1
|
de Deus C, Duque-Soto C, Rueda-Robles A, Martínez-Baena D, Borrás-Linares I, Quirantes-Piné R, Ragagnin de Menezes C, Lozano-Sánchez J. Stability of probiotics through encapsulation: Comparative analysis of current methods and solutions. Food Res Int 2024; 197:115183. [PMID: 39593393 DOI: 10.1016/j.foodres.2024.115183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/28/2024]
Abstract
Probiotics have awakened a great interest in the scientific community for their potential beneficial effects on health. Although only allowed by the European Food Safety Agency as a nutrition declaration associated with the improvement of lactose digestion, recent in vitro and in vivo studies have demonstrated their varied beneficial effect for the improvement of certain pathologies. However, probiotics face stability and viability challenges, which make their delivery difficult in sufficient quantities for these effects to be observed. Thus, there is a dire need for the development and implantation of innovative technological protection procedures. In this sense, encapsulation rises as a widely applied technique, offering additional advantages. In the present study, a systematic review was conducted for the evaluation of the main encapsulation technologies applied in literature, considering operating conditions, probiotics, and encapsulation efficacy. For this purpose, several conditions are evaluated: a) the characteristics, storage conditions and viability of probiotics; b) evaluation and comparison of the probiotic stabilization for the main encapsulation methods; and c) co-encapsulation with potential bioactive molecules as a new alternative for improving cell viability. This evaluation revealed the efficacy of seven encapsulation techniques on the improvement of the stability and viability of probiotics.
Collapse
Affiliation(s)
- Cassandra de Deus
- Department of Food Science and Technology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
| | - Carmen Duque-Soto
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Ascensión Rueda-Robles
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Daniel Martínez-Baena
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| | - Isabel Borrás-Linares
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - Rosa Quirantes-Piné
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | | | - Jesús Lozano-Sánchez
- Department of Food Science and Nutrition, Faculty of Pharmacy, University of Granada, Campus Universitario Cartuja s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Li X, Xia Y, Song X, Xiong Z, Ai L, Wang G. Probiotics intervention for type 2 diabetes mellitus therapy: a review from proposed mechanisms to future prospects. Crit Rev Food Sci Nutr 2024:1-19. [DOI: 10.1080/10408398.2024.2387765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| | - Guangqiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Alessandri G, Rizzo SM, Mancabelli L, Fontana F, Longhi G, Turroni F, van Sinderen D, Ventura M. Impact of cryoprotective agents on human gut microbes and in vitro stabilized artificial gut microbiota communities. Microb Biotechnol 2024; 17:e14509. [PMID: 38878269 PMCID: PMC11179620 DOI: 10.1111/1751-7915.14509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
The availability of microbial biobanks for the storage of individual gut microbiota members or their derived and artificially assembled consortia has become fundamental for in vitro investigation of the molecular mechanisms behind microbe-microbe and/or microbe-host interactions. However, to preserve bacterial viability, adequate storage and processing technologies are required. In this study, the effects on cell viability of seven different combinations of cryoprotective agents were evaluated by flow cytometry for 53 bacterial species representing key members of the human gut microbiota after one and 3 months of cryopreservation at -80°C. The obtained results highlighted that no universal cryoprotectant was identified capable of guaranteeing effective recovery of intact cells after cryopreservation for all tested bacteria. However, the presence of inulin or skimmed milk provided high levels of viability protection during cryoexposure. These results were further corroborated by cryopreserving 10 artificial gut microbiota produced through in vitro continuous fermentation system technology. Indeed, in this case, the inclusion of inulin or skimmed milk resulted in a high recovery of viable cells, while also allowing consistent and reliable preservation of the artificial gut microbiota biodiversity. Overall, these results suggest that, although the efficacy of various cryoprotective agents is species-specific, some cryoprotectants based on glycerol and the addition of inulin or skimmed milk are preferable to retain viability and biodiversity for both single bacterial species and artificial gut microbiota.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Leonardo Mancabelli
- Department of Medicine and SurgeryUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience InstituteNational University of IrelandCorkIreland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental SustainabilityUniversity of ParmaParmaItaly
- Microbiome Research HubUniversity of ParmaParmaItaly
| |
Collapse
|
4
|
Farfan Pajuelo DG, Carpio Mamani M, Maraza Choque GJ, Chachaque Callo DM, Cáceda Quiroz CJ. Effect of Lyoprotective Agents on the Preservation of Survival of a Bacillus cereus Strain PBG in the Freeze-Drying Process. Microorganisms 2023; 11:2705. [PMID: 38004717 PMCID: PMC10673073 DOI: 10.3390/microorganisms11112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Lyophilization is a widely employed long-term preservation method in which the bacterial survival rate largely depends on the cryoprotectant used. Bacillus cereus strain PBC was selected for its ability to thrive in environments contaminated with arsenic, lead, and cadmium, tolerate 500 ppm of free cyanide, and the presence of genes such as ars, cad, ppa, dap, among others, associated with the bioremediation of toxic compounds and enterotoxins (nheA, nheB, nheC). Following lyophilization, the survival rates for Mannitol 2.5%, Mannitol 10%, and Glucose 1% were 98.02%, 97.12%, and 96.30%, respectively, with the rates being lower than 95% for other sugars. However, during storage, for the same sugars, the survival rates were 78.71%, 97.12%, and 99.97%, respectively. In the cake morphology, it was found that the lyophilized morphology showed no relationship with bacterial survival rate. The best cryoprotectant for the PBC strain was 1% glucose since it maintained constant and elevated bacterial growth rates during storage, ensuring that the unique characteristics of the bacterium were preserved over time. These findings hold significant implications for research as they report a new Bacillus cereus strain with the potential to be utilized in bioremediation processes.
Collapse
Affiliation(s)
| | | | | | | | - César Julio Cáceda Quiroz
- Bioremediation Laboratory, Jorge Basadre Grohmann National University, Tacna 230001, Peru; (D.G.F.P.); (M.C.M.); (G.J.M.C.); (D.M.C.C.)
| |
Collapse
|
5
|
Ta HP, Clarisse C, Maes E, Yamakawa N, Guérardel Y, Krzewinski F, Zarzycka W, Touboul D, Girardeau A, Fonseca F, Kermarrec A, Viau M, Riaublanc A, Ropers MH. Membrane lipid composition of Carnobacterium maltaromaticum CNCM I-3298, a highly cryoresistant lactic bacterium. Chem Phys Lipids 2023; 255:105326. [PMID: 37414116 DOI: 10.1016/j.chemphyslip.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The growing consumption of fermented products has led to an increasing demand for lactic acid bacteria (LAB), especially for LAB tolerant to freezing/thawing conditions. Carnobacterium maltaromaticum is a psychrotrophic and freeze-thawing resistant lactic acid bacterium. The membrane is the primary site of damage during the cryo-preservation process and requires modulation to improve cryoresistance. However, knowledge about the membrane structure of this LAB genus is limited. We presented here the first study of the membrane lipid composition of C. maltaromaticum CNCM I-3298 including the polar heads and the fatty acid compositions of each lipid family (neutral lipids, glycolipids, phospholipids). The strain CNCM I-3298 is principally composed of glycolipids (32%) and phospholipids (55%). About 95% of glycolipids are dihexaosyldiglycerides while less than 5% are monohexaosyldiglycerides. The disaccharide chain of dihexaosyldiglycerides is composed of α-Gal(1-2)-α-Glc chain, evidenced for the first time in a LAB strain other than Lactobacillus strains. Phosphatidylglycerol is the main phospholipid (94%). All polar lipids are exceptionally rich in C18:1 (from 70% to 80%). Regarding the fatty acid composition, C. maltaromaticum CNCM I-3298 is an atypical bacterium within the genus Carnobacterium due to its high C18:1 proportion but resemble the other Carnobacterium strains as they mostly do not contain cyclic fatty acids.
Collapse
Affiliation(s)
- H P Ta
- INRAE, BIA, F-44316 Nantes, France.
| | - C Clarisse
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - E Maes
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - N Yamakawa
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - Y Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - F Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - W Zarzycka
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - D Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - A Girardeau
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | - F Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | | | - M Viau
- INRAE, BIA, F-44316 Nantes, France
| | | | | |
Collapse
|
6
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
7
|
Wang L, Huang G, Ma W, Jin G. Preparation and Application of Directed Vat Set Indigenous Freeze-Drying Lentilactobacillus hilgardii Q19 Starter in Winemaking. Foods 2023; 12:foods12051053. [PMID: 36900570 PMCID: PMC10000753 DOI: 10.3390/foods12051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In order to prepare a better direct vat set for malolactic fermentation (MLF) in high ethanol and low pH wines, the high-ethanol- and low-temperature-tolerant strain Lentilactobacillus hilgardii Q19, which was isolated from the eastern foothill of the Helan Mountain wine region in China, was used to prepare a direct vat set by vacuum freeze-drying. A superior freeze-dried lyoprotectant was obtained to create the starting culture by selecting, combining, and optimizing numerous lyoprotectants with higher protection for Q19 by using a single-factor experiment and response surface approach. Finally, the Lentilactobacillus hilgardii Q19 direct vat set was inoculated in Cabernet Sauvignon wine to carry out MLF on a pilot scale, with commercial starter culture Oeno1 as control. The volatile compounds, biogenic amines, and ethyl carbamate content were analyzed. The results showed that a combination of 8.5 g/100 mL skimmed milk powder, 14.5 g/100 mL yeast extract powder, and 6.0 g/100 mL sodium hydrogen glutamate offered better protection; with this lyoprotectant, there were (4.36 ± 0.34) × 1011 CFU/g cells after freeze-drying, and it showed an excellent ability to degrade L-malic acid and could successfully finish MLF. In addition, in terms of aroma and wine safety, compared with Oeno1, the quantity and complexity of volatile compounds were increased after MLF, and biogenic amines and ethyl carbamate were produced less during MLF. We conclude that the Lentilactobacillus hilgardii Q19 direct vat set could be applied as a new MLF starter culture in high-ethanol wines.
Collapse
Affiliation(s)
- Ling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Gang Huang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Wen Ma
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Ministry of Grape and Wine, Yinchuan 750021, China
- Correspondence:
| |
Collapse
|
8
|
Wang S, Liu L, Meng S, Wang Y, Liu D, Gao Z, Zuo A, Guo J. A method for evaluating drug penetration and absorption through isolated buccal mucosa with highly accuracy and reproducibility. Drug Deliv Transl Res 2022; 12:2875-2892. [PMID: 35349106 DOI: 10.1007/s13346-022-01151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
The purpose of the project is to establish a standardized operation method of the in vitro permeability model to maximize mucosal integrity and viability. The model drug lidocaine permeability, 20 kDa fluorescein isothiocyanate-dextran, H&E staining, and mucosal viability were used as evaluation indicators. Firstly, the buccal mucosae of rats, rabbits, dogs, porcine, and humans were analyzed by H&E staining and morphometric analysis to compare the differences. Then, we studied a series of operation methods of isolated mucosa. The buccal mucosae were found to retain their integrity in Kreb's bicarbonate ringer solution at 4 °C for 36 h. Under the long-term storage method with program cooling, freezing at -80 °C, thawing at 37 °C, and using cryoprotectants of 20% glycerol and 20% trehalose, mucosal integrity and biological viability can be maintained for 21 days. The heat separation method was used to prepare a permeability model with a mucosal thickness of 500 μm, which was considered to be the optimal operation. In summary, this study provided an experimental basis for the selection and operation of in vitro penetration models, standardized the research process of isolated mucosa, and improved the accuracy of permeability studies.
Collapse
Affiliation(s)
- Shuangqing Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lei Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Saige Meng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China
| | - Yuling Wang
- Yanbian University Hospital, Yanji, 133002, Jilin Province, China
| | - Daofeng Liu
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying, 257000, Shandong Province, China
| | - Zhonggao Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China. .,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Along Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
9
|
Girardeau A, Passot S, Meneghel J, Cenard S, Lieben P, Trelea IC, Fonseca F. Insights into lactic acid bacteria cryoresistance using FTIR microspectroscopy. Anal Bioanal Chem 2021; 414:1425-1443. [PMID: 34967915 DOI: 10.1007/s00216-021-03774-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
Freezing is widely used for bacterial cell preservation. However, resistance to freezing can greatly vary depending on bacterial species or growth conditions. Our study aims at identifying cellular markers of cryoresistance based on the comparison of three lactic acid bacteria (LAB) exhibiting different tolerance to freezing: Carnobacterium maltaromaticum CNCM I-3298, Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842, and Lactobacillus delbrueckii subsp. bulgaricus CFL1. A thorough characterization of their cytoplasmic membrane properties was carried out by measuring their fatty acid composition, membrane fluidity, and lipid phase transition upon cooling from 50 to -50 °C. Vitrification temperatures of the intra- and extra-cellular compartments were also quantified by differential scanning calorimetry. Additionally, the cell biochemical characterization was carried out using a recently developed Fourier transform infrared (FTIR) micro-spectroscopic approach allowing the analysis of live bacteria in an aqueous environment. The multivariate analysis of the FTIR spectra of fresh and thawed cells enabled the discrimination of the three bacteria according to their lipid, protein, and cell wall peptidoglycan components. It also revealed freezing-induced modifications of these three cellular components and an increase in bacteria heterogeneity for the two strains of L. bulgaricus, the freeze-sensitive bacteria. No cellular damage was observed for C. maltaromaticum, the freeze-resistant bacteria. Comparison of the results obtained from the different analytical methods confirmed previously reported cryoresistance markers and suggested new ones, such as changes in the absorbance of specific infrared spectral bands. FTIR microspectroscopy could be used as a rapid and non-invasive technique to evaluate the freeze-sensitivity of LAB.
Collapse
Affiliation(s)
- Amélie Girardeau
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France
| | - Stéphanie Passot
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France
| | - Julie Meneghel
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France
| | - Stéphanie Cenard
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France
| | - Pascale Lieben
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France
| | - Ioan-Cristian Trelea
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France
| | - Fernanda Fonseca
- UMR SayFood, Université Paris-Saclay, INRAE, 78850, Thiverval-Grignon, AgroParisTech, France.
| |
Collapse
|
10
|
Wang G, Pu J, Dong C, Zheng X, Guo B, Xia Y, Ai L. Effect of oleic acid on the viability of different freeze-dried Lactiplantibacillus plantarum strains. J Dairy Sci 2021; 104:11457-11465. [PMID: 34419274 DOI: 10.3168/jds.2020-20070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
Freeze drying is one of the most convenient ways to preserve microorganisms, but in the freeze-drying process, strains will inevitably suffer varying degrees of damage under different conditions. The deterioration of cell membrane integrity is one of the main forms of damage. The type and ratio of fatty acids in the cell membrane affect its characteristics. Therefore, it is worth investigating whether certain fatty acids can increase freeze-drying resistance. In this study, we found that adding a low concentration of oleic acid to a cryoprotectant could increase survival rate of strains of Lactiplantibacillus plantarum following freeze drying, and the optimal concentration of oleic acid was determined to be 0.001%. When 0.001% oleic acid was added to phosphate-buffered saline, the freeze-drying survival rate of L. plantarum increased by up to 6.63 times. Adding 0.001% oleic acid to sorbitol, the survival rate of L. plantarum increased by as much as 3.65 times. The 0.001% oleic acid-sucrose cryoprotectant resulted in a freeze-drying survival rate of L. plantarum of about 90%, a 2.26-fold improvement compared with sucrose alone. Although the effect of oleic acid depends on the cryoprotectants used and the strain treated, addition of oleic acid showed significant improvement overall. Further experiments showed that adding a low concentration of oleic acid to the cryoprotectants improved the freeze-drying survival rate of L. plantarum by maintaining cell membrane integrity and lactate dehydrogenase activity. Our findings provide a new strategy for safeguarding bacterial viability in commonly used cryoprotectants by the addition of a common food ingredient, which may be extensively applied in the food industry.
Collapse
Affiliation(s)
- Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Pu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Dong
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Xiaodong Zheng
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Baisong Guo
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Wang G, Luo L, Dong C, Zheng X, Guo B, Xia Y, Tao L, Ai L. Polysaccharides can improve the survival of Lactiplantibacillus plantarum subjected to freeze-drying. J Dairy Sci 2020; 104:2606-2614. [PMID: 33309373 DOI: 10.3168/jds.2020-19110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/18/2020] [Indexed: 01/17/2023]
Abstract
Freeze-drying is one of the most commonly used methods of bacteria preservation. During this process, cryoprotectants can greatly reduce cellular damage. Micromolecular cryoprotectants have been widely adopted but have limited selectivity and protective effects. Therefore, explorations of other types of cryoprotectants are needed. This study aimed to explore the possibility of the macromolecular cryoprotectants and combinations of cryoprotectants to maintain bacterial activity. We found that the survival rate of Lactiplantibacillus plantarum AR113 after freeze-drying was 19% higher in the presence of soy polysaccharides than with trehalose, the best-performing micromolecular cryoprotectant. Moreover, a 90.52% survival rate of L. plantarum WCFS1 was achieved using the composite cryoprotectant containing soy polysaccharide and trehalose, which increased by 31.48 and 36.47% compared with adding solely trehalose or soy polysaccharide, respectively. These results demonstrate that macromolecular and micromolecular cryoprotectants have similar effects, and that combinations of macromolecular and micromolecular cryoprotectants have better protective effects. We further observed that the composite cryoprotectant can increase Lactobacilli survival by improving cell membrane integrity and lactate dehydrogenase activity. Our finding provides a new type of cryoprotectant that is safer and more effective, which can be extensively applied in the relevant food industry.
