1
|
Bianchi F, Avesani M, Lorenzini M, Zapparoli G, Simonato B. Fermentation Performances and Aroma Contributions of Selected Non- Saccharomyces Yeasts for Cherry Wine Production. Foods 2024; 13:2455. [PMID: 39123646 PMCID: PMC11312165 DOI: 10.3390/foods13152455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
This study evaluates the fermentation performances of non-Saccharomyces strains in fermenting cherry must from Italian cherries unsuitable for selling and not intended to be consumed fresh, and their effects on the chemical composition of the resulting wine. Fermentation trials in 100 and 500 mL of must were carried out to select 21 strains belonging to 11 non-Saccharomyces species. Cherry wines obtained by six select strains were chemically analyzed for fixed and volatile compounds. Quantitative data were statistically analyzed by agglomerative hierarchical clustering, partial least squared discriminant analysis, and principal component analysis. Wines revealed significant differences in their composition. Lactic acid and phenylethyl acetate levels were very high in wines produced by Lachancea and Hanseniaspora, respectively. Compared to S. cerevisiae wine, non-Saccharomyces wines had a lower content of fatty acid ethyl esters 4-vinyl guaiacol and 4-vinyl phenol. The multivariate analysis discriminated between wines, demonstrating the different contributions of each strain to aroma components. Specifically, all wines from non-Saccharomyces strains were kept strictly separate from the control wine. This study provided comprehensive characterization traits for non-conventional strains that enhance the aroma complexity of cherry-based wine. The use of these yeasts in cherry wine production appears promising. Further investigation is required to ascertain their suitability for larger-scale fermentation.
Collapse
Affiliation(s)
- Federico Bianchi
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | - Michele Avesani
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | | | - Giacomo Zapparoli
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| | - Barbara Simonato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; (F.B.); (M.A.); (B.S.)
| |
Collapse
|
2
|
Tan J, Ji M, Gong J, Chitrakar B. The formation of volatiles in fruit wine process and its impact on wine quality. Appl Microbiol Biotechnol 2024; 108:420. [PMID: 39017989 PMCID: PMC11254978 DOI: 10.1007/s00253-024-13084-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 07/18/2024]
Abstract
Fruit wine is one of the oldest fermented beverages made from non-grape fruits. Owing to the differences in fruit varieties, growing regions, climates, and harvesting seasons, the nutritional compositions of fruits (sugars, organic acids, etc.) are different. Therefore, the fermentation process and microorganisms involved are varied for a particular fruit selected for wine production, resulting in differences in volatile compound formation, which ultimately determine the quality of fruit wine. This article reviews the effects of various factors involved in fruit wine making, especially the particular modifications differing from the grape winemaking process and the selected strains suitable for the specific fruit wine fermentation, on the formation of volatile compounds, flavor and aroma profiles, and quality characteristics of the wine thus produced. KEY POINTS: • The volatile profile and fruit wine quality are affected by enological parameters. • The composition and content of nutrients in fruit must impact volatile profiles. • Yeast and LAB are the key determining factors of the volatile profiles of fruit wines.
Collapse
Affiliation(s)
- Jianxin Tan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Mingyue Ji
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| |
Collapse
|
3
|
Tarko T, Duda A. Volatilomics of Fruit Wines. Molecules 2024; 29:2457. [PMID: 38893332 PMCID: PMC11173689 DOI: 10.3390/molecules29112457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Volatilomics is a scientific field concerned with the evaluation of volatile compounds in the food matrix and methods for their identification. This review discusses the main groups of compounds that shape the aroma of wines, their origin, precursors, and selected metabolic pathways. The paper classifies fruit wines into several categories, including ciders and apple wines, cherry wines, plum wines, berry wines, citrus wines, and exotic wines. The following article discusses the characteristics of volatiles that shape the aroma of each group of wine and the concentrations at which they occur. It also discusses how the strain and species of yeast and lactic acid bacteria can influence the aroma of fruit wines. The article also covers techniques for evaluating the volatile compound profile of fruit wines, including modern analytical techniques.
Collapse
Affiliation(s)
- Tomasz Tarko
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, ul. Balicka 122, 30-149 Krakow, Poland;
| | | |
Collapse
|
4
|
Piesik D, Miler N, Lemańczyk G, Tymoszuk A, Lisiecki K, Bocianowski J, Krawczyk K, Mayhew CA. Induction of volatile organic compounds in chrysanthemum plants following infection by Rhizoctonia solani. PLoS One 2024; 19:e0302541. [PMID: 38696430 PMCID: PMC11065281 DOI: 10.1371/journal.pone.0302541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.
Collapse
Affiliation(s)
- Dariusz Piesik
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Natalia Miler
- Department of Biotechnology, Laboratory of Horticulture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Grzegorz Lemańczyk
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Alicja Tymoszuk
- Department of Biotechnology, Laboratory of Horticulture, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Karol Lisiecki
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Poznań, Poland
| | - Krzysztof Krawczyk
- Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Poznań, Poland
| | - Chris A. Mayhew
- Institute for Breath Research, Universität Innsbruck, Innrain, Innsbruck, Austria
| |
Collapse
|
5
|
Zeng C, Mu Y, Yuan J, Zhang H, Song J, Kang S. Effects of Torulaspora delbrueckii and Saccharomyces cerevisiae Co-Fermentation on the Physicochemical and Flavor Compounds of Huaniu Apple Cider. Molecules 2024; 29:1750. [PMID: 38675570 PMCID: PMC11052012 DOI: 10.3390/molecules29081750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of different fermentation methods utilizing Torulaspora delbrueckii 1004 and Saccharomyces cerevisiae 32169 on the physicochemical properties, organic acid content, polyphenol and flavonoid concentrations, antioxidant activity, and volatile aroma compounds of Huaniu apple cider were investigated in this study. Employing methods of single inoculation, co-inoculation, and sequential inoculation, it was found that sequential fermentation exhibited strong fermentative power in the initial stages, effectively reducing the content of soluble solids and achieving a balanced composition of malic, succinic, and citric acids while maintaining a lower titratable acidity. Sequential inoculation was observed to significantly enhance the total polyphenols and flavonoids, as well as the antioxidant capacity (p < 0.05). Specifically, in the synthesis of volatile aroma compounds, sequential inoculation significantly enhanced the richness and diversity of the Huaniu apple cider's aromas, particularly in terms of the concentration of ester compounds (p < 0.05). Principal component analysis further confirmed the superiority of sequential inoculation in terms of aroma component diversity and richness. The findings of this study suggest that sequential inoculation of fermentation with non-Saccharomyces and S. cerevisiae is an effective strategy for optimizing the flavor characteristics of Huaniu apple cider, offering valuable theoretical support and practical guidance for enhancing cider quality and fostering the development of new products.
Collapse
Affiliation(s)
| | | | | | | | | | - Sanjiang Kang
- Agricultural Product Storge and Processing Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (C.Z.); (Y.M.); (J.Y.); (H.Z.); (J.S.)
| |
Collapse
|
6
|
Mazzucco MB, Rodríguez ME, Catalina Caballero A, Ariel Lopes C. Differential consumption of malic acid and fructose in apple musts by Pichia kudriavzevii strains. J Appl Microbiol 2024; 135:lxae019. [PMID: 38268424 DOI: 10.1093/jambio/lxae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
AIMS To assess the capability of Pichia kudriavzevii strains isolated from wine, cider, and natural environments in North Patagonia to produce ciders with reduced malic acid levels. METHODS AND RESULTS Fermentation kinetics and malic acid consumption were assessed in synthetic media and in regional acidic apple musts. All P. kudriavzevii strains degraded malic acid and grew in synthetic media with malic acid as the sole carbon source. Among these strains, those isolated from cider exhibited higher fermentative capacity, mainly due to increased fructose utilization; however, a low capacity to consume sucrose present in the must was also observed for all strains. The NPCC1651 cider strain stood out for its malic acid consumption ability in high-malic acid Granny Smith apple must. Additionally, this strain produced high levels of glycerol as well as acceptable levels of acetic acid. On the other hand, Saccharomyces cerevisiae ÑIF8 reference strain isolated from Patagonian wine completely consumed reducing sugars and sucrose and showed an important capacity for malic acid consumption in apple must fermentations. CONCLUSIONS Pichia kudriavzevii NPCC1651 strain isolated from cider evidenced interesting features for the consumption of malic acid and fructose in ciders.
