1
|
Cheruvari A, Kammara R. Genomic Characterization and Probiotic Properties of Lactiplantibacillus pentosus Isolated from Fermented Rice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10378-1. [PMID: 39433653 DOI: 10.1007/s12602-024-10378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2024] [Indexed: 10/23/2024]
Abstract
The aim of the study was the preliminary genetic and phenotypic characterization of a potential probiotic strain of Lactiplantibacillus pentosus (strain krglsrbmofpi2) obtained from traditionally fermented rice. Genome sequencing revealed that the strain has a 3.7-Mb genome with a GC content of 46 and a total of 3192 protein-coding sequences. Using bioinformatic methods, we have successfully identified phage genes, plasmids, pathogenicity, antibiotic resistance and a variety of bacteriocins. Through comprehensive biochemical and biophysical analyses, we have gained valuable insights into its auto-aggregation, co-aggregation, antibiotic resistance, hydrophobicity, antioxidant activity and tolerance to simulated gastrointestinal conditions. The safety evaluation of the isolated L. pentosus was performed on the basis of its haemolytic activity. Our studies have shown that this strain has a strong antagonistic activity against the priority pathogens identified by the World Health Organization such as Vibrio cholerae, Clostridium perfringens, Salmonella enterica subsp. enterica ser. Typhi, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus. It is essential to fully understand the genetic and functional properties of the L. pentosus strain before considering its use as a useful probiotic in the food industry.
Collapse
Affiliation(s)
- Athira Cheruvari
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajagopal Kammara
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhou X, Xu Q, Zhang X, Wang H, Bai Y, Wu Y, Liu X, Wang Z, Hu J, Huang M, Pi Y, Zhao J, Wang J, Han D. Mucin alleviates colonic barrier dysfunction by promoting spermine accumulation through enhanced arginine metabolism in Limosilactobacillus mucosae. mSystems 2024; 9:e0024624. [PMID: 38564708 PMCID: PMC11097634 DOI: 10.1128/msystems.00246-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Dietary fiber deprivation is linked to probiotic extinction, mucus barrier dysbiosis, and the overgrowth of mucin-degrading bacteria. However, whether and how mucin could rescue fiber deprivation-induced intestinal barrier defects remains largely unexplored. Here, we sought to investigate the potential role and mechanism by which exogenous mucin maintains the gut barrier function. The results showed that dietary mucin alleviated fiber deprivation-induced disruption of colonic barrier integrity and reduced spermine production in vivo. Importantly, we highlighted that microbial-derived spermine production, but not host-produced spermine, increased significantly after mucin supplementation, with a positive association with upgraded colonic Lactobacillus abundance. After employing an in vitro model, the microbial-derived spermine was consistently dominated by both mucin and Lactobacillus spp. Furthermore, Limosilactobacillus mucosae was identified as an essential spermine-producing Lactobacillus spp., and this isolated strain was responsible for spermine accumulation, especially after adhering to mucin in vitro. Specifically, the mucin-supplemented bacterial supernatant of Limosilactobacillus mucosae was verified to promote intestinal barrier functions through the increased spermine production with a dependence on enhanced arginine metabolism. Overall, these findings collectively provide evidence that mucin-modulated microbial arginine metabolism bridged the interplay between microbes and gut barrier function, illustrating possible implications for host gut health. IMPORTANCE Microbial metabolites like short-chain fatty acids produced by dietary fiber fermentation have been demonstrated to have beneficial effects on intestinal health. However, it is essential to acknowledge that certain amino acids entering the colon can be metabolized by microorganisms to produce polyamines. The polyamines can promote the renewal of intestinal epithelial cell and maintain host-microbe homeostasis. Our study highlighted the specific enrichment by mucin on promoting the arginine metabolism in Limosilactobacillus mucosae to produce spermine, suggesting that microbial-derived polyamines support a significant enhancement on the goblet cell proliferation and barrier function.
Collapse
Affiliation(s)
- Xingjian Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qian Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yujun Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenyu Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Hu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Mingyi Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Onur M, Önlü H. Isolation, characterization of Weissella confusa and Lactococcus lactis from different milk sources and determination of probiotic features. Braz J Microbiol 2024; 55:663-679. [PMID: 38158467 PMCID: PMC10920558 DOI: 10.1007/s42770-023-01208-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to investigate the probiotic properties of Lactic Acid Bacteria (LAB) isolates derived from various milk sources. These isolates identified based on their morphological characteristics and 16S rRNA gene sequencing. Four strains of Lactococcus lactis and two strains of Weissella confusa were identified with over 96% 16S rRNA gene similarity according to the NCBI-BLAST results. The survival of the isolates was determined in low pH, pepsin, bile salts, and pancreatin, and their adhesion ability was assessed by in vitro cell adhesion assay, hydrophobicity, auto- and co-aggregation, and safety criteria were determined by hemolytic, gelatinase activities, and DNAse production ability tests. The results showed that the LAB isolates had different levels of resistance to various stress factors. L. lactis subsp. cremoris MH31 showed the highest resistance to bile salt, while the highest pH resistance was observed in L. lactis MH31 at pH 3.0. All the isolates survived in pepsin exposure at pH 3.0 for 3 h. The auto-aggregation test results showed that all strains exhibited auto-aggregation ranging from 84.9 to 91.4%. Co-aggregation percentage ranged from 19 - 54% and 17 - 57% against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, respectively. The hydrophobicity capacity of the LAB isolated ranged from 35-61%. These isolates showed different adhesion abilities to Caco-2 cells (81.5% to 92.6%). None of the isolates exhibited DNase, gelatinase and hemolytic activity (γ-hemolysis). All results indicate that these LAB strains have the potential to be used as probiotics.
Collapse
Affiliation(s)
- Melda Onur
- Ministry of Agriculture and Forestry, Istanbul, Türkiye
| | - Harun Önlü
- Department of Food Processing, Vocational School of Technical Sciences, Muş Alparslan University, Muş, Türkiye.
- Department of Molecular Biology and Genetics, Muş Alparslan University, Muş, Türkiye.
| |
Collapse
|
4
|
Skoufou M, Tsigalou C, Vradelis S, Bezirtzoglou E. The Networked Interaction between Probiotics and Intestine in Health and Disease: A Promising Success Story. Microorganisms 2024; 12:194. [PMID: 38258020 PMCID: PMC10818559 DOI: 10.3390/microorganisms12010194] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Probiotics are known to promote human health either precautionary in healthy individuals or therapeutically in patients suffering from certain ailments. Although this knowledge was empirical in past tomes, modern science has already verified it and expanded it to new limits. These microorganisms can be found in nature in various foods such as dairy products or in supplements formulated for clinical or preventive use. The current review examines the different mechanisms of action of the probiotic strains and how they interact with the organism of the host. Emphasis is put on the clinical therapeutic use of these beneficial microorganisms in various clinical conditions of the human gastrointestinal tract. Diseases of the gastrointestinal tract and particularly any malfunction and inflammation of the intestines seriously compromise the health of the whole organism. The interaction between the probiotic strains and the host's microbiota can alleviate the clinical signs and symptoms while in some cases, in due course, it can intervene in the underlying pathology. Various safety issues of the use of probiotics are also discussed.
Collapse
Affiliation(s)
- Maria Skoufou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Proctology Department, Paris Saint Joseph Hospital Paris, 75014 Paris, France
| | - Christina Tsigalou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stergios Vradelis
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Department of Gastrenterology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eugenia Bezirtzoglou
- Master Program in “Food, Nutrition and Microbiome”, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (C.T.); (S.V.)
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
5
|
Le MM, Zhong LW, Ren ZW, An MQ, Long YH, Ling TJ. Dynamic Changes in the Microbial Community and Metabolite Profile during the Pile Fermentation Process of Fuzhuan Brick Tea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19142-19153. [PMID: 37827989 DOI: 10.1021/acs.jafc.3c04459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The pile fermentation process of Fuzhuan brick tea is unique in that it involves preheating without the use of starter cultures. The detailed metabolite changes and their drivers during this procedure are not known. Characterizing these unknown changes that occur in the metabolites and microbes during pile fermentation of Fuzhuan brick tea is important for industrial modernization of this traditional fermented food. Using microbial DNA amplicon sequencing, mass spectrometry-based untargeted metabolomics, and feature-based molecular networking, we herein reveal that significant changes in the microbial community occur before changes in the metabolite profile. These changes were characterized by a decrease in Klebsiella and Aspergillus, alongside an increase in Bacillus and Eurotium. The decrease in lysophosphatidylcholines, unsaturated fatty acids, and some astringent flavan-3-ols and bitter amino acids, as well as the increase in some less astringent flavan-3-ols and sweet or umami amino acids, contributed importantly to the overall changes observed in the metabolite profile. The majority of these changes was caused by bacterial metabolism and the corresponding heat generated by it.
Collapse
Affiliation(s)
- Miao-Miao Le
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
- Xianyang Jingwei Fu Tea Co. Ltd., Xianyang 712044, Shaanxi, China
| | - Li-Wen Zhong
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Zhi-Wei Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Mao-Qiang An
- Yiyang Fu Cha Industry Development Co. Ltd., 690 North Datao Road, Yiyang 413000, Hunan, P. R. China
| | - Yan-Hua Long
- School of Life Sciences, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| | - Tie-Jun Ling
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, Anhui, P. R. China
| |
Collapse
|
6
|
Abbasi S, Rafati A, Hosseini SMH, Roohinejad S, Hashemi S, Hashemi Gahruie H, Rashidinejad A. The internal aqueous phase gelation improves the viability of probiotic cells in a double water/oil/water emulsion system. Food Sci Nutr 2023; 11:5978-5988. [PMID: 37823133 PMCID: PMC10563674 DOI: 10.1002/fsn3.3532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 10/13/2023] Open
Abstract
This research studied the viability of probiotic bacterium Lactobacillus plantarum (L. plantarum) encapsulated in the internal aqueous phase (W 1) of a water-in-oil-in-water (W 1/O/W 2) emulsion system, with the help of gelation and different gelling agents. Additionally, the physicochemical, rheological, and microstructural properties of the fabricated emulsion systems were assessed over time under the effect of W 1 gelation. The average droplet size and zeta potential of the control system and the systems fabricated using gelatin, alginate, tragacanth gum, and carrageenan were 14.7, 12.0, 5.1, 6.4, and 7.3 μm and - 21.1, -34.1, -46.2, -38.3, and -34.7 mV, respectively. The results showed a significant increase in the physical stability of the system and encapsulation efficiency of L. plantarum after the W 1 gelation. The internal phase gelation significantly increased the viability of bacteria against heat and acidic pH, with tragacanth gum being the best gelling agent for increasing the viability of L. plantarum (28.05% and 16.74%, respectively). Apparent viscosity and rheological properties of emulsions were significantly increased after the W 1 gelation, particularly in those jellified with alginate. Overall, L. plantarum encapsulation in W 1/O/W 2 emulsion, followed by the W 1 gelation using tragacanth gum as the gelling agent, could increase both stability and viability of this probiotic bacteria.
Collapse
Affiliation(s)
- Shahrokh Abbasi
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | - Alireza Rafati
- Food Science and Technology DepartmentIslamic Azad UniversitySarvestanIran
| | | | - Shahin Roohinejad
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Seyedeh‐Sara Hashemi
- Burn and Wound Healing Research CenterShiraz University of Medical SciencesShirazIran
| | - Hadi Hashemi Gahruie
- Department of Food Science and Technology, School of AgricultureShiraz UniversityShirazIran
| | | |
Collapse
|
7
|
Kaunang TMD, Setiawan AA, Mayulu N, Leonita I, Wijaya A, Yusuf VM, Mahira MFNA, Yudisthira D, Gunawan WB, Taslim NA, Purnomo AF, Sabrina N, Amalia N, Permatasari HK, Nurkolis F. Are probiotics beneficial for obese patients with major depressive disorder? Opinion for future implications and strategies. Front Nutr 2023; 10:1205434. [PMID: 37324742 PMCID: PMC10264610 DOI: 10.3389/fnut.2023.1205434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Affiliation(s)
- Theresia M. D. Kaunang
- Department of Mental Health Sciences, Faculty of Medicine, Sam Ratulangi University-Prof. R. D. Kandou General Hospital, Manado, Indonesia
| | | | - Nelly Mayulu
- Department of Nutrition, Universitas Muhammadiyah Manado, Manado, Indonesia
| | - Ivena Leonita
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Afredo Wijaya
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | | | | | - Dewangga Yudisthira
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - William Ben Gunawan
- Alumnus of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Athaya Febriantyo Purnomo
- Department of Urology, Faculty of Medicine, Universitas Brawijaya - Saiful Anwar General Hospital, Malang, Indonesia
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nindy Sabrina
- Nutrition Program, Faculty of Food Technology and Health, Sahid University of Jakarta, South Jakarta, Indonesia
| | - Nurlinah Amalia
- Biomedical Science Master Program, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Happy Kurnia Permatasari
- Department of Biochemistry and Biomolecular, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| |
Collapse
|
8
|
Elsadek MM, Wang S, Wu Z, Wang J, Wang X, Zhang Y, Yu M, Guo Z, Wang Q, Wang G, Chen Y, Zhang D. Characterization of Bacillus spp. isolated from the intestines of Rhynchocypris lagowskii as a potential probiotic and their effects on fish pathogens. Microb Pathog 2023; 180:106163. [PMID: 37209775 DOI: 10.1016/j.micpath.2023.106163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Probiotics sourced from fish intestinal microbiota have a merit over other bacterial sources due to colonization ability and effective time. This study aimed to evaluate the bacilli isolated from the Rhynchocypris lagowskii intestines and their validity as a probiotic. Three isolates were selected (LSG 2-5, LSG 3-7, and LSG 3-8) and defined by morphological and 16S rRNA analysis as Bacillus velezensis, Bacillus aryabhattai, and Bacillus mojavensis, respectively. Results showed the strain tolerant abilities to gastrointestinal fluid, bile salt, pH, and temperature expotures. Additionally, all bacterial strains showed anti-pathogenic activity against at least four strains out of six tested pathogen strains (Staphylococcus aureus, Aeromonas hydrophila, Escherichia coli, Aeromonas veronii, Edwardsiella, and Aeromonas sobria). The bacterial strains also showed a high percentage of co-aggregation activity, more than 70%, with Aer. hydrophile, Staph. epidermidis, and Klebsiella aerogenes. At the same time, the results of competition, rejection, and substitution activity with Aer. hydrophila and Aer. veronii indicated the ability of the isolated strains to reduce the adhesion of pathogens to mucin. All strains showed safety properties, non-hemolytic, and sensitivity characteristics for most of tested antibiotics. In vivo test after injecting these strains into fish at various concentrations showed no side effects in the internal or external organs of fish compared to controls, proving that this is safe for these fish. Furthermore, the three strains produced lipase, amylase, and protease enzymes. The strains also showed bile salt hydrolase activity and biofilm formation, allowing them to tolerate stressful conditions. Conclusion: Based on these strains characteristics and features, they could be considered a promising candidate probiotic and can be used as an anti-pathogenic, especially in aquaculture.
Collapse
Affiliation(s)
- Mahmoud M Elsadek
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11884, Egypt
| | - Sibu Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zhenchao Wu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Jiajing Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yurou Zhang
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Mengnan Yu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zhixin Guo
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; Tonghua Normal University, College of Life Science, Jilin, Tonghua, 134001, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Guiqin Wang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, 130118, China; College of Life Science, Jilin Agricultural University, Changchun, 130118, China; Changchun University of Architecture and Civil Engineering, Changchun, China.
| |
Collapse
|
9
|
Mileriene J, Aksomaitiene J, Kondrotiene K, Asledottir T, Vegarud GE, Serniene L, Malakauskas M. Whole-Genome Sequence of Lactococcus lactis Subsp. lactis LL16 Confirms Safety, Probiotic Potential, and Reveals Functional Traits. Microorganisms 2023; 11:microorganisms11041034. [PMID: 37110457 PMCID: PMC10145936 DOI: 10.3390/microorganisms11041034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Safety is the most important criteria of any substance or microorganism applied in the food industry. The whole-genome sequencing (WGS) of an indigenous dairy isolate LL16 confirmed it to be Lactococcus lactis subsp. lactis with genome size 2,589,406 bp, 35.4% GC content, 246 subsystems, and 1 plasmid (repUS4). The Nextera XT library preparation kit was used to generate the DNA libraries, and the sequencing was carried out on an Illumina MiSeq platform. In silico analysis of L. lactis LL16 strain revealed non-pathogenicity and the absence of genes involved in transferable antimicrobial resistances, virulence, and formation of biogenic amines. One region in the L. lactis LL16 genome was identified as type III polyketide synthases (T3PKS) to produce putative bacteriocins lactococcin B, and enterolysin A. The probiotic and functional potential of L. lactis LL16 was investigated by the presence of genes involved in adhesion and colonization of the host's intestines and tolerance to acid and bile, production of enzymes, amino acids, and B-group vitamins. Genes encoding the production of neurotransmitters serotonin and gamma-aminobutyric acid (GABA) were detected; however, L. lactis LL16 was able to produce only GABA during milk fermentation. These findings demonstrate a variety of positive features that support the use of L. lactis LL16 in the dairy sector as a functional strain with probiotic and GABA-producing properties.
Collapse
Affiliation(s)
- Justina Mileriene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Jurgita Aksomaitiene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Kristina Kondrotiene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Tora Asledottir
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Gerd Elisabeth Vegarud
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Loreta Serniene
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| | - Mindaugas Malakauskas
- Veterinary Academy, Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilžės Str. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
10
|
Khan FF, Sohail A, Ghazanfar S, Ahmad A, Riaz A, Abbasi KS, Ibrahim MS, Uzair M, Arshad M. Recent Innovations in Non-dairy Prebiotics and Probiotics: Physiological Potential, Applications, and Characterization. Probiotics Antimicrob Proteins 2023; 15:239-263. [PMID: 36063353 DOI: 10.1007/s12602-022-09983-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
Non-dairy sources of prebiotics and probiotics impart various physiological functions in the prevention and management of chronic metabolic disorders, therefore nutraceuticals emerged as a potential industry. Extraction of prebiotics from non-dairy sources is economical and easily implemented. Waste products during food processing, including fruit peels and fruit skins, can be utilized as a promising source of prebiotics and considered "Generally Recognized As Safe" for human consumption. Prebiotics from non-dairy sources have a significant impact on gut microbiota and reduce the population of pathogenic bacteria. Similarly, next-generation probiotics could also be isolated from non-dairy sources. These sources have considerable potential and can give novel strains of probiotics, which can be the replacement for dairy sources. Such strains isolated from non-dairy sources have good probiotic properties and can be used as therapeutic. This review will elaborate on the potential non-dairy sources of prebiotics and probiotics, their characterization, and significant physiological potential.
Collapse
Affiliation(s)
- Fasiha Fayyaz Khan
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan.
| | - Asma Sohail
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Institute of Genomics and Agriculture Biotechnology (NIGAB), National Agriculture Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Asif Ahmad
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Aayesha Riaz
- Faculty of Veterinary & Animal Sciences, Department of Parasitology & Microbiology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Kashif Sarfraz Abbasi
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Muhammad Sohail Ibrahim
- Institute of Food and Nutritional Sciences (IFNS), Department of Food Technology, Pir Mehr Ali Shah (PMAS), Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Mohammad Uzair
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| |
Collapse
|
11
|
Li ZT, Wang YY, Ji HY, Jiang Y, Gao MJ, Zhan XB, Jin Z. In-vitro dynamic fermentation simulation colon reactor for gut microbiota incubation. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
12
|
Production and evaluation of a functional fruit beverage consisting of mango juice and probiotic bacteria. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
13
|
Huligere SS, Chandana Kumari VB, Alqadi T, Kumar S, Cull CA, Amachawadi RG, Ramu R. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front Microbiol 2023; 13:1042263. [PMID: 36756202 PMCID: PMC9901530 DOI: 10.3389/fmicb.2022.1042263] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023] Open
Abstract
Probiotic microbiota plays a vital role in gastrointestinal health and possesses other beneficial attributes such as antimicrobial and antibiotic agents along with a significant role in the management of diabetes. The present study identifies the probiotic potential of Lactobacillus spp. isolated from three traditionally fermented foods namely, jalebi, medhu vada, and kallappam batters at biochemical, physiological, and molecular levels. By 16S rRNA gene amplification and sequencing, the isolates were identified. A similarity of >98% to Lacticaseibacillus rhamnosus RAMULAB13, Lactiplantibacillus plantarum RAMULAB14, Lactiplantibacillus pentosus RAMULAB15, Lacticaseibacillus paracasei RAMULAB16, Lacticaseibacillus casei RAMULAB17, Lacticaseibacillus casei RAMULAB20, and Lacticaseibacillus paracasei RAMULAB21 was suggested when searched for homology using NCBI database. Utilizing the cell-free supernatant (CS), intact cells (IC), and cell-free extract (CE) of the isolates, inhibitory potential activity against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase was assessed. CS, CE, and IC of the isolates had a varying capability of inhibition against α-glucosidase (15.08 to 59.55%) and α-amylase (18.79 to 63.42%) enzymes. To assess the probiotic potential of seven isolates, various preliminary characteristics were examined. All the isolates exhibited substantial tolerance toward gastrointestinal conditions and also demonstrated the highest survival rate (> 99%), hydrophobicity (> 65%), aggregation (> 76%), adherence to HT-29 cells (> 84%), and chicken crop epithelial cells suggesting that the isolates had a high probiotic attribute. Additionally, the strains showed remarkable results in safety assessment assays (DNase and hemolytic), and antibacterial and antibiotic evaluations. The study concludes that the lactic acid bacteria (LAB) characterized possesses outstanding probiotic properties and has antidiabetic effects. In order to obtain various health advantages, LAB can be utilized as probiotic supplements.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,Raghavendra G. Amachawadi,
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Ramith Ramu,
| |
Collapse
|
14
|
Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023; 12:foods12010223. [PMID: 36613437 PMCID: PMC9818903 DOI: 10.3390/foods12010223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Lacticaseibacillus paracasei (formerly Lactobacillus paracasei) is a nomadic lactic acid bacterium (LAB) that inhabits a wide variety of ecological niches, from fermented foodstuffs to host-associated microenvironments. Many of the isolated L. paracasei strains have been used as single-strain probiotics or as part of a symbiotic consortium within formulations. The present study contributes to the exploration of different strains of L. paracasei derived from non-conventional isolation sources-the South African traditional fermented drink mahewu (strains MA2 and MA3) and kefir grains (strains KF1 and ABK). The performed microbiological, biochemical and genomic comparative analyses of the studied strains demonstrated correlation between properties of the strains and their isolation source, which suggests the presence of at least partial strain adaptation to the isolation environments. Additionally, for the studied strains, antagonistic activities against common pathogens and against each other were observed, and the ability to release bioactive peptides with antioxidant and angiotensin I-converting enzyme inhibitory (ACE-I) properties during milk fermentation was investigated. The obtained results may be useful for a deeper understanding of the nomadic lifestyle of L. paracasei and for the development of new starter cultures and probiotic preparations based on this LAB in the future.
Collapse
|
15
|
Gamma-aminobutyric acid (GABA) production by potential probiotic strains of indigenous fermented foods origin and RSM based production optimization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Functional Properties of Dunaliella salina and Its Positive Effect on Probiotics. Mar Drugs 2022; 20:md20120781. [PMID: 36547928 PMCID: PMC9781844 DOI: 10.3390/md20120781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The unicellular green microalga Dunaliella is a potential source of a wide range of nutritionally important compounds applicable to the food industry. The aim of this study was to assess the effect of Dunaliella salina dried biomass on the growth and adherence of 10 strains of Lactobacillus, Lacticaseibacillus, and Bifidobacterium. The immunomodulatory, antioxidant, and cytotoxic effects of D. salina on human peripheral mononuclear cells and simulated intestinal epithelial cell lines Caco-2 and HT-29 were evaluated. Furthermore, the hypocholesterolemic effects of the microalgae on lipid metabolism in rats fed a high-fat diet were analyzed. The addition of D. salina biomass had a positive effect on the growth of nine out of 10 probiotics and promoted the adherence of three bifidobacteria strains to human cell lines. The antioxidant and immunomodulatory properties of D. salina were concentration-dependent. The inflammatory cytokines (TNF-α and IL-6) were significantly increased following Dunaliella stimulation at the lowest concentration (0.5% w/v). Eight week supplementation of D. salina to the diet of hypercholesteromic rats significantly decreased the serum concentrations of LDL-C, VLDL, IDL-B, and IDL-C. D. salina is not cytotoxic in intestinal cell models; it promotes adherence of selected bifidobacteria, it affords immunomodulatory and antioxidant effects, and its addition to diets may help decrease atherosclerosis risk factors.
Collapse
|
17
|
Zhang L, Qu H, Liu X, Li Q, Liu Y, Wang W, Chen D, Xiao L, Gu R. Comparison and selection of probiotic Lactobacillus from human intestinal tract and traditional fermented food in vitro via PCA, unsupervised clustering algorithm, and heat-map analysis. Food Sci Nutr 2022; 10:4247-4257. [PMID: 36514768 PMCID: PMC9731541 DOI: 10.1002/fsn3.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/16/2022] Open
Abstract
Traditional fermented products and human intestines are rich sources of Lactobacillus strains which may have remarkable probiotic properties. In the present study, the probiotic properties of 40 Lactobacillus strains isolated from intestinal tracts of longevity population and traditional fermented food in China were determined, including the survival rates in simulated gastric acid and bile salt, aggregation, hydrophobicity, adhesion rate, antioxidant ability (ferric reducing antioxidant power), and antimicrobial ability. The differences between human strains and nonhuman strains were compared via t-test and principal component analysis (PCA). The significant differences were found in the survival rate at 0.3% bile salt, adhesion ability of the strains, and antioxidant ability of the fermentation broth (p < .05). The results of PCA showed that the first principal component (PC1) score of human strains was significantly higher than that of nonhuman strains (p < .01). And some probiotic Lactobacillus were selected for further application based on the unsupervised clustering algorithm, heat-map analysis, and K-means algorithm. Four strains, CS128, CS39, CS01, and CS1301, along with Lactobacillus rhamnosus GG (LGG) were divided into cluster I. The four strains, all isolated from human tracts, have been selected. Thus, human Lactobacillus has better probiotic potential and application prospects than strains from the nonhuman source. PCA, the unsupervised clustering algorithm, and heat-map analysis can be used to analyze and select Lactobacillus visually and effectively.
Collapse
Affiliation(s)
- Longfei Zhang
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | - Hengxian Qu
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | - Xiaoxiao Liu
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | | | - Yang Liu
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | - Wenqiong Wang
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | - Dawei Chen
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | - Lixia Xiao
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| | - Ruixia Gu
- College of Food Science and EngineeringYangzhou UniversityYangzhouChina
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety ControlYangzhouChina
- Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. LtdYangzhou UniversityYangzhouChina
| |
Collapse
|
18
|
Lu Y, Xing S, He L, Li C, Wang X, Zeng X, Dai Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022; 11:3063. [PMID: 36230139 PMCID: PMC9563398 DOI: 10.3390/foods11193063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacilli have been widely concerned for decades. Bacteria of the genus Lactobacillus have been commonly employed in fermented food to improve the appearance, smell, and taste of food or prolong its shelf-life. They comprise 261 species (by March 2020) that are highly diverse at the phenotypic, ecological, and genotypic levels. Some Lactobacilli strains have been documented to be essential probiotics, which are defined as a group of living microorganisms that are beneficial to the health of the host when ingested in sufficiency. However, the characterization, high-density fermentation, and the production of a directed vat set (DVS) starter of Lactobacilli strains used in the food industry have not been systematically reported. This paper mainly focuses on reviewing Lactobacilli as functional starter cultures in the food industry, including different molecular techniques for identification at the species and strain levels, methods for evaluating Lactobacilli properties, enhancing their performance and improving the cell density of Lactobacilli, and the production techniques of DVS starter of Lactobacilli strains. Moreover, this review further discussed the existing problems and future development prospects of Lactobacilli in the food industry. The viability and stability of Lactobacilli in the food industry and gastrointestinal environment are critical challenges at the industrial scale. The new production equipment and technology of DVS starter of Lactobacilli strains will have the potential for large-scale application, for example, developing low-temperature spray drying, freezing granulation drying, and spray freeze-drying.
Collapse
Affiliation(s)
- Yun Lu
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- Department of Brewing Engineering, Moutai University, Renhuai 564507, China
| | - Shuqi Xing
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Laping He
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Cuiqin Li
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xiao Wang
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuefeng Zeng
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yifeng Dai
- Key Laboratory of Agricultural and Animal Products Storage & Processing of Guizhou Province, Guizhou University, Guiyang 550025, China
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
19
|
Probiotic and Antifungal Attributes of Lactic Acid Bacteria Isolates from Naturally Fermented Brazilian Table Olives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research with fermented olives as a source of wild Lactic Acid Bacteria (LAB) strains with probiotic and biotechnological characteristics constitutes a promising field of work. The present study evaluated in vitro probiotic, antifungal, and antimycotoxigenic potential of LAB isolates from naturally fermented Brazilian table olives. Among fourteen LAB isolates, the Levilactobacillus brevis CCMA 1762, Lactiplantibacillus pentosus CCMA 1768, and Lacticaseibacillus paracasei subsp. paracasei CCMA 1770 showed potential probiotic and antifungal properties. The isolates showed resistance to pH 2.0 (survival ≥ 84.55), bile salts (survival ≥ 99.44), and gastrointestinal tract conditions (survival ≥ 57.84%); hydrophobic cell surface (≥27%); auto-aggregation (≥81.38%); coaggregation with Escherichia coli INCQS 00181 (≥33.97%) and Salmonella Enteritidis ATCC 564 (≥53.84%); adhesion to the epithelial cell line Caco-2 (≥5.04%); antimicrobial activity against the bacteria S. Enteritidis ATCC 564 (≥6 mm), Listeria monocytogenes ATCC 19117 (≥6 mm), Staphylococcus aureus ATCC 8702 (≥3 mm), and the fungi Penicillium nordicum MUM 08.16 (inhibition ≥ 64.8%). In addition, the strains showed the ability to adsorb the mycotoxins aflatoxin B1 (≥40%) and ochratoxin A (≥34%). These results indicate that LAB strains from naturally fermented Brazilian table olives are potentially probiotic and antifungal candidates that can be used for food biopreservation.
Collapse
|
20
|
Obafemi Y, Oranusi S, Oluseyi AK, Akinduti P. Genotyping of Probiotic Lactobacilli in Nigerian Fermented Condiments for Improved Food Safety. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Plant-based naturally fermented condiments usually result in poