1
|
Dan H, Li H, Li C, Fang Z, Hu B, Chen H, Wang C, Chen S, Hui T, Wu W, Zeng Z, Liu Y. Application of sourdough in gluten-free bakery products. Crit Rev Food Sci Nutr 2024:1-21. [PMID: 38783748 DOI: 10.1080/10408398.2024.2356256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACTSIn recent years, the demand for gluten-free (GF) bakery products has grown rapidly due to the remarkable rising number of celiac patients and the increasing health awareness of GF products. However, GF products generally suffer from defects such as poor sensorial level, low nutritional value, high prices and short shelf life. Sourdough is the important starter culture applied in bakery field, and it has been proven to be ideal for enhancing the overall quality of bakery products. This review aims to systematically reviewed the application of sourdough in GF bakery products and its improvement to GF bakery products in terms of texture, shelf life, nutrition and flavor. Its positive effects derive from the complex metabolic activities of sourdough microorganisms, such as acidification, proteolysis, production of exopolysaccharides (EPS), activation of endogenous enzymes, and production of antibacterial substances. Finally, researchers are encouraged to expand the use of sourdough in GF bakery products to increase the variety of GF products. And the technical and nutritional potential of sourdough should be developed more widely.
Collapse
Affiliation(s)
- Hangyan Dan
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Sichuan Yaomazi Food Co., Ltd, Meishan, Sichuan, China
| | - Hongyu Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Bin Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Caixia Wang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Saiyan Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Teng Hui
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Wenjuan Wu
- College of Science, Sichuan Agricultural University, Yaan, China
| | - Zhen Zeng
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yuntao Liu
- College of Food Science, Sichuan Agricultural University, Yaan, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Yaan, China
| |
Collapse
|
2
|
Rosseto M, Rigueto CVT, Gomes KS, Krein DDC, Loss RA, Dettmer A, Richards NSPDS. Whey filtration: a review of products, application, and pretreatment with transglutaminase enzyme. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3185-3196. [PMID: 38151774 DOI: 10.1002/jsfa.13248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
In the cheese industry, whey, which is rich in lactose and proteins, is underutilized, causing adverse environmental impacts. The fractionation of its components, typically carried out through filtration membranes, faces operational challenges such as membrane fouling, significant protein loss during the process, and extended operating times. These challenges require attention and specific methods for optimization and to increase efficiency. A promising strategy to enhance industry efficiency and sustainability is the use of enzymatic pre-treatment with the enzyme transglutaminase (TGase). This enzyme plays a crucial role in protein modification, catalyzing covalent cross-links between lysine and glutamine residues, increasing the molecular weight of proteins, facilitating their retention on membranes, and contributing to the improvement of the quality of the final products. The aim of this study is to review the application of the enzyme TGase as a pretreatment in whey protein filtration. The scope involves assessing the enzyme's impact on whey protein properties and its relationship with process performance. It also aims to identify both the optimization of operational parameters and the enhancement of product characteristics. This study demonstrates that the application of TGase leads to improved performance in protein concentration, lactose permeation, and permeate flux rate during the filtration process. It also has the capacity to enhance protein solubility, viscosity, thermal stability, and protein gelation in whey. In this context, it is relevant for enhancing the characteristics of whey, thereby contributing to the production of higher quality final products in the food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Marieli Rosseto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Cesar Vinicius Toniciolli Rigueto
- Rural Science Center, Postgraduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Karolynne Sousa Gomes
- Graduate Program in Food Engineering and Science, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Raquel Aparecida Loss
- Food Engineering Department, Faculty of Architecture and Engineering (FAE), Mato Grosso State University (UNEMAT), Barra do Bugres, Brazil
| | - Aline Dettmer
- Postgraduate Program in Food Science and Technology (PPGCTA), Institute of Technology (ITec), University of Passo Fundo (UPF), Passo Fundo, Brazil
| | | |
Collapse
|
3
|
Kim JY, Song HJ, Cheon S, An S, Lee CS, Kim SH. Comparison of three different lactic acid bacteria-fermented proteins on RAW 264.7 osteoclast and MC3T3-E1 osteoblast differentiation. Sci Rep 2023; 13:21575. [PMID: 38062113 PMCID: PMC10703878 DOI: 10.1038/s41598-023-49024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Osteoporosis is a state of bone weakening caused by an imbalance in osteoblast and osteoclast activity. In this study, the anti-osteoporotic effects of three proteins fermented by lactic acid bacteria (LAB) were assessed. Commercial proteins sodium caseinate (SC), whey protein isolate (WPI), and soy protein isolate (SPI) were fermented by LAB strains for 48 h. The fermented products (F-SC, F-WPI, and F-SPI, respectively) were used in an in vitro osteoclast and osteoblast-like cell model to assess their effects on bone health. Despite no difference in the results of TRAP staining of RANKL-induced osteoclastogenesis, F-WPI and F-SPI were effective in normalizing the altered gene expression of osteoclastogenesis markers such as TRAP, Nfatc1, RANK, and ATP6v0d. F-SPI was also effective in modulating osteoblasts by enhancing the expression of the osteoblastogenesis markers T1Col, Col2a, and OSX to levels higher than those in the SPI group, indicating that protein characteristics could be enhanced through bacterial fermentation. Moreover, these boosted effects of F-SPI may be involved with isoflavone-related metabolism during LAB-fermentation of SPI. These results demonstrate the potential of LAB-fermented proteins as dietary supplements to prevent bone loss. However, further understanding of its effects on balancing osteoblasts and osteoclasts and the underlying mechanisms is needed.
Collapse
Affiliation(s)
- Jae-Young Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Ji Song
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sejin Cheon
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seokyoung An
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Chul Sang Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Sae Hun Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Pinel P, Emmambux MN, Bourlieu C, Micard V. Nutritional contributions and processability of pasta made from climate-smart, sustainable crops: A critical review. Crit Rev Food Sci Nutr 2023:1-31. [PMID: 37937848 DOI: 10.1080/10408398.2023.2271952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Total or partial replacement of traditional durum wheat semolina (DWS) by alternative flours, such as legumes or wholegrain cereals in pasta improves their nutritional quality and can make them interesting vector for fortification. Climate-smart gluten-free (C-GF) flours, such as legumes (bambara groundnut, chickpea, cowpea, faba bean, and pigeon pea), some cereals (amaranth, teff, millet, and sorghum), and tubers (cassava and orange fleshed sweet potato), are of high interest to face ecological transition and develop sustainable food systems. In this review, an overview and a critical analysis of their nutritional potential for pasta production and processing conditions are undertaken. Special emphasis is given to understanding the influence of formulation and processing on techno-functional and nutritional (starch and protein digestibility) properties. Globally C-GF flours improve pasta protein quantity and quality, fibers, and micronutrients contents while keeping a low glycemic index and increasing protein digestibility. However, their use introduces anti-nutritional factors and could lead to the alteration of their techno-functional properties (higher cooking losses, lower firmness, and variability in color in comparison to classical DWS pasta). Nevertheless, these alternative pasta remain more interesting in terms of nutritional and techno-functional quality than traditional maize and rice-based gluten free pasta.
Collapse
Affiliation(s)
- P Pinel
- UMR IATE, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - M N Emmambux
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | - C Bourlieu
- UMR IATE, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| | - V Micard
- UMR IATE, INRAE, Institut Agro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
5
|
Kim MS, Chang YH. Physicochemical, structural and in vitro gastrointestinal tract release properties of ι-carrageenan/sodium caseinate synbiotic microgels produced by double-crosslinking with calcium ions and transglutaminase. Food Chem 2023; 414:135707. [PMID: 36841104 DOI: 10.1016/j.foodchem.2023.135707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/15/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The aim of this study was to develop ι-carrageenan (ιC)/sodium caseinate (NaCas) synbiotic microgels loading Lacticasebacillus paracasei produced by double-crosslinking with calcium ions and different concentrations (0, 5, 10, and 15 U/g protein) of transglutaminase (TGase). The synbiotic microgels were coated/filled with pectic oligosaccharide (POS). Field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) analyses indicated that L. paracasei was successfully microencapsulated in synbiotic microgels. In Fourier transform infrared (FT-IR) analysis, the new formation of covalent and ionic crosslinking was observed in double-crosslinked synbiotic microgels. The encapsulation efficiency of L. paracasei was significantly increased from 87.82 to 97.68 % by increasing the concentration of TGase from 0 to 15 U/g protein, respectively. After exposure to simulated gastric fluid for 2 h and simulated intestinal fluid for 4 h, the survival rate of L. paracasei was significantly increased as the concentration of TGase increased.
Collapse
Affiliation(s)
- Min Su Kim
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon Hyuk Chang
- Department of Food and Nutrition, and Bionanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
6
|
Rachman A, Brennan MA, Morton J, Torrico D, Brennan CS. In-vitro digestibility, protein digestibility corrected amino acid, and sensory properties of banana-cassava gluten-free pasta with soy protein isolate and egg white protein addition. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Srikanlaya C, Zhou W, Therdthai N, Ritthiruangdej P. Effect of hydroxypropyl methylcellulose, protein and fat on predicted glycemic index and antioxidant property of gluten‐free bread from rice flour. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Weibiao Zhou
- Department of Food Science and Technology National University of Singapore, 2 Science Drive 2 Singapore
| | - Nantawan Therdthai
- Department of Product Development, Faculty of Agro‐Industry Kasetsart University Bangkok
| | | |
Collapse
|
8
|
Carpentieri S, Larrea-Wachtendorff D, Donsì F, Ferrari G. Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Ertaş N, Aslan M, Çevik A. Improvement of Structural and Nutritional Quality of Gluten Free Pasta. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2022. [DOI: 10.1080/15428052.2021.2020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nilgün Ertaş
- Department of Food Engineering, Engineering and Architecture Faculty, Necmettin Erbakan University, Koyceğiz Campus, Konya, Turkey
| | - Mine Aslan
- Department of Food Engineering, Engineering and Architecture Faculty, Necmettin Erbakan University, Koyceğiz Campus, Konya, Turkey
| | - Asuman Çevik
- Department of Food Engineering, Engineering and Architecture Faculty, Necmettin Erbakan University, Koyceğiz Campus, Konya, Turkey
| |
Collapse
|
10
|
Gharekhani M, Nami Y, Aalami M, Hejazi MA. Sourdoughs fermented by autochthonous Lactobacillus strains improve the quality of gluten-free bread. Food Sci Nutr 2021; 9:6372-6381. [PMID: 34760267 PMCID: PMC8565236 DOI: 10.1002/fsn3.2609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 08/28/2021] [Indexed: 11/25/2022] Open
Abstract
Sourdoughs based on fermentation by lactobacilli have the potential to produce gluten-free maize-based bread with acceptable technological and rheological characteristics, nutritional quality, and more prolonged shelf life. Of the 17 treatments compared (with or without sourdough, and involving single and multiple LAB species), treatments 12C (Lactobacillus brevis, L sanfranciscensis + L. plantarum), and 8C (L. brevis + L. paralimentarius) showed the lowest rate of complex modulus, while treatments 11C (L. sanfranciscensis + L. brevis + L. paralimentarius) and 2C (L. brevis) led to the greatest reduction in baking loss. The crumb moisture content of all of the formulations decreased with storage. Breads produced with treatment 2C (L. brevis) had the highest crumb moisture content when freshly baked, while loaves produced with treatment 3C (L. paralimentarius) had the highest crumb moisture content after four days of storage. A sensory evaluation indicated that sourdough-based maize breads were superior to both control and chemically acidified breads. The optimal treatments were to use sourdough seeded with treatment 2C (L. brevis), with treatment 4C (L. plantarum), with treatment 8C (L. brevis + L. paralimentarius), or with treatment 11C (L. sanfranciscensis + L. brevis + L. paralimentarius).
Collapse
Affiliation(s)
- Mehdi Gharekhani
- Department of Food Science and TechnologyIslamic Azad UniversityTabrizIran
| | - Yousef Nami
- Department of Food BiotechnologyAgricultural Research, Education and Extension Organization (AREEO)Agricultural Biotechnology Research Institute of IranTabrizIran
| | - Mehran Aalami
- Department of Food Science and TechnologyGorgan University of Agriculture Sciences and Natural ResourcesGorganIran
| | - Mohammad Amin Hejazi
- Department of Food BiotechnologyAgricultural Research, Education and Extension Organization (AREEO)Agricultural Biotechnology Research Institute of IranTabrizIran
| |
Collapse
|
11
|
Sajid Mushtaq B, Zhang W, Al-Ansi W, Ul Haq F, Rehman A, Omer R, Mahmood Khan I, Niazi S, Ahmad A, Ali Mahdi A, Al-Maqtari QA, Walayat N, Wang L. A Critical Review on the Development, Physicochemical Variations and Technical Concerns of Gluten Free Extrudates in Food Systems. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1976793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wenhui Zhang
- Institute of Food Science, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, Tibet, China
| | - Waleed Al-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Faizan Ul Haq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Abdur Rehman
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Imran Mahmood Khan
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Sobia Niazi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Aqsa Ahmad
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Qais Ali Al-Maqtari
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou, China
| | - Li Wang