Collapse
Affiliation(s)
- María Belén Mazzucco
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, 8336 Villa Regina, Río Negro, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, 8324 Cipolletti, Río Negro, Argentina
| | - María Eugenia Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, 8324 Cipolletti, Río Negro, Argentina
| | - Adriana Catalina Caballero
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias y Tecnología de los Alimentos, Universidad Nacional del Comahue, 8336 Villa Regina, Río Negro, Argentina
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina-Universidad Nacional del Comahue), Buenos Aires 1400, 8300 Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, 8303 Cinco Saltos, Río Negro, Argentina
| |
Collapse
|
7
|
van Wyk N, Badura J, von Wallbrunn C, Pretorius IS. Exploring future applications of the apiculate yeast Hanseniaspora. Crit Rev Biotechnol 2024; 44:100-119. [PMID: 36823717 DOI: 10.1080/07388551.2022.2136565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 02/25/2023]
Abstract
As a metaphor, lemons get a bad rap; however the proverb 'if life gives you lemons, make lemonade' is often used in a motivational context. The same could be said of Hanseniaspora in winemaking. Despite its predominance in vineyards and grape must, this lemon-shaped yeast is underappreciated in terms of its contribution to the overall sensory profile of fine wine. Species belonging to this apiculate yeast are known for being common isolates not just on grape berries, but on many other fruits. They play a critical role in the early stages of a fermentation and can influence the quality of the final product. Their deliberate addition within mixed-culture fermentations shows promise in adding to the complexity of a wine and thus provide sensorial benefits. Hanseniaspora species are also key participants in the fermentations of a variety of other foodstuffs ranging from chocolate to apple cider. Outside of their role in fermentation, Hanseniaspora species have attractive biotechnological possibilities as revealed through studies on biocontrol potential, use as a whole-cell biocatalyst and important interactions with Drosophila flies. The growing amount of 'omics data on Hanseniaspora is revealing interesting features of the genus that sets it apart from the other Ascomycetes. This review collates the fields of research conducted on this apiculate yeast genus.
Collapse
Affiliation(s)
- Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Jennifer Badura
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christian von Wallbrunn
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
8
|
Villarreal P, O'Donnell S, Agier N, Muñoz-Guzman F, Benavides-Parra J, Urbina K, Peña TA, Solomon M, Nespolo RF, Fischer G, Varela C, Cubillos FA. Domestication signatures in the non-conventional yeast Lachancea cidri. mSystems 2024; 9:e0105823. [PMID: 38085042 PMCID: PMC10805023 DOI: 10.1128/msystems.01058-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024] Open
Abstract
Evaluating domestication signatures beyond model organisms is essential for a thorough understanding of the genotype-phenotype relationship in wild and human-related environments. Structural variations (SVs) can significantly impact phenotypes playing an important role in the physiological adaptation of species to different niches, including during domestication. A detailed characterization of the fitness consequences of these genomic rearrangements, however, is still limited in non-model systems, largely due to the paucity of direct comparisons between domesticated and wild isolates. Here, we used a combination of sequencing strategies to explore major genomic rearrangements in a Lachancea cidri yeast strain isolated from cider (CBS2950) and compared them to those in eight wild isolates from primary forests. Genomic analysis revealed dozens of SVs, including a large reciprocal translocation (~16 kb and 500 kb) present in the cider strain, but absent from all wild strains. Interestingly, the number of SVs was higher relative to single-nucleotide polymorphisms in the cider strain, suggesting a significant role in the strain's phenotypic variation. The set of SVs identified directly impacts dozens of genes and likely underpins the greater fermentation performance in the L. cidri CBS2950. In addition, the large reciprocal translocation affects a proline permease (PUT4) regulatory region, resulting in higher PUT4 transcript levels, which agrees with higher ethanol tolerance, improved cell growth when using proline, and higher amino acid consumption during fermentation. These results suggest that SVs are responsible for the rapid physiological adaptation of yeast to a human-related environment and demonstrate the key contribution of SVs in adaptive fermentative traits in non-model species.IMPORTANCEThe exploration of domestication signatures associated with human-related environments has predominantly focused on studies conducted on model organisms, such as Saccharomyces cerevisiae, overlooking the potential for comparisons across other non-Saccharomyces species. In our research, employing a combination of long- and short-read data, we found domestication signatures in Lachancea cidri, a non-model species recently isolated from fermentative environments in cider in France. The significance of our study lies in the identification of large array of major genomic rearrangements in a cider strain compared to wild isolates, which underly several fermentative traits. These domestication signatures result from structural variants, which are likely responsible for the phenotypic differences between strains, providing a rapid path of adaptation to human-related environments.
Collapse
Affiliation(s)
- Pablo Villarreal
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Samuel O'Donnell
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Nicolas Agier
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Felipe Muñoz-Guzman
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jose Benavides-Parra
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Kami Urbina
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| | - Tomas A. Peña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Mark Solomon
- The Australian Wine Research Institute, Glen Osmond, Adelaide, SA, Australia
| | - Roberto F. Nespolo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, Chile
| | - Gilles Fischer
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Cristian Varela
- The Australian Wine Research Institute, Glen Osmond, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, Adelaide, SA, Australia
| | - Francisco A. Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Santiago, Chile
| |
Collapse
|
9
|
Wu Y, Li Z, Zou S, Dong L, Lin X, Chen Y, Zhang S, Ji C, Liang H. Chemical Composition and Flavor Characteristics of Cider Fermented with Saccharomyces cerevisiae and Non- Saccharomyces cerevisiae. Foods 2023; 12:3565. [PMID: 37835218 PMCID: PMC10572567 DOI: 10.3390/foods12193565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Cider flavor has a very important impact on the quality. Solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) combined with gas chromatography-ion mobility spectrometry (GC-IMS) tested different kinds of non-Saccharomyces yeasts and Saccharomyces cerevisiae (S. cerevisiae) co-inoculated for the fermentation of cider to determine differences in aroma material, and the determination of odor activity value (OAV) is applied less frequently in research. Through Rhodotorula mucilaginosa, Debaryomyces hansenii, Zygosaccharomyces bailii, and Kluyveromyces Marxianus, four different strains of non-Saccharomyces yeast fermented cider, and it was found that, in both the chemical composition and flavor of material things, compared with monoculture-fermented cider using S. cerevisiae, all differences were significant. Co-inoculated fermentation significantly improved the flavor and taste of cider. As in the volatile compounds of OVA > 1, octanoic acid (Sc 633.88 μg/L, co-inoculation fermented group 955.49 μg/L) provides vegetable cheese fragrance and decanoic acid, ethyl ester (Sc 683.19 μg/L, co-inoculation fermented group 694.98 μg/L) a creamy fruity fragrance, etc., and the average content increased after co-inoculated fermentation. Phenylethyl alcohol, which can produce a rose scent, was relatively abundant in cider samples and varied greatly among the groups. Moreover, the contents of ethyl lactate and 1-butanol in the Sc+Rm (ciders fermented by S. cerevisiae and R. mucilaginosa) were the highest of all of the cider samples. Different types of non-Saccharomyces yeast produced cider with different flavor characteristics. This study demonstrates that different species of non-Saccharomyces yeast do have an important impact on the characteristics of cider and that co-inoculation with non-Saccharomyces yeast and S. cerevisiae for cider fermentation may be a strategy to improve the flavor of cider.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huipeng Liang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (Z.L.); (S.Z.); (L.D.); (X.L.); (Y.C.); (S.Z.); (C.J.)
| |
Collapse
|
10
|
Hernández D, Zambra C, Astudillo C, Gabriel D, Díaz J. Evolution of physico-chemical parameters, microorganism diversity and volatile organic compound of apple pomace exposed to ambient conditions. Heliyon 2023; 9:e19770. [PMID: 37809461 PMCID: PMC10559057 DOI: 10.1016/j.heliyon.2023.e19770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
In apple processing, waste material known as apple pomace amounts to 45% of production volumes. When this residue is stored in open-air for its stabilization and potential uses, Volatile Organic Compounds (VOCs) are produced, resulting in environmental and odor pollution, and must be managed to avoid their impact. This work aims to study the emission of VOCs utilizing TD-GC/MS and its relationship with changes in physico-chemical (moisture, pH, proteins, among others) and biological (bacteria and fungi using Illumina MiSeq) parameters under three environmental conditions: open-air (outdoors), under-roof (indoors) and oxygen-free. The 8-month study results showed a gradual increase in odorous VOCs and microbial diversity, a product of chemical and biological transformation processes in the samples. A 30% increase in odorant compounds responsible for the unpleasant smell was observed, especially esters, aldehydes and hydrocarbons in samples stored in oxygen-free and Open-air conditions. Increases in VOCs over time were associated with changes in physico-chemical and biological parameters, as well as fluctuations in environmental variables (temperature, relative humidity, and precipitation). The results of this research allow establishing a relationship between storage conditions and the production of VOCs. In addition, recommendations for waste storage time are provided for the most common uses of apple pomace based on the physico-chemical parameters observed, in order to avoid the generation of odorous compounds. Of all storage methods analyzed, under-roof is the most adequate in practice. This study's findings are pertinent for managing agribusiness waste and its potential environmental pollution.
Collapse
Affiliation(s)
- D. Hernández
- Institute of Chemistry of Natural Resources, University of Talca, Box 747, Talca, Chile
- Faculty of Engineering, University of Talca, Box 747, Talca, Chile
| | - C. Zambra
- Faculty of Engineering, University of Talca, Box 747, Talca, Chile
| | - C.A. Astudillo
- Faculty of Engineering, University of Talca, Box 747, Talca, Chile
| | - D. Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - J. Díaz
- Faculty of Engineering, University of Talca, Box 747, Talca, Chile
| |
Collapse
|
11
|
Zhou R, Song Q, Xia H, Song N, Yang Q, Zhang X, Yao L, Yang S, Dai J, Chen X. Isolation and Identification of Non- Saccharomyces Yeast Producing 2-Phenylethanol and Study of the Ehrlich Pathway and Shikimate Pathway. J Fungi (Basel) 2023; 9:878. [PMID: 37754986 PMCID: PMC10532961 DOI: 10.3390/jof9090878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
2-phenylethanol (2-PE) has been widely utilized as an aromatic additive in various industries, including cosmetics, beer, olive oil, tea, and coffee, due to its rose-honey-like aroma. However, no reports have investigated the production of 2-PE by Starmerella bacillaris. Here, S. bacillaris (syn., Candida zemplinina, and named strain R5) was identified by analysis of morphology, physiology and biochemistry, and 26S rRNA and ITS gene sequence. Then, based on the analysis of whole-genome sequencing and comparison with the KEGG database, it was inferred that strain R5 could synthesize 2-PE from L-phe or glucose through the Ehrlich pathway or shikimate pathway. For further verification of the 2-PE synthesis pathway, strain R5 was cultured in M3 (NH4+), M3 (NH4+ + Phe), and M3 (Phe) medium. In M3 (Phe) medium, the maximum concentration of 2-PE reached 1.28 g/L, which was 16-fold and 2.29-fold higher than that in M3 (NH4+) and M3 (Phe + NH4+) media, respectively. These results indicated that 2-PE could be synthesized by strain R5 through the shikimate pathway or Ehrlich pathway, and the biotransformation from L-phe to 2-PE was more efficient than that from glucose. The qRT-PCR results suggested that compared to M3 (Phe + NH4+) medium, the mRNA expression levels of YAT were 124-fold and 86-fold higher in M3 (Phe) and M3 (NH4+) media, respectively, indicating that the transport of L-phe was inhibited when both NH4+ and Phe were present in the medium. In the M3 (Phe) and M3 (Phe + NH4+) media, the mRNA expression level of ADH5 was higher than PDC, hisC, GOT1, and YAT, and it was 2.6 times higher and 2.48 times higher, respectively, compared to the M3 (NH4+) medium, revealing that the key gene catalyzing the dehydrogenation of benzaldehyde to 2-PE is ADH5. Furthermore, strain R5 exhibits tolerance to high concentrations of 2-PE, reaching 3 g/L, which conferred an ideal tolerance to 2-PE. In summary, the synthesis pathway of 2-PE, mainly for the Ehrlich pathway, was proved for the first time in S. bacillaris, which had not been previously explored and provided a basis for non-Saccharomyces yeast-producing 2-PE and its applications.
Collapse
Affiliation(s)
- Rong Zhou
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Qingyi Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Huili Xia
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Na Song
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Qiao Yang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Xiaoling Zhang
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
| | - Lan Yao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jun Dai
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
- ABI Group, Donghai Laboratory, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (Q.Y.); (X.Z.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- College of Bioengineering and Food, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan 430068, China
| | - Xiong Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National “111” Center for Cellular Regulation and Molecular Pharmaceutics, College of Bioengineering, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; (R.Z.); (Q.S.); (H.X.); (N.S.); (L.Y.)
- College of Bioengineering and Food, Hubei University of Technology, No. 28, Nanli Road, Hongshan District, Wuhan 430068, China
| |
Collapse
|
12
|
Wang Z, Mi S, Wang X, Mao K, Liu Y, Gao J, Sang Y. Characterization and discrimination of fermented sweet melon juice by different microbial strains via GC-IMS-based volatile profiling and chemometrics. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Longan ER, Fay JC. Experimental evolution of Saccharomyces uvarum at high temperature yields elevation of maximal growth temperature and loss of the mitochondrial genome. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000831. [PMID: 37334198 PMCID: PMC10276265 DOI: 10.17912/micropub.biology.000831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
An organism's upper thermal tolerance is a major driver of its ecology and is a complex, polygenic trait. Given the wide variance in this critical phenotype across the tree of life, it is quite striking that this trait has not proven very evolutionarily labile in experimental evolution studies of microbes. In stark contrast to recent studies, William Henry Dallinger in the 1880s reported increasing the upper thermal limit of microbes he experimentally evolved by >40°C using a very gradual temperature ramping strategy. Using a selection scheme inspired by Dallinger, we sought to increase the upper thermal limit of Saccharomyces uvarum . This species has a maximum growth temperature of 34-35°C, considerably lower than S. cerevisiae . After 136 passages on solid plates at progressively higher temperatures, we recovered a clone that can grow at 36°C, a gain of ~1.5°C. Additionally, the evolved clone lost its mitochondrial genome and cannot respire. In contrast, an induced rho 0 derivative of the ancestor shows a decrease in thermotolerance. Also, incubation of the ancestor at 34°C for 5 days increased the frequency of petite mutants drastically compared to 22°C, supporting the notion that mutation pressure rather than selection drove loss of mtDNA in the evolved clone. These results demonstrate that S. uvarum 's upper thermal limit can be elevated slightly via experimental evolution and corroborate past observations in S. cerevisiae that high temperature selection schemes can inadvertently lead to production of the potentially undesirable respiratory incompetent phenotype in yeasts.
Collapse
Affiliation(s)
- Emery R. Longan
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| | - Justin C. Fay
- University of Rochester, Department of Biology, Rochester, NY, 14620 USA
| |
Collapse
|
14
|
Varela C, Alperstein L, Sundstrom J, Solomon M, Brady M, Borneman A, Jiranek V. A special drop: Characterising yeast isolates associated with fermented beverages produced by Australia's indigenous peoples. Food Microbiol 2023; 112:104216. [PMID: 36906316 DOI: 10.1016/j.fm.2023.104216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Way-a-linah, an alcoholic beverage produced from the fermented sap of Eucalyptus gunnii, and tuba, a fermented drink made from the syrup of Cocos nucifera fructifying bud, are two of several fermented beverages produced by Australian Aboriginal and Torres Strait people. Here we describe the characterisation of yeast isolates from samples associated with the fermentation of way-a-linah and tuba. Microbial isolates were obtained from two different geographical locations in Australia - the Central Plateau in Tasmania, and Erub Island in the Torres Strait. While Hanseniaspora species and Lachancea cidri were the most abundant species in Tasmania, Candida species were the most abundant in Erub Island. Isolates were screened for tolerance to stress conditions found during the production of fermented beverages and for enzyme activities relevant to the appearance, aroma and flavour of these beverages. Based on screening results, eight isolates were evaluated for their volatile profile during the fermentation of wort, apple juice and grape juice. Diverse volatile profiles were observed for beers, ciders and wines fermented with different isolates. These findings reveal the potential of these isolates to produce fermented beverages with unique aroma and flavour profiles and highlight the vast microbial diversity associated with fermented beverages produced by Australia's Indigenous peoples.
Collapse
Affiliation(s)
- Cristian Varela
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia; Department of Wine Science, The University of Adelaide, Glen Osmond, SA 5064, Australia.
| | - Lucien Alperstein
- Department of Wine Science, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Joanna Sundstrom
- Department of Wine Science, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Mark Solomon
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia
| | - Maggie Brady
- Centre for Aboriginal Economic Policy Research, College of Arts and Social Sciences, The Australian National University, Acton, ACT 2601, Australia
| | - Anthony Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, Adelaide, SA 5064, Australia; Department of Wine Science, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|
15
|
Kimura M, Nishida H, Kato M, Goto M, Nakagawa T. Editorial: Microorganisms and their metabolism affecting quality, safety and functionality of agricultural products. Front Microbiol 2023; 14:1215112. [PMID: 37266007 PMCID: PMC10230037 DOI: 10.3389/fmicb.2023.1215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Makoto Kimura
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Hiromi Nishida
- Department of Food and Life Sciences, Toyo University, Itakura, Gunma, Japan
| | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Aichi, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Tomoyuki Nakagawa
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
16
|
Míšková Z, Lorencová E, Salek RN, Koláčková T, Trávníková L, Rejdlová A, Buňková L, Buňka F. Occurrence of Biogenic Amines in Wines from the Central European Region (Zone B) and Evaluation of Their Safety. Foods 2023; 12:foods12091835. [PMID: 37174373 PMCID: PMC10178851 DOI: 10.3390/foods12091835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The decarboxylation of the corresponding amino acids by microorganisms leads to the formation of biogenic amines (BAs). From a toxicological point of view, BAs can cause undesirable physiological effects in sensitive individuals, particularly if their metabolism is blocked or genetically altered. The current study aimed to monitor and evaluate the content of eight biogenic amines (BAs) in 232 samples of wines (white, rosé, red) produced in the Central European region (Zone B). White wines (180 samples), rosé wines (17 samples), and red wines (35 samples) were analyzed. High-performance liquid chromatography equipped with a ultraviolet-visible diode array detector (UV/VIS DAD) was applied to identify and quantify the BAs present in wines. In general, histamine (HIS), tyramine (TYM), putrescine (PUT), cadaverine (CAD), phenylethylamine (PEA), spermine (SPN) and spermidine (SPD) were detected in all tested wine samples. Tryptamine (TRM) was not present in any of the samples examined. In white and red wines, SPD, TYM, and PUT were most often detected. Regarding rosé wines, the three major BAs were SPN, TYM, and CAD. The BA content in red wines was generally higher than in rosé and white wines. However, HIS concentrations above the recommended limit of 10 mg/L were detected in 9% of the red wine samples. In addition, alarming levels of PUT, HIS, TYM, and PEA, with serious potential impact on consumer health, were recorded in two red wine samples. On the whole, the presence and concentrations of BAs in wine should be constantly evaluated, primarily because alcohol intensifies the hazardous effects of BAs.
Collapse
Affiliation(s)
- Zuzana Míšková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Eva Lorencová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Richardos Nikolaos Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Tereza Koláčková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Ludmila Trávníková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Anita Rejdlová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - Leona Buňková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic
| | - František Buňka
- Laboratory of Food Quality and Safety Research, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, 662 10 Brno, Czech Republic
| |
Collapse
|
17
|
Liu L, Zhao PT, Hu CY, Tian D, Deng H, Meng YH. Screening low-methanol and high-aroma produced yeasts for cider fermentation by transcriptive characterization. Front Microbiol 2022; 13:1042613. [PMID: 36439849 PMCID: PMC9691974 DOI: 10.3389/fmicb.2022.1042613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The commercial active dry yeast strains used for cider production in China are far behind the requirements of the cider industry development in recent decades. In this study, eight yeasts, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia bruneiensis, and Pichia kudriavzevii, were screened and assessed by growth performance, methanol production, aroma analysis, and their transcriptive characterization. Saccharomyces cerevisiae strains WFC-SC-071 and WFC-SC-072 were identified as promising alternatives for cider production. Strains WFC-SC-071 and WFC-SC-072 showed an excellent growth capacity characterized by 91.6 and 88.8% sugar utilization, respectively. Methanol production by both strains was below 200 mg/L. Key aroma compounds imparting cider appreciably characteristic aroma increased in cider fermented by strains WFC-SC-071 and WFC-SC-072. RT-qPCR analysis suggested that most genes associated with growth capacity, carbohydrate uptake, and aroma production were upregulated in WFC-SC-071 and WFC-SC-072. Overall, two Saccharomyces cerevisiae strains are the optimal starters for cider production to enable the diversification of cider, satisfy the differences in consumer demand, and promote cider industry development.
Collapse
Affiliation(s)
- Liang Liu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Peng Tao Zhao
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, Honolulu, HI, United States
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Hong Deng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- *Correspondence: Hong Deng,
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Yong Hong Meng,
| |
Collapse
|
18
|
Effects of Saccharomyces cerevisiae and Starmerella bacillaris on the physicochemical and sensory characteristics of sparkling pear cider (Perry). Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThis study was aimed to produce pear cider (Perry), using small caliber pears cv Abate Fètel, fermented by Starmerella bacillaris and Saccharomyces cerevisiae in co-inoculated (COF) and sequential (SEF) mixed cultures in comparison with S. cerevisiae monoculture fermentation (AXF), evaluating the influence of yeast starter cultures on Perry characteristics. The perries were re-fermented in bottle by S. cerevisiae strain EC1118. During primary fermentation, growth and fermentation kinetics were different in the co-inoculated and sequential fermentations in comparison with pure S. cerevisiae fermentation; however, sugars were depleted, and 6% (v/v) ethanol was produced in all the trials. Glycerol content was significantly higher in mixed fermentations due to Starm. bacillaris metabolism (+ 20% in COF, and + 42% in SEF conditions). After re-fermentation in bottle, higher levels of 3-Methyl-1-butanol, 1-propanol, acetaldehyde and esters were detected in Perry from the mixed fermentations. All the Perries were accepted by the consumers (general liking values from 6.01 to 6.26). Perries’ appearance from mixed fermentations was described as less intense and more clear. The use of small caliber pears cv Abate Fètel and Starm. bacillaris in combination with S. cerevisiae in Perry production might be a suitable tool to obtain novel beverages with distinctive organoleptic features.
Collapse
|
19
|
A Preliminary Study of Yeast Strain Influence on Chemical and Sensory Characteristics of Apple Cider. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During the fermentation of apple juice, yeast metabolism creates complex biosynthetic pathways which produce a range of compounds responsible for the organoleptic qualities of cider. In this study, basic cider quality parameters were measured to investigate the influence of six yeast strains on cider made from three apple varieties (‘Pink Lady’, ‘Sturmer’, and ‘Bulmer’s Norman’). Measurement of pH, titratable acidity, and total phenolic content revealed that yeast can influence cider attributes, albeit variety and season dependent. Descriptive sensory analysis using a trained sensory panel was conducted on cider made from ‘Pink Lady’ apples and the same six yeast strains. The sensory panel significantly differentiated the yeast strains on the attributes of ‘fresh apple’, ‘earthy’ and ‘pear’. Identifying the variety specific influence of individual yeast strains on chemical and sensory characteristics of apple cider will provide cider makers with an enhanced understanding when choosing yeast strains.
Collapse
|
20
|
Zhang Z, Lan Q, Yu Y, Zhou J, Lu H. Comparative metabolome and transcriptome analyses of the properties of Kluyveromyces marxianus and Saccharomyces yeasts in apple cider fermentation. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100095. [PMID: 35415699 PMCID: PMC8991827 DOI: 10.1016/j.fochms.2022.100095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 11/06/2022]
Abstract
This study explored the application of Kluyveromyces marxianus and Saccharomyces cerevisiae (commercial and wild type) in the alcoholic fermentation of Fuji apple juice under static conditions. Metabolome analyses revealed that ethyl esters, including ethyl hexanoate, ethyl decanoate, ethyl octanoate, octanoic acid and decanoic acid, were the dominant components in ciders fermented by the Saccharomyces yeasts. In the K. marxianus ciders, ethyl acetate, hexyl acetate, propyl acetate and acetic acid were the most abundant volatiles, suggesting that the cider fermented by K. marxianus might have a fruitier smell. Transcriptome analyses were adapted to gain insight into the differential metabolite patterns between K. marxianus and S. cerevisiae during cider fermentation. GO and KEGG enrichments revealed that the metabolic pathways of glucose, organic acids and amino acids during cider fermentation were quite different between these two yeasts. The K. marxianus strain exhibited a higher rate of glycolysis and ethanol fermentation than did Saccharomyces yeasts under oxygen-limited conditions. It also reduced the metabolic flux of acetate into acetyl-CoA and then into the TCA cycle, increasing the syntheses of ethyl acetate and relevant esters, which may affect its cell growth under anaerobic conditions but enriched the taste and variety of aromas in apple cider.
Collapse
Affiliation(s)
- Zhiyong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Qing Lan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
- Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
21
|
Wei J, Zhang Y, Zhang X, Guo H, Yuan Y, Yue T. Multi-omics discovery of aroma-active compound formation by Pichia kluyveri during cider production. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Tangüler H, Erten H. The influence of two yeast strains on fermentation and flavour composition of cider. FLAVOUR FRAG J 2022. [DOI: 10.1002/ffj.3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hasan Tangüler
- Department of Food Engineering Faculty of Agriculture Cukurova University Adana Turkey
| | - Hüseyin Erten
- Department of Food Engineering Faculty of Agriculture Cukurova University Adana Turkey
| |
Collapse
|
23
|
Zhu Z, Zhang Y, Wang W, Sun S, Wang J, Li X, Dai F, Jiang Y. Changes in Physicochemical Properties, Volatile Profiles, and Antioxidant Activities of Black Apple During High-Temperature Fermentation Processing. Front Nutr 2022; 8:794231. [PMID: 35211493 PMCID: PMC8861435 DOI: 10.3389/fnut.2021.794231] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Black apple is a new elaborated product obtained from whole fresh apple through fermentation at controlled high temperature (60~90°C) and humidity (relative humidity of 50~90%). The appearance, color, texture, and taste of black apple changed dramatically compared with those of fresh apple. In this study, changes in the physicochemical and phytochemical properties, volatile profiles, and antioxidant capacity of apple during the fermentation process were investigated. Results showed that the browning intensity and color difference increased continuously during the whole 65-day fermentation process (p < 0.05). Sugars decreased in the whole fermentation process (p < 0.05), whereas the contents of organic acids increased first and then decreased with prolonged 35 days of fermentation (p < 0.05). Total polyphenol content of black apple showed an increase of 1.5-fold as that of fresh apple, whereas 12 common polyphenolic compounds present in fresh apple decreased dramatically in the whole fermentation process (p < 0.05). The analysis of flavor volatiles showed that high-temperature fermentation decreased the levels of alcohols and esters and resulted in the formation of furanic and pyranic compounds, which are the main products of Maillard reaction (MR). Antioxidant activities of black apple were enhanced compared with those of fresh apple, and results indicated that the enhancement of antioxidant activities was related to the polyphenols and products of MR.
Collapse
|
24
|
Yang X, Zhao F, Yang L, Li J, Zhu X. Enhancement of the aroma in low-alcohol apple-blended pear wine mixed fermented with Saccharomyces cerevisiae and non-Saccharomyces yeasts. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Zhang L, Zhang M, Mujumdar AS. New technology to overcome defects in production of fermented plant products- a review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Novel Yeasts Producing High Levels of Conjugated Linoleic Acid and Organic Acids in Fermented Doughs. Foods 2021; 10:foods10092087. [PMID: 34574197 PMCID: PMC8466363 DOI: 10.3390/foods10092087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 01/02/2023] Open
Abstract
Traditional fermented foods are obtained by a complex consortium of autochthonous microorganisms producing a wide variety of bioactive compounds, thus representing a reservoir of strains with new functional properties. Here, doughs obtained using five different wholegrain flours were singly fermented with selected yeast strains, which were evaluated for their functional traits. Lactate, volatile fatty acids and conjugated linoleic acid isomers produced by fermented doughs were detected by HPLC, while dough anti-inflammatory capacity was measured on human peripheral blood mononuclear cells by flow cytometry. Yeast potential probiotic activity was assessed by evaluating their resistance to simulated gastric and intestinal fluids. For the first time we report evidence of yeast strains producing high levels of the conjugated linoleic acid (CLA) isomer CLA 10-12tc and propionic acid, which are known for their specific health benefits. Moreover, such yeast strains showed an anti-inflammatory capacity, as revealed by a significantly decreased production of the strongly pro-inflammatory cytokine IL-1β. All our Saccharomyces cerevisiae strains were remarkably resistant to simulated gastric and intestinal fluids, as compared to the commercial probiotic strain. The two strains S. cerevisiae IMA D18Y and L10Y showed the best survival percentage. Our novel yeast strains may be exploited as valuable functional starters for the industrial production of cereal-based innovative and health-promoting fermented foods.
Collapse
|
27
|
Fernandes T, Silva-Sousa F, Pereira F, Rito T, Soares P, Franco-Duarte R, Sousa MJ. Biotechnological Importance of Torulaspora delbrueckii: From the Obscurity to the Spotlight. J Fungi (Basel) 2021; 7:jof7090712. [PMID: 34575750 PMCID: PMC8467266 DOI: 10.3390/jof7090712] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/28/2022] Open
Abstract
Torulaspora delbrueckii has attracted interest in recent years, especially due to its biotechnological potential, arising from its flavor- and aroma-enhancing properties when used in wine, beer or bread dough fermentation, as well as from its remarkable resistance to osmotic and freezing stresses. In the present review, genomic, biochemical, and phenotypic features of T. delbrueckii are described, comparing them with other species, particularly with the biotechnologically well-established yeast, Saccharomyces cerevisiae. We conclude about the aspects that make this yeast a promising biotechnological model to be exploited in a wide range of industries, particularly in wine and bakery. A phylogenetic analysis was also performed, using the core proteome of T. delbrueckii, to compare the number of homologous proteins relative to the most closely related species, understanding the phylogenetic placement of this species with robust support. Lastly, the genetic tools available for T. delbrueckii improvement are discussed, focusing on adaptive laboratorial evolution and its potential.
Collapse
Affiliation(s)
- Ticiana Fernandes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Flávia Silva-Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Fábio Pereira
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Teresa Rito
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Correspondence: or ; Tel.: +351-253-604-310; Fax: +351-253-678-980
| | - Maria João Sousa
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, 4710-057 Braga, Portugal; (T.F.); (F.S.-S.); (F.P.); (T.R.); (P.S.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
28
|
Anti-Platelet Properties of Apple Must/Skin Yeasts and of Their Fermented Apple Cider Products. BEVERAGES 2021. [DOI: 10.3390/beverages7030054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alcoholic beverages like apple cider are considered functional beverages with several health benefits, when consumed in moderation, which are mainly attributed to their microbiota and the plethora of their bioactive compounds. Among them, bio-functional polar lipids (PL) have recently been found in apple cider, which despite low quantities, have exhibited strong anti-inflammatory and anti-platelet properties, while fermentation seems to affect the functionality of apple cider’s PL bioactives. The aim of the present study was to elaborate yeast strains isolated from the complex mixtures of apple surface and must yeasts for evaluating their effects on the anti-platelet functional properties of PL bioactives from their final fermented apple cider products. First, bio-functional PL were extracted and separated from the biomass of the different isolated apple surface/must yeast strains, and were further assessed for their anti-platelet potency against human platelet aggregation induced by the potent inflammatory and thrombotic mediator platelet-activating factor (PAF), or by a classic platelet agonist like adenosine diphopshate (ADP). Novel functional apple ciders were then produced from the fermentation of apple juice by elaborating the most bioactive and resilient yeast strains isolated from the apple must with optimum fermentation properties. PL bioactives extracted from these novel apple cider products were also further assessed for their anti-platelet properties against both the PAF and ADP pathways of human platelet aggregation. These novel cider products were found to contain PL bioactives with lower IC50 values (~40 μg) and thus increased anti-platelet potency against platelet aggregation induced by PAF and ADP. GC-MS analysis of the PL bioactives extracted from these novel apple ciders showed that apple cider PL bioactives are rich in monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), such as the omega-6 linoleic acid (LA) and the omega-3 alpha linolenic acid (ALA), with favorably lower levels for their omega-6/omega-3 PUFA ratio, which further support the observed strong anti-platelet properties putative anti-inflammatory potency for the apple cider PL bioactives. However, further studies are needed in order to elucidate and fully characterize the apple yeast strains that can be utilized for increasing the anti-inflammatory, anti-platelet and cardioprotective functional properties of their fermented apple cider products.
Collapse
|
29
|
Ma W, Yu J, Zhang X, Guo S, Zhang F, Jin W, Dong J, Jia S, Zhong C, Xue J. Whole-genome sequencing exploitation analysis of non-Saccharomyces yeast Nakazawaea ishiwadae GDMCC 60786 and its physiological characterizations. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Lorencová E, Salek RN, Buňková L, Szczybrochová M, Černíková M, Buňka F. Assessment of biogenic amines profile in ciders from the Central Europe region as affected by storage time. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Authentication Using Volatile Composition: A Proof-of-Concept Study on the Volatile Profiles of Fourteen Queensland Ciders. BEVERAGES 2021. [DOI: 10.3390/beverages7020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although relatively small, the Australian cider industry has experienced significant growth in recent years. One of the current challenges in the industry is the lack of research specific to Australian ciders. Establishing baseline volatile organic compound (VOC) profiles of Australian cider is paramount to developing a better understanding of the industry. This understanding may ultimately be utilized for both the categorization and authentication of existing ciders, and the targeted modification of cider volatiles for the development and improvement of cider quality. This study utilized gas chromatography, coupled with mass spectrometry, to identify key VOCs present in 14 ciders sourced from four different manufacturers in Queensland, Australia. A total of 40 VOCs were identified across the ciders, with significant variation depending on the flavor and manufacturer. Principal component analysis indicated that the ciders were well-separated based on the manufacturer, supporting the prospect of using the volatile composition to discriminate between cider manufacturers. Furthermore, hierarchical cluster analysis highlighted the commonalities and differences in cider composition between different manufacturers, which may be indicative of the varying ingredients and manufacturing processes used to create the ciders. Future studies profiling the volatile composition of larger numbers of Australian ciders are recommended to support the use of this analytical technique for authentication purposes. Likewise, exploration of the relationship between specific processes and VOCs is recommended to fortify an understanding of how to optimize cider production to improve consumer satisfaction.
Collapse
|
32
|
Al Daccache M, Salameh D, Chamy LEL, Koubaa M, Maroun RG, Vorobiev E, Louka N. Evaluation of the fermentative capacity of an indigenous Hanseniaspora sp. strain isolated from Lebanese apples for cider production. FEMS Microbiol Lett 2021; 367:5861937. [PMID: 32578846 DOI: 10.1093/femsle/fnaa093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
The present work studied the fermentative potential and carbon metabolism of an indigenous yeast isolated from Lebanese apples for cider production. The indigenous yeast strain was isolated from a spontaneous fermented juice of the Lebanese apple variety 'Ace spur'. The sequencing of the Internal Transcribed Spacer (ITS) domain of rRNA identified the isolated yeast strain as a member of the Hanseniaspora genus. These results suggest an intragenomic ITS sequence heterogeneity in the isolated yeast strain specifically in its ITS1 domain. The different investigations on the yeast carbon metabolism revealed that the isolated yeast is 'Crabtree positive' and can produce and accumulate ethanol from the first hours of fermentation. Thus, our findings highlight the possibility of using the isolated indigenous Hanseniaspora strain as a sole fermentative agent during cider production.
Collapse
Affiliation(s)
- Marina Al Daccache
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon.,Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France
| | - Dominique Salameh
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| | - Laure E L Chamy
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR GPF, Laboratoire BGF, Université Saint-Joseph, Beirut 1104 2020, Lebanon
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France
| | - Richard G Maroun
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CS 60319, 60203 Compiègne CEDEX, France
| | - Nicolas Louka
- Faculté des Sciences, Centre d'Analyses et de Recherche, UR TVA (Technologies de Valorisation Agroalimentaires, Laboratoire CTA, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon
| |
Collapse
|
33
|
Li Y, Nguyen TTH, Jin J, Lim J, Lee J, Piao M, Mok IK, Kim D. Brewing of glucuronic acid-enriched apple cider with enhanced antioxidant activities through the co-fermentation of yeast ( Saccharomyces cerevisiae and Pichia kudriavzevii) and bacteria ( Lactobacillus plantarum). Food Sci Biotechnol 2021; 30:555-564. [PMID: 33936847 DOI: 10.1007/s10068-021-00883-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 11/28/2022] Open
Abstract
Co-fermentation using yeast (Saccharomyces cerevisiae and Pichia kudriavzevii) and the bacteria (Lactobacillus plantarum) as starters isolated from spontaneous sourdough was conducted for the brewing of glucuronic acid (GlcA)-enriched apple cider. The concentration of GlcA in the apple cider co-fermented for 14 d with commercial S. cerevisiae and L. plantarum was 37.7 ± 1.7 mg/mL while a concentration of 62.8 ± 3.1 mg/mL was recorded for fermentation with P. kudriavzevii and L. plantarum, which was higher than the corresponding single yeast fermentation. The co-fermented apple cider revealed higher 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 171.67 ± 0.79 µg trolox equivalents (TE)/mL using P. kudriavzevii and L. plantarum, compared to the control (143.89 ± 7.07 µg TE/mL) just using S. cerevisiae. Thus, the co-fermentation of S. cerevisiae and L. plantarum and P. kudriavzevii and L. plantarum provided a new strategy for the development of GlcA-enriched apple cider with enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Yan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109 People's Republic of China
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Thi Thanh Hanh Nguyen
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Juhui Jin
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Juho Lim
- Graduate School of International Agricultural Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Jiyeon Lee
- Graduate School of International Agricultural Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Meizi Piao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, 266109 People's Republic of China
| | - Il-Kyoon Mok
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| | - Doman Kim
- Institute of Food Industrialization, Institutes of Green Bioscience and Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
- Graduate School of International Agricultural Technology, Seoul National University, 25354, Pyeongchang-gun, Gangwon-do Republic of Korea
| |
Collapse
|
34
|
Biotechnological Processes in Fruit Vinegar Production. Foods 2021; 10:foods10050945. [PMID: 33925896 PMCID: PMC8145929 DOI: 10.3390/foods10050945] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
The production of fruit vinegars as a way of making use of fruit by-products is an option widely used by the food industry, since surplus or second quality fruit can be used without compromising the quality of the final product. The acetic nature of vinegars and its subsequent impact on the organoleptic properties of the final product allows almost any type of fruit to be used for its elaboration. A growing number of scientific research studies are being carried out on this matrix, and they are revealing the importance of controlling the processes involved in vinegar elaboration. Thus, in this review, we will deal with the incidence of technological and biotechnological processes on the elaboration of fruit vinegars other than grapes. The preparation and production of the juice for the elaboration of the vinegar by means of different procedures is an essential step for the final quality of the product, among which crushing or pressing are the most employed. The different conditions and processing methods of both alcoholic and acetic fermentation also affect significantly the final characteristics of the vinegar produced. For the alcoholic fermentation, the choice between spontaneous or inoculated procedure, together with the microorganisms present in the process, have special relevance. For the acetic fermentation, the type of acetification system employed (surface or submerged) is one of the most influential factors for the final physicochemical properties of fruit vinegars. Some promising research lines regarding fruit vinegar production are the use of commercial initiators to start the acetic fermentation, the use of thermotolerant bacteria that would allow acetic fermentation to be carried out at higher temperatures, or the use of innovative technologies such as high hydrostatic pressure, ultrasound, microwaves, pulsed electric fields, and so on, to obtain high-quality fruit vinegars.
Collapse
|
35
|
An Overview of the Factors Influencing Apple Cider Sensory and Microbial Quality from Raw Materials to Emerging Processing Technologies. Processes (Basel) 2021. [DOI: 10.3390/pr9030502] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Given apple, an easily adapted culture, and a large number of apple varieties, the production of apple cider is widespread globally. Through the fermentation process, a series of chemical changes take place depending on the apple juice composition, type of microorganism involved and technology applied. Following both fermentations, alcoholic and malo-lactic, and during maturation, the sensory profile of cider changes. This review summarises the current knowledge about the influence of apple variety and microorganisms involved in cider fermentation on the sensory and volatile profiles of cider. Implications of both Saccharomyces, non-Saccharomyces yeast and lactic acid bacteria, respectively, are discussed. Also are presented the emerging technologies applied to cider processing (pulsed electric field, microwave extraction, enzymatic, ultraviolet and ultrasound treatments, high-pressure and pulsed light processing) and the latest trends for a balanced production in terms of sustainability, authenticity and consumer preferences.
Collapse
|
36
|
Effects of post-harvest fungal infection of apples on chemical characteristics of cider. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Apple Fermented Products: An Overview of Technology, Properties and Health Effects. Processes (Basel) 2021. [DOI: 10.3390/pr9020223] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
As an easily adapted culture, with overloaded production in some parts of the globe, apples and their by-products are being redirected to pharmaceutical, canning and beverages industries, both alcoholic and non-alcoholic. Fermentation is generally considered to increase the bioavailability of bioactive compounds found in apple, by impacting, through a high degree of changes, the product’s properties, including composition and health-promoting attributes, as well as their sensory profile. Probiotic apple beverages and apple vinegar are generally considered as safe and healthy products by the consumers. Recently, contributions to human health, both in vivo and in vitro studies, of non-alcoholic fermented apple-based products have been described. This review highlighted the advances in the process optimization of apple-based products considering vinegar, cider, pomace, probiotic beverages and spirits’ technologies. The different processing impacts on physical-chemical, nutritional and sensory profiles of these products are also presented. Additionally, the harmful effects of toxic compounds and strategies to limit their content in cider and apple spirits are illustrated. New trends of fermented apple-based products applicability in tangential industries are summarized.
Collapse
|
38
|
From the vineyard to the cellar: new insights of Starmerella bacillaris (synonym Candida zemplinina) technological properties and genomic perspective. Appl Microbiol Biotechnol 2021; 105:493-501. [PMID: 33394145 DOI: 10.1007/s00253-020-11041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
A large diversity of yeasts can be involved in alcoholic fermentation; however, Starmerella bacillaris strains have gained great attention due to their relevant and particular characteristics. S. bacillaris is commonly known as an osmotolerant, acidogenic, psychrotolerant, and fructophilic yeast. Most strains of this species are high producers of glycerol and show low ethanol production rates, being highlighted as promising alternatives to the manufacture of low-alcohol beverages. The increased production of high alcohols, such as benzyl alcohol that has antifungal and antibacterial properties, highlights S. bacillaris potential as a biocontrol agent. After harvest, antifungal yeasts become part of the must microbiota and may also improve the fermentation process. Moreover, during the fermentation, S. bacillaris releases important molecules with biotechnological properties, such as mannoproteins and glutathione. Considering the potential biotechnological properties of S. bacillaris strains, this review presents an overview of recent trends concerning the application of S. bacillaris in fermented beverages. KEY POINTS: •S. bacillaris as an alternative to the production of low-alcohol beverages. •S. bacillaris strains present biocontrol potential. •Molecules released by S. bacillaris may be of great biotechnological interest.
Collapse
|
39
|
Méndez-Zamora A, Gutiérrez-Avendaño DO, Arellano-Plaza M, De la Torre González FJ, Barrera-Martínez I, Gschaedler Mathis A, Casas-Godoy L. The non-Saccharomyces yeast Pichia kluyveri for the production of aromatic volatile compounds in alcoholic fermentation. FEMS Yeast Res 2020; 20:6034014. [PMID: 33316048 DOI: 10.1093/femsyr/foaa067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Alcoholic fermentation is influenced by yeast strain, culture media, substrate concentration and fermentation conditions, which contribute to taste and aroma. Some non-Saccharomyces yeasts are recognized as volatile compound producers that enrich aromatic profile of alcoholic beverages. In this work, 21 strains of Pichia kluyveri isolated from different fermentative processes and regions were evaluated. A principal component analysis (PCA) showed statistical differences between strains mainly associated with the variety and concentration of the compounds produced. From the PCA, two strains (PK1 and PK8) with the best volatile compound production were selected to evaluate the impact of culture media (M12 medium and Agave tequilana juice), stirring speeds (100 and 250 rpm) and temperatures (20°C, 25°C and 30°C). Increased ester production was observed at 250 rpm. Greatest effect in alcohols and ester production was found with A. tequilana, identifying PK1 as higher alcohol producer, and PK8 as better ester producer. Regarding temperature, PK1 increased ester production with decreased fermentation temperature. PK8 presented maximum levels of ethyl acetate and ethyl dodecanoate at 20°C, and finally isoamyl acetate increased its production at 30°C. Therefore, P. kluyveri strains are of great interest to produce different aromatic profiles that are affected by factors including medium, agitation and temperature.
Collapse
Affiliation(s)
- Andrés Méndez-Zamora
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| | - Daniel Oswaldo Gutiérrez-Avendaño
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| | - Melchor Arellano-Plaza
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| | - Francisco Javier De la Torre González
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| | - Iliana Barrera-Martínez
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| | - Anne Gschaedler Mathis
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| | - Leticia Casas-Godoy
- CONACYT-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Unidad de Biotecnología Industrial, Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco, México
| |
Collapse
|
40
|
Misery B, Legendre P, Rue O, Bouchart V, Guichard H, Laplace JM, Cretenet M. Diversity and dynamics of bacterial and fungal communities in cider for distillation. Int J Food Microbiol 2020; 339:108987. [PMID: 33321431 DOI: 10.1016/j.ijfoodmicro.2020.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 11/18/2022]
Abstract
Bacterial and fungal population dynamics in cider for distillation have so far been explored by culture-dependant methods. Cider for distillation can be produced by the spontaneous fermentation of apples that do not undergo any intervention during the process. In this study, cider microbiomes extracted from six tanks containing ciders for distillation from four producers in Normandy were characterized at three main stages of the fermentation process: fermentation Initiation (I), end of the alcoholic Fermentation (F) and end of the Maturation period (M). Cider samples were subjected to Illumina MiSeq sequencing (rRNA 16S V1-V3 and ITS1 region targeting) to determine bacterial and fungal communities. Yeasts (YGC), Zymomonas (mZPP) and lactic acid bacteria selective media (mMRS, mMLO, mPSM) were also used to collect 807 isolates. Alcoholic levels, glycerol, sugar content (glucose, fructose and sucrose), pH, total and volatile acidity, nitrogen, malic and lactic acid contents were determined at all sampling points. Alpha diversity indexes show significant differences (p < 0.05) in microbial populations between I, F and M. Fungal communities were characterized by microorganisms from the environment and phytopathogens at I followed by the association of yearsts with alcoholic fermentation like Saccharomyces and non-Saccharomyces yeasts (Hanseniaspora, Candida). A maturation period for cider leads to an increase of the Dekkera/Brettanomyces population, which is responsible for off-flavors in cider for all producers. Among bacterial communities, the genera community associated to malolactic fermentation (Lactobacillus sp., Leuconostoc sp., Oenococcus sp.) was the most abundant at F and M. Acetic acid bacteria such as Acetobacter sp., Komagataeibacter sp. and Gluconobacter sp. were also detected during the process. Significant differences (p < 0.05) were found in fungal and bacterial populations between the four producers and during the fermentation process. The development of microorganisms associated with cider spoilage such as Zymomonas mobilis, Lactobacillus collinoides or Brettanomyces/Dekkera sp. was anticipated by a metagenomic approach. The monitoring of microbial diversity via high throughput sequencing combined with physical-chemical analysis is an interesting approach to improve the fermentation performance of cider for distillation and therefore, the quality of Calvados.
Collapse
Affiliation(s)
- B Misery
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - P Legendre
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - O Rue
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics Facility, 78350 Jouy-en-Josas, France
| | - V Bouchart
- LABÉO Frank Duncombe, 1 Route de Rosel, 14053 Caen Cedex 4, France
| | - H Guichard
- Institut Français des Produits Cidricoles (IFPC), Domaine de la Motte, 35653 Le Rheu, France
| | - J M Laplace
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - M Cretenet
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France.
| |
Collapse
|
41
|
Kokkinomagoulos E, Nikolaou A, Kourkoutas Y, Kandylis P. Evaluation of Yeast Strains for Pomegranate Alcoholic Beverage Production: Effect on Physicochemical Characteristics, Antioxidant Activity, and Aroma Compounds. Microorganisms 2020; 8:microorganisms8101583. [PMID: 33066576 PMCID: PMC7602208 DOI: 10.3390/microorganisms8101583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
In the present study, three commercial yeasts (for wine, beer, and cider) were evaluated for the production of pomegranate alcoholic beverage (PAB) from a juice of Wonderful variety. The physicochemical characteristics, antioxidant activity, and aromatic profiles of PABs were investigated before and after fermentation, while the effect of yeast strain and fermentation temperature (15 and 25 °C) was also evaluated. The PABs contained ethanol in the ranges of 5.6–7.0% v/v, in combination with glycerol (2.65–6.05 g L−1), and low volatile acidity. Total flavonoid content, total phenolic content, free radical-scavenging activity, and total monomeric anthocyanin content appeared to decrease after fermentation, possibly due to hydrolysis, oxidation, and other reactions. In general, PABs retained 81–91% of free radical-scavenging activity, 29–41% of phenolics, 24–55% of flavonoids, and 66–75% of anthocyanins. The use of different yeast affected mainly flavonoids and anthocyanins, and yeast strain M02 resulted in the highest values after fermentation. In PABs, 30 different volatile compounds were identified, specifically 15 esters, 4 organic acids, 8 alcohols, and 3 terpenes. The principal component analysis showed that the fermentation temperature affected significantly volatile composition, whereas, among the yeasts, WB06 is the one that seems to differentiate. The findings of this study show that the selection of the appropriate yeast and fermentation temperature is very crucial and affects the characteristics of the final product.
Collapse
Affiliation(s)
- Evangelos Kokkinomagoulos
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
| | - Anastasios Nikolaou
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology & Biotechnology, Department of Molecular Biology & Genetics, Democritus University of Thrace, GR-68100 Alexandroupolis, Greece; (A.N.); (Y.K.)
| | - Panagiotis Kandylis
- Laboratory of Oenology and Alcoholic Beverages, Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 235, 54124 Thessaloniki, Greece;
- Correspondence: or ; Tel.: +30-2310-991-678
| |
Collapse
|
42
|
The Effect of Apple Juice Concentration on Cider Fermentation and Properties of the Final Product. Foods 2020; 9:foods9101401. [PMID: 33023161 PMCID: PMC7600676 DOI: 10.3390/foods9101401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 11/17/2022] Open
Abstract
European legislation overall agrees that apple juice concentrate is allowed to be used to some extent in cider production. However, no comprehensive research is available to date on the differences in suitability for fermentation between fresh apple juice and that of reconstituted apple juice concentrate. This study aimed to apply freshly pressed juice and juice concentrate made from the same apple cultivar as a substrate for cider fermentation. Differences in yeast performance in terms of fermentation kinetics and consumption of nutrients have been assessed. Fermented ciders were compared according to volatile ester composition and off-flavor formation related to hydrogen sulfide. Based on the results, in the samples fermented with the concentrate, the yeasts consumed less fructose. The formation of long-chain fatty acid esters increased with the use of reconstituted juice concentrate while the differences in off-flavor formation could not be determined. Overall, the use of the concentrate can be considered efficient enough for the purpose of cider fermentation. However, some nutritional supplementation might be required to support the vitality of yeast.
Collapse
|
43
|
Al Daccache M, Koubaa M, Maroun RG, Salameh D, Louka N, Vorobiev E. Impact of the Physicochemical Composition and Microbial Diversity in Apple Juice Fermentation Process: A Review. Molecules 2020; 25:molecules25163698. [PMID: 32823772 PMCID: PMC7464816 DOI: 10.3390/molecules25163698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/16/2022] Open
Abstract
Fermented apple beverages are produced all over the world with diverse characteristics associated with each country. Despite the diversifications, cider producers are confronted with similar issues and risks. The nature of the raw material, also known as the fermentation medium, plays a key role in fermentation. A well-defined composition of apples is, therefore, required to produce cider with good quality. In addition, ferment and its metabolism are important factors in the fermentation process. The producers of cider and other alcoholic beverages are looking in general for novel yeast strains or for the use of native strains to produce "authentic" and diversified beverages that are distinct from each other, and that attract more and more consumers. Research articles on cider production are infrequent compared to wine production, especially on the impact of the chemical composition and microbial diversity of apples on fermentation. Even though the processing of fermented beverages is close in terms of microbial interactions and production, the study of the specific properties of apples and the production challenges of cider production is advantageous and meaningful for cider producers. This review summarizes the current knowledge on apple composition and the impact of the must composition on fermentation and yeast growth. In addition, the microbial diversity of cider, activities, and its influence on fermentation are reviewed.
Collapse
Affiliation(s)
- Marina Al Daccache
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Mohamed Koubaa
- ESCOM, UTC, EA 4297 TIMR, 1 allée du réseau Jean-Marie Buckmaster, 60200 Compiègne, France
- Correspondence: ; Tel.: +33-3442-38841
| | - Richard G. Maroun
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Dominique Salameh
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Nicolas Louka
- Laboratoire CTA, UR TVA, Centre d’Analyses et de Recherche, Faculté des Sciences, Université Saint-Joseph, Beyrouth 1104 2020, Lebanon; (R.G.M.); (D.S.); (N.L.)
| | - Eugène Vorobiev
- Sorbonne University, Université de technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu, CEDEX CS 60319, 60203 Compiègne, France; (M.A.D.); (E.V.)
| |
Collapse
|
44
|
Gâtlan AM, Gutt G, Naghiu A. Capitalization of sea buckthorn waste by fermentation: Optimization of industrial process of obtaining a novel refreshing drink. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Anca Mihaela Gâtlan
- Food Engineering Faculty “Ștefan cel Mare” University of Suceava Suceava Romania
| | - Gheorghe Gutt
- Food Engineering Faculty “Ștefan cel Mare” University of Suceava Suceava Romania
| | - Anca Naghiu
- Research Institute for Analytical Instrumentation Cluj‐Napoca Romania
| |
Collapse
|
45
|
Lemos Junior WJ, Binati RL, Felis GE, Slaghenaufi D, Ugliano M, Torriani S. Volatile organic compounds from Starmerella bacillaris to control gray mold on apples and modulate cider aroma profile. Food Microbiol 2020; 89:103446. [DOI: 10.1016/j.fm.2020.103446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 01/18/2023]
|
46
|
Abstract
In recent years, vessels have been discovered that contain the remains of wine with an age close to 7000 years. It is unclear whether, in ancient times, humans accidentally stumbled across fermented beverages like wine or beer, or was it a product intended as such. What is a fact is that since then, alcoholic beverages have been part of the diet and culture of many of the civilizations that have preceded us. The typical examples of beer and wine are an example of many other drinks resulting from the action of yeasts. In addition to these two beverages, various companies have developed other types of fermented foods and non-alcoholic beverages prepared in a traditional or commercial manner. The climatic conditions, the availability of raw material and the preferences of each region have conditioned and favored the maintenance of some of these products. In addition to the aforementioned traditional alcoholic beverages produced from fruits, berries, or grains, humans use yeast in the production of chemical precursors, global food processing such as coffee and chocolate, or even wastewater processing. Yeast fermentation is not only useful in food manufacturing. Its uses extend to other products of high interest such as the generation of fuel from vegetable sources.
Collapse
Affiliation(s)
- Sergi Maicas
- Departament de Microbiologia i Ecologia, Facultat de Ciències Biològiques, Universitat de València, 46100 Burjassot, País Valencià, Spain
| |
Collapse
|
47
|
Rêgo ESB, Rosa CA, Freire AL, Machado AMDR, Gomes FDCO, Costa ASPD, Mendonça MDC, Hernández-Macedo ML, Padilha FF. Cashew wine and volatile compounds produced during fermentation by non-Saccharomyces and Saccharomyces yeast. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
48
|
Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109064] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Lao Y, Zhang M, Li Z, Bhandari B. A novel combination of enzymatic hydrolysis and fermentation: Effects on the flavor and nutritional quality of fermented Cordyceps militaris beverage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108934] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
|