Collapse
Affiliation(s)
- Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Linyin Luo
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Dong
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Xiaodong Zheng
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Baisong Guo
- Shanghai Tofflon Science and Technology Co. Ltd., Shanghai 201108, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Leren Tao
- School of Energy & Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
12
|
Guo N, Wei Q, Xu Y. Optimization of cryopreservation of pathogenic microbial strains. JOURNAL OF BIOSAFETY AND BIOSECURITY 2020. [DOI: 10.1016/j.jobb.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Alinovi M, Mucchetti G, Wiking L, Corredig M. Freezing as a solution to preserve the quality of dairy products: the case of milk, curds and cheese. Crit Rev Food Sci Nutr 2020; 61:3340-3360. [PMID: 32715725 DOI: 10.1080/10408398.2020.1798348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
When thinking of the freezing process in dairy, products consumed in frozen state, such as ice creams come to mind. However, freezing is also considered a viable solutions for many other dairy products, due to increasing interest to reduce food waste and to create more robust supply chains. Freezing is a solution to production seasonality, or to extend the market reach for high-value products with otherwise short shelf life. This review focuses on the physical and chemical changes occurring during freezing of milk, curds and cheeses, critical to maintaining quality of the final product. However, freezing is energy consuming, and therefore the process needs to be optimized to maintain product's quality and reduce its environmental footprint. Furthermore, the processing steps leading to the freezing stage may require some changes compared to traditional, fresh products. Unwanted reactions occur at low water activity, and during modifications such as ice crystals growth and recrystallization. These events cause major physical destabilizations of the proteins due to cryoconcentration, including modification of the colloidal-soluble equilibrium. The presence of residual proteases and lipases also cause important modifications to the texture and flavor of the frozen dairy product.
Collapse
Affiliation(s)
| | | | - Lars Wiking
- Department of Food Science, Aarhus University, Skejby, Denmark.,iFood Center, Department of Food Science, Aarhus University, Skejby, Denmark
| | - Milena Corredig
- Department of Food Science, Aarhus University, Skejby, Denmark.,iFood Center, Department of Food Science, Aarhus University, Skejby, Denmark
| |
Collapse
|
14
|
Wang GQ, Pu J, Yu XQ, Xia YJ, Ai LZ. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains. J Dairy Sci 2020; 103:3066-3075. [PMID: 32037182 DOI: 10.3168/jds.2019-17685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/28/2019] [Indexed: 12/23/2022]
Abstract
Although freeze-drying is an excellent method for preserving microorganisms, it inevitably reduces cell activity and function. Moreover, probiotic strains differ in terms of their sensitivity to the freeze-drying process. Therefore, it is necessary to optimize the variables relevant to this process. The pre-freezing temperature is a critical parameter of the freeze-drying process, but it remains unclear whether the optimal pre-freezing temperature differs among strains and protectants. This study explored the effects of 4 different pre-freezing temperatures on the survival rates of different Lactobacillus plantarum strains after freeze-drying in the presence of different protectants. Using phosphate-buffered saline solution and sorbitol as protectants, pre-freezing at -196°C, -40°C, and -20°C ensured the highest survival rates after freeze-drying for AR113, AR307, and WCFS1, respectively. Using trehalose, pre-freezing at -20°C ensured the best survival rate for AR113, and -60°C was the best pre-freezing temperature for AR307 and WCFS1. These results indicate that the pre-freezing temperature can be changed to improve the survival rate of L. plantarum, and that this effect is strain-specific. Further studies have demonstrated that pre-freezing temperature affected viability via changes in cell membrane integrity, membrane permeability, and lactate dehydrogenase activity. In summary, pre-freezing temperature is a crucial factor in L. plantarum survival after freeze-drying, and the choice of pre-freezing temperature depends on the strain and the protectant.
Collapse
Affiliation(s)
- Guang-Qiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jing Pu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiao-Qing Yu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong-Jun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lian-Zhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|