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Salama M, Mu T, Sun H. Influence of sweet potato flour on the microstructure and nutritional quality of gluten‐free fresh noodles. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mahmoud Salama
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District Beijing100193China
- Food Science Department Faculty of Agriculture Cairo University Giza Egypt
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District Beijing100193China
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs No. 2 Yuan Ming Yuan West Road, Haidian District Beijing100193China
| |
Collapse
|
14
|
Sharma R, Sharma S, Dar B, Singh B. Millets as potential nutri‐cereals: a review of nutrient composition, phytochemical profile and techno‐functionality. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rajan Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - Savita Sharma
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| | - B.N. Dar
- Department of Food Technology Islamic University of Science & Technology 1‐University Avenue Awantipora Srinagar Kashmir192122India
| | - Baljit Singh
- Department of Food Science & Technology Punjab Agricultural University Ludhiana141001India
| |
Collapse
|
15
|
Nguyen SN, Tu Ngo TC, Tra Tran TT, Nguyet Ton NM, Man Le VV. Pasta from cellulase-treated wheat bran and durum semolina: Effects of vital gluten addition and/or transglutaminase treatment. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Rahim Monfared M, Nouri L. Incorporation of
Sesamum indicum
protein and transglutaminase into gluten‐free rice flour cake: Assessment of physico‐chemical and sensory properties. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masoumeh Rahim Monfared
- Department of Food Science and Technology, Damghan Branch Islamic Azad University Damghan, Semnan Iran
| | - Leila Nouri
- Department of Food Science and Technology, Damghan Branch Islamic Azad University Damghan, Semnan Iran
| |
Collapse
|
17
|
Ungureanu-Iuga M, Dimian M, Mironeasa S. Development and quality evaluation of gluten-free pasta with grape peels and whey powders. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Kamali Rousta L, Ghandehari Yazdi AP, Amini M. Optimization of athletic pasta formulation by D-optimal mixture design. Food Sci Nutr 2020; 8:4546-4554. [PMID: 32884734 PMCID: PMC7455935 DOI: 10.1002/fsn3.1764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of this study was to produce an athletic pasta by the addition of various sources of protein. For this purpose, D-optimal mixture design used for optimization of formulation of athletic pasta and protein with considering the hardness as main parameter. Various properties of the optimized formulation were evaluated. The optimal formulation contained 45.41% of semolina, 24% of pea protein isolate (PPI), 18% of oat flour (OF), 5% of soy protein isolate (SPI), 5% whey protein isolate (WPI), and 2% of gluten (G). In optimized formulation, the protein content increased by more than 2.9 times compared to control with the hardness in the range (569 g). Hardness, optimal cooking time, and cooking loss of products increased as the level of protein increased. The optimal formulation had a higher sensory acceptance than the control, which is probably related to color changes. Due to the amount and biological value of the proteins used and the high acceptance obtained, this formulation can be suggested for athletes. The obtained results indicated that production of athletic pasta with high biological value by using mixture of SPI, PPI, WPI, OF, and G is possible.
Collapse
Affiliation(s)
- Leila Kamali Rousta
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| | | | - Mahdi Amini
- Department of Food Research and DevelopmentZar Research and Industrial Development GroupAlborzIran
| |
Collapse
|
19
|
Bai YP, Zhou HM. Impact of aqueous ozone mixing on microbiological, quality and physicochemical characteristics of semi-dried buckwheat noodles. Food Chem 2020; 336:127709. [PMID: 32763738 DOI: 10.1016/j.foodchem.2020.127709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 06/20/2020] [Accepted: 07/28/2020] [Indexed: 01/30/2023]
Abstract
The microbiological, microstructural, and physicochemical impact of aqueous ozone mixing (AOM) on semi-dried buckwheat noodles (SBWN) was elucidated in this study. Microbiological measurements declared that AOM reduced the initial total plate count (TPC) of SBWN significantly (P < 0.05) with a prolonged shelf-life of 2 ~ 5 days. Meanwhile, AOM reduced the cooking loss and water absorption along with the enhancement of hardness and tension force. Scanning electron microscopy (SEM) showed that the protein network of surface and cross section became continuous and compact, and wrapped starch granules more effectively. Moreover, an obvious increase in the intensity of the high molecular protein bands was observed in the sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) patterns. Furthermore, the sodium dodecyl sulfate extractable protein (SDSEP) under non-reducing condition obviously decreased, and then the SDSEP under reducing condition changed insignificantly (P > 0.05). These results indicated that AOM mainly promoted the protein cross-linking of SBWN by disulfide bond (SS) cross-links.
Collapse
Affiliation(s)
- Yi-Peng Bai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Hui-Ming Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
20
|
Kumar P, Kaur C, Sethi S, Kaur Jambh H. Effect of extruded finger millet on dough rheology and functional quality of pearl millet‐based unleavened flatbread. Cereal Chem 2020. [DOI: 10.1002/cche.10321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Pankaj Kumar
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Charanjit Kaur
- Division of Food Science and Post‐Harvest Technology ICAR‐Indian Agricultural Research Institute New Delhi India
| | - Swati Sethi
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| | - Harpreet Kaur Jambh
- Food Grains and Oilseeds Processing Division ICAR‐Central Institute of Post‐Harvest Engineering & Technology Ludhiana India
| |
Collapse
|
21
|
Ndiaye C, Martinez MM, Hamaker BR, Campanella OH, Ferruzzi MG. Effect of edible plant materials on provitamin A stability and bioaccessibility from extruded whole pearl millet (P. typhoides) composite blends. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Kiyat WE, Christopher A, Rianti A, Pari RF. Application of Transglutaminase in Developing Cassava-based Wet Noodle for Quality and Shelf Life Improvement: A Review. Recent Pat Food Nutr Agric 2020; 11:229-234. [PMID: 31976850 DOI: 10.2174/2212798411666200124105614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Characteristic of cassava flour is relatively similar to wheat flour. Cassava flour has the potential to substitute 70-80% of wheat flour as the main ingredient for wet noodle production. Unfortunately, cassava flour has no gluten and lower protein content than wheat flour, which is important for the characteristic of a wet noodle. Therefore, transglutaminase (MTGase) is often applied in non-gluten products to improve its texture. This enzyme catalyzes the reaction between lysine and glutamine to form isopeptide cross-links. Moreover, the addition of MTGase to cassava-based wet noodle improves its texture and color. In addition, this effect gives better palatability for wet noodle. This enzyme can increase the shelf life of wet noodles and safe for our health. The present study demonstrates with patent and literature data the potential of MTGase in noodles based on cassava flour.
Collapse
Affiliation(s)
- Warsono El Kiyat
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Alvin Christopher
- Department of Nutrition and Food Technology, Faculty of Life Sciences, Surya University, Tangerang, Indonesia
| | - Angelina Rianti
- Department of Nutrition and Food Technology, Faculty of Life Sciences, Surya University, Tangerang, Indonesia
| | - Rizfi F Pari
- Biotechnology Study Program, Multidisciplinary Graduate Program, Agricultural University, Bogor, Indonesia
| |
Collapse
|
23
|
Liu X, Mu T, Sun H, Zhang M, Chen J, Fauconnier ML. Effect of ingredients on the quality of gluten-free steamed bread based on potato flour. Journal of Food Science and Technology 2019; 56:2863-2873. [PMID: 31205342 DOI: 10.1007/s13197-019-03730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/19/2023]
Abstract
Response surface methodology was used to analyze effects of the amounts of pregelatinized potato flour (PGPF), hydroxypropylmethylcellulose (HPMC), egg white protein (EWP), and water on the dough fermentation and physical properties of gluten-free (GF) steamed bread based on potato flour. The results showed that PGPF, HPMC, EWP, and water at the appropriate amounts improved the maximum dough height (H m), specific volume (SV) and hardness, as well as H m correlated with SV (R 2 = 0.6993) and hardness (R 2 = 0.7273). Moreover, the optimal formulation contained 4.84 g/100 g PGPF, 1.68 g/100 g HPMC, 5.87 g/100 g EWP, and 69.69 g/100 g water, potato flour basis. Furthermore, the dietary fiber, total polyphenol content, antioxidant activity, and estimated glycemic index of the steamed GF bread were, respectively, 3.17-, 1.56-, 1.44-, and 0.75-fold of those of steamed wheat bread. The optimized steamed GF bread was found to be acceptable according to the results of sensory analysis. Information collected within this study may provide further insight for optimizing the formulation of steamed GF bread based on potato flour.
Collapse
Affiliation(s)
- Xingli Liu
- 1School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450000 People's Republic of China
| | - Taihua Mu
- 2Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan west road, Haidian, Beijing, 100193 People's Republic of China
| | - Hongnan Sun
- 2Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan west road, Haidian, Beijing, 100193 People's Republic of China
| | - Miao Zhang
- 2Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan west road, Haidian, Beijing, 100193 People's Republic of China
| | - Jingwang Chen
- 2Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan west road, Haidian, Beijing, 100193 People's Republic of China
- 3Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés, 2-5030 Gembloux, Belgium
| | - Marie Laure Fauconnier
- 3Laboratory of General and Organic Chemistry, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés, 2-5030 Gembloux, Belgium
| |
Collapse
|