mary Mori
- California Olive Ranch 1367 E Lassen Ave Chico CA 95973 USA
| | - Selina C. Wang
- Department of Food Science and Technology University of California Davis One Shields Avenue Davis CA 95616 USA
- Olive Center University of California Davis One Shields Avenue Davis CA 95616 USA
| |
Collapse
|
23
|
Turrini F, Zunin P, Boggia R. Potentialities of Rapid Analytical Strategies for the Identification of the Botanical Species of Several " Specialty" or " Gourmet" Oils. Foods 2021; 10:foods10010183. [PMID: 33477589 PMCID: PMC7831336 DOI: 10.3390/foods10010183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/05/2021] [Accepted: 01/15/2021] [Indexed: 11/16/2022] Open
Abstract
A comprehensive data collection of authentic "specialty" or "gourmet" oils, namely cold-pressed industrial virgin oils, was performed. Eight different botanical species, i.e., Almond, Apricot, Avocado, Hazelnut, Mosqueta rose, Rosehip, Sunflower, and Walnut oils were studied plus Olive oil as the gold standard of cold-pressed virgin oils. Two different analytical approaches are proposed to rapidly verify the botanical species of the oil-based raw material. The first approach is based on a multivariate statistical analysis of conventional analytical data, namely their fatty acid composition. These data have been re-elaborated in a multivariate way by Principal Component Analysis (PCA) and classification methods. The second approach proposes a fast and non-destructive spectrophotometric analysis to determine the color of these oils to discriminate among different species. In this regard, the raw diffuse reflectance spectra (380-780 nm) obtained by a UV-Vis spectrophotometer with an integrating sphere was considered and elaborated by chemometrics. This information was compared with the results obtained by the most common approach based on the CIELab parameters. A data fusion of chromatographic and spectral data was also investigated. Either fatty acid composition or color of these oils demonstrated to be two promising markers of their botanical authenticity.
Collapse
|
24
|
|
25
|
Peršurić Ž, Saftić Martinović L, Malenica M, Gobin I, Pedisić S, Dragović-Uzelac V, Kraljević Pavelić S. Assessment of the Biological Activity and Phenolic Composition of Ethanol Extracts of Pomegranate ( Punica granatum L.) Peels. Molecules 2020; 25:molecules25245916. [PMID: 33327473 PMCID: PMC7764994 DOI: 10.3390/molecules25245916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 12/01/2022] Open
Abstract
Pomegranate (Punica granatum L.) is a rich source of constituents with confirmed strong biological activities. However, pomegranate peel, which encompasses approximately 30–40% of its weight, is treated as a biological waste. The aim of this paper was to evaluate the potential of pomegranate peel extracts and to propose its functional properties that can be used for development of functional products. Eight ethanol extracts of pomegranate peels (PPEs) were characterized by use of direct infusion quadrupole-time of flight (Q-TOF), and afterwards tested on their antioxidant, antibacterial and antiproliferative activities. Mass spectrometry analysis revealed that the most prevalent compounds in pomegranate peels were punicalagin, granatin and their derivatives. Analysed extracts had high total phenolic contents that ranged from 5766.44 to 10599.43 mg GAE/100 g, and strong antioxidant activity (7551.31–7875.42 and 100.25–176.60 μmol TE/100 g for DPPH and FRAP assays, respectively). The results of biological activity assays showed that all PPEs possessed antibacterial activity, and that S. aureus was the most sensitive specie with minimum inhibitory concentration and minimum bactericidal concentrations ranging from 0.8 to 6.4 mg/mL. Additionally, the analysis of antiproliferative activity revealed high potency of PPEs, as the IC50 values ranged from 0.132 mg/mL to 0.396 mg/mL. Multivariate analysis pointed out the most discriminative metabolites for antioxidant or antiproliferative activity. Overall, the pomegranate peel confirmed to be a highly valuable source of bioactive compounds that could be used to improve the food functional characteristics.
Collapse
Affiliation(s)
- Željka Peršurić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; (Ž.P.); (L.S.M.)
| | - Lara Saftić Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; (Ž.P.); (L.S.M.)
| | - Mladenka Malenica
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, HR-51000 Rijeka, Croatia; (M.M.); (I.G.)
| | - Ivana Gobin
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, HR-51000 Rijeka, Croatia; (M.M.); (I.G.)
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia; (S.P.); (V.D.-U.)
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia; (S.P.); (V.D.-U.)
| | - Sandra Kraljević Pavelić
- Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 5, HR-51000 Rijeka, Croatia
- Correspondence:
| |
Collapse
|
26
|
Gao F, Ben-Amotz D, Zhou S, Yang Z, Han L, Liu X. Comparison and chemical structure-related basis of species discrimination of animal fats by Raman spectroscopy using near-infrared and visible excitation lasers. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
|
28
|
Palagano R, Valli E, Cevoli C, Bendini A, Toschi TG. Compliance with EU vs. extra-EU labelled geographical provenance in virgin olive oils: A rapid untargeted chromatographic approach based on volatile compounds. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Application of High Resolution Mass Spectrometric methods coupled with chemometric techniques in olive oil authenticity studies - A review. Anal Chim Acta 2020; 1134:150-173. [PMID: 33059861 DOI: 10.1016/j.aca.2020.07.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/21/2022]
Abstract
Extra Virgin Olive Oil (EVOO), the emblematic food of the Mediterranean diet, is recognized for its nutritional value and beneficial health effects. The main authenticity issues associated with EVOO's quality involve the organoleptic properties (EVOO or defective), mislabeling of production type (organic or conventional), variety and geographical origin, and adulteration. Currently, there is an emerging need to characterize EVOOs and evaluate their genuineness. This can be achieved through the development of analytical methodologies applying advanced "omics" technologies and the investigation of EVOOs chemical fingerprints. The objective of this review is to demonstrate the analytical performance of High Resolution Mass Spectrometry (HRMS) in the field of food authenticity assessment, allowing the determination of a wide range of food constituents with exceptional identification capabilities. HRMS-based workflows used for the investigation of critical olive oil authenticity issues are presented and discussed, combined with advanced data processing, comprehensive data mining and chemometric tools. The use of unsupervised classification tools, such as Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), as well as supervised classification techniques, including Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Partial Least Square Discriminant Analysis (PLS-DA), Orthogonal Projection to Latent Structure-Discriminant Analysis (OPLS-DA), Counter Propagation Artificial Neural Networks (CP-ANNs), Self-Organizing Maps (SOMs) and Random Forest (RF) is summarized. The combination of HRMS methodologies with chemometrics improves the quality and reliability of the conclusions from experimental data (profile or fingerprints), provides valuable information suggesting potential authenticity markers and is widely applied in food authenticity studies.
Collapse
|
30
|
Di Lecce G, Piochi M, Pacetti D, Frega NG, Bartolucci E, Scortichini S, Fiorini D. Eleven Monovarietal Extra Virgin Olive Oils from Olives Grown and Processed under the Same Conditions: Effect of the Cultivar on the Chemical Composition and Sensory Traits. Foods 2020; 9:foods9070904. [PMID: 32660116 PMCID: PMC7404457 DOI: 10.3390/foods9070904] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 01/18/2023] Open
Abstract
Eleven Italian monovarietal extra virgin olive oils (MEVOOs) (Carboncella, Coratina, Frantoio, Leccino, Marzio, Maurino, Moraiolo, Piantone di Falerone, Pendolino, Rosciola, Sargano di Fermo) from olives grown in the same experimental olive orchard, under the same conditions (fertilization, irrigation), and processed with the same technology (three-way continuous plant) were investigated. As a result, the impact of the olive cultivar on fatty acid and triacylglycerols composition, oxidative stability, polar phenolic profile and sensory properties (panel test) of the oil was assessed. Pendolino, Maurino and Marzio oils presented the highest levels (p < 0.01) of palmitic, linoleic and linolenic acids % and the lowest oleic:linoleic ratio. Within triacylglycerols, triolein (OOO) strongly varied among the oils, with Coratina and Leccino having the highest content. Frantoio showed the lowest 1-Stearoyl-2-palmitoyl-3-oleylglycerol and 1,3-Distearoyl-2-oleylglycerol amounts. Rosciola showed the highest level (p < 0.01) for two of the most abundant secoiridoid derivatives (the dialdehydic forms of decarboxymethyl elenolic acid linked to hydroxytyrosol and tyrosol). A good correlation was found between total phenolic content and oxidative stability, indicating Marzio and Leccino respectively as the richest and poorest genotypes. Sensory variability among varieties was mainly linked to perceived bitterness, pungency and fruitiness, while no effects were found on secondary flavors.
Collapse
Affiliation(s)
- Giuseppe Di Lecce
- Independent Researcher, Expert in Food Science and Technology, 26100 Cremona, Italy;
| | - Maria Piochi
- University of Gastronomic Sciences, Piazza Vittorio Emanuele 9, 12042 Pollenzo, Italy;
| | - Deborah Pacetti
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (N.G.F.); (E.B.)
- Correspondence: ; Tel.: +39-07-1220-4307
| | - Natale G. Frega
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (N.G.F.); (E.B.)
| | - Edoardo Bartolucci
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy; (N.G.F.); (E.B.)
| | - Serena Scortichini
- School of Science and Technology, Chemistry Division, University of Camerino, V.S. Agostino 1, I-62032 Camerino, Italy; (S.S.); (D.F.)
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, V.S. Agostino 1, I-62032 Camerino, Italy; (S.S.); (D.F.)
| |
Collapse
|
31
|
Authentication of the geographical origin of virgin olive oils from the main worldwide producing countries: A new combination of HS-SPME-GC-MS analysis of volatile compounds and chemometrics applied to 1217 samples. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107156] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
32
|
Identification and quantification of counterfeit sesame oil by 3D fluorescence spectroscopy and convolutional neural network. Food Chem 2020; 311:125882. [DOI: 10.1016/j.foodchem.2019.125882] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/20/2022]
|
33
|
Characterization of phenolic and triacylglycerol compounds in the olive oil by-product pâté and assay of its antioxidant and enzyme inhibition activity. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
34
|
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Shen Q. Electric Soldering Iron Ionization Mass Spectrometry Based Lipidomics for in Situ Monitoring Fish Oil Oxidation Characteristics during Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2240-2248. [PMID: 31975589 DOI: 10.1021/acs.jafc.9b06406] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An electric soldering iron ion source (ESII) coupling with rapid evaporative ionization mass spectrometry (REIMS) was developed and used for in situ monitoring the dynamic variation trend in oxidation characteristics of fish oil during storage. The lipidomics profiles of fish oil stored at various days were acquired by ESII-REIMS. The fatty acid and triacylglycerol species were structurally identified, and their abundances were analyzed according to multivariate statistical models mainly including principle component analysis as well as orthogonal partial least-squares analysis. On the shared and unique structure plot, the ions of m/z 255.23, 281.24, 877.72, and 901.72 displayed the most significant variation among the oxidized fish oil samples. Based on receiver operating characteristic curve analysis with an optimal Youden index of 0.91, these markers were further verified. The variation of viscosity and volatiles were also evaluated to further verify the oxidation characteristics of fish oil. The study demonstrated that ESII-REIMS technology used as an advanced detection method could ensure fish oil quality during storage.
Collapse
Affiliation(s)
- Gongshuai Song
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Linqiu Li
- School of Public Health , Guangdong Medical University , Dongguan , 523000 China
| | - Haixing Wang
- Zhejiang Province Key Lab of Anesthesiology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325035 , China
| | - Mengna Zhang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Xina Yu
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Jie Wang
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| | - Qing Shen
- Collaborative Innovation Center of Seafood Deep Processing, Zhejiang Province Joint Key Laboratory of Aquatic Products Processing, Institute of Seafood , Zhejiang Gongshang University , Hangzhou , 310018 China
| |
Collapse
|
35
|
Lucini L, Rocchetti G, Trevisan M. Extending the concept of terroir from grapes to other agricultural commodities: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Wang F, Xiong S, Li X, Yu J, Huang Y, Liu Y. Cryoprotective effect of silver carp muscle hydrolysate on baker's yeast Saccharomyces cerevisiae and its underlying mechanism. Food Sci Nutr 2020; 8:190-198. [PMID: 31993145 PMCID: PMC6977473 DOI: 10.1002/fsn3.1290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/29/2019] [Accepted: 10/29/2019] [Indexed: 11/07/2022] Open
Abstract
Cryoprotective effect of silver carp muscle hydrolysate (SCMH) on baker's yeast (Saccharomyces cerevisiae) was examined by analyzing the growth and survival of the yeast during freeze-thaw cycles, and the physicochemical properties [ultrastructure, intracellular proteins and fatty acids, external ice formation (EIF) and internal ice formation (IIF), freezable water content] of yeast cells with or without SCMH through transmission electron microscopy, SDS-PAGE, GC-MS, and differential scanning calorimetry. The 4% of SCMH treatment exhibited good yeast cryoprotective activity and increased the yeast survival rate from 0.71% to 90.95% after 1 freeze-thaw cycle as compared to the control. The results demonstrated that the addition of SCMH could attenuate the freeze damage of yeast cells, prevent the degradation or loss of soluble proteins, and increase the composition and absolute content of fatty acids. Besides, the addition of 4% SCMH caused a drop in the EIF peak temperature (from -17.95℃ to -25.14℃) and a decrease in the IIF and freezable water content of yeast cells.
Collapse
Affiliation(s)
- Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources ProcessingSchool of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
| | - Sijia Xiong
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources ProcessingSchool of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources ProcessingSchool of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
| | - Jian Yu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources ProcessingSchool of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources ProcessingSchool of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources ProcessingSchool of Chemistry and Food EngineeringChangsha University of Science and TechnologyChangshaChina
| |
Collapse
|
37
|
Lipid Profiling and Stable Isotopic Data Analysis for Differentiation of Extra Virgin Olive Oils Based on Their Origin. Molecules 2019; 25:molecules25010004. [PMID: 31861325 PMCID: PMC6982832 DOI: 10.3390/molecules25010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 01/01/2023] Open
Abstract
To differentiate extra virgin olive oils (EVOO) according to the origin of purchase, such as monocultivar Italian EVOO with protected denomination of origin (PDO) and commercially-blended EVOO purchased in supermarkets, a number of samples was subjected to the analysis of various lipid species by liquid chromatography/mass spectrometry (LC-ESI-MS/MS, LC-ESI-IT-MS) and proton nuclear magnetic resonance analysis (1H-NMR). Many putative chemical markers were extracted as differentiators by uni- and multivariate statistical analysis. Commercially-blended EVOO contained higher concentrations of the majority of minor lipids, including free fatty acids, their alkyl (methyl and ethyl) esters, monoglycerides, and diglycerides, which may be indicative of a higher degree of triglyceride lipolysis in these than in monocultivar PDO EVOO. Triterpenoids and particular TAG species were also found in higher proportions in the samples from the commercially-blended EVOO class, suggesting a possible influence of factors such as the cultivar and geographical origin. The largest differences between the classes were determined for the concentrations of uvaol and oleanolic acid. The results of the analysis by isotopic ratio mass spectrometry (IRMS) were reasonably consistent with the information about the geographical origin declared on the labels of the investigated EVOOs, showing considerable variability, which possibly also contributed to the differences in lipid composition observed between the two investigated classes of EVOO.
Collapse
|
38
|
Yan J, Wright WMD, O'Mahony JA, Roos Y, Cuijpers E, van Ruth SM. A sound approach: Exploring a rapid and non-destructive ultrasonic pulse echo system for vegetable oils characterization. Food Res Int 2019; 125:108552. [PMID: 31554084 DOI: 10.1016/j.foodres.2019.108552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/30/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
A rapid and non-destructive ultrasonic pulse echo system was developed for vegetable oils characterization. To understand the differences in the ultrasonic properties of the oils, physical traits, such as their viscosity and density, were related to the ultrasonic data. In turn, these physical traits were correlated with the fatty acid compositions of the oils. Eighty oil samples, including 30 extra virgin olive oil (EVOO), 15 refined olive oil, 15 pomace olive oil, 10 rapeseed oil, 5 sunflower oil and 5 peanut oil samples, were analysed for their sound properties, viscosities, densities and fatty acid compositions. It was observed that the ultrasonic velocity of EVOO decreased linearly with increase in temperature, the temperature coefficient of ultrasonic velocity in EVOO was -2.92 m·s-1·°C-1. The ultrasonic velocity of EVOO (1453 ± 2 m/s) differed significantly from those of pomace olive oil and the oils of other botanical origin, but not from the velocity of refined olive oil. Ultrasonic velocity was positively correlated with the density and negatively correlated with the viscosity of the oils. The higher density and lower viscosity of the oils were in turn related to a higher unsaturation degree of the oils. Hence, oils with a higher proportion of unsaturated fat present higher densities and lower viscosities, which resulted in higher ultrasonic velocity values. Ultrasonic measurements allow rapid, non-destructive analysis, and this first application for characterization of these oils is promising.
Collapse
Affiliation(s)
- Jing Yan
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands; Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - William M D Wright
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Yrjö Roos
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Eric Cuijpers
- Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands
| | - Saskia M van Ruth
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, The Netherlands; Wageningen Food Safety Research, P.O. Box 230, 6700 AE, Wageningen, The Netherlands; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland.
| |
Collapse
|
39
|
Flavor characteristics of shrimp sauces with different fermentation and storage time. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.091] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
40
|
Xing C, Yuan X, Wu X, Shao X, Yuan J, Yan W. Chemometric classification and quantification of sesame oil adulterated with other vegetable oils based on fatty acids composition by gas chromatography. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.085] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Discrimination of extra-virgin-olive oils from different cultivars and geographical origins by untargeted metabolomics. Food Res Int 2019; 121:746-753. [DOI: 10.1016/j.foodres.2018.12.052] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/04/2018] [Accepted: 12/23/2018] [Indexed: 11/22/2022]
|
42
|
Fanali C, Della Posta S, Vilmercati A, Dugo L, Russo M, Petitti T, Mondello L, de Gara L. Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules 2018; 23:molecules23123249. [PMID: 30544789 PMCID: PMC6321326 DOI: 10.3390/molecules23123249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
The analysis of phenolic compounds in extra virgin olive oils was carried out by high-performance liquid chromatography utilizing photodiode array and mass spectrometry detectors. The chromatographic profile of thirty samples from four Italian Regions highlighted the presence of secoiridoids, phenolic alcohols, flavonoids, and phenolic acid classes. A similar qualitative profile was observed with some differences in peak area and fifteen compounds were tentatively identified. Quantitative analysis was performed by UV detection considering eight standard phenolic compounds. The chromatographic method, after optimization, was validated studying some parameters, e.g., intra-day and inter-day retention time precision, limit of detection, limit of quantification, and linearity. Recovery of the method was performed achieving good results (10 and 50 g·g-1 with recovery of 72.9⁻92.1% (w/w) and 79.1⁻102.8% (w/w), respectively). In all samples secoiridoids were the main compounds ranging from 85 to more than 99% (w/w) of the total concentration of detected phenolic compounds while phenolic acids accounted for the lowest percentage (0.1⁻0.6%, w/w). Finally, total concentration of phenolic compounds and antioxidant activity were determined with different chemical assays. A good and significant correlation among total phenolic compound concentration and antioxidant activity was observed. A significant different phenolic compound concentration and antioxidant activity was determined between samples from Puglia and Sicily. This was studied performing statistical analysis by one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test.
Collapse
Affiliation(s)
- Chiara Fanali
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Susanna Della Posta
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Alessandra Vilmercati
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Laura Dugo
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Marina Russo
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Tommasangelo Petitti
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Luigi Mondello
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
- Dipartimento di "Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina-Polo Annunziata, Viale Annunziata, 98168 Messina, Italy.
- Chromaleont S.r.L., c/o Dipartimento di "Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali", University of Messina-Polo Annunziata, Viale Annunziata, 98168 Messina, Italy.
| | - Laura de Gara
- Unit of Food Science and Nutrition, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy.
| |
Collapse
|
43
|
Luo Y, Zhang Y, Yuan F, Gao B, Wang Z, Yu L(L. Triacylglycerols composition analysis of olive oils by ultra‐performance convergence chromatography combined with quadrupole time‐of‐flight mass spectrometry. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yinghua Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| | - Yaqiong Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Fanghao Yuan
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
| | - Boyan Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
- Institute of Food and Nutraceutical Science School of Agriculture & Biology Shanghai Jiao Tong University Shanghai 200240 China
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| | - Ziyuan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology& Business University (BTBU) Beijing 100048 China
| | - Liangli (Lucy) Yu
- Department of Nutrition and Food Science University of Maryland College Park MD 20742 USA
| |
Collapse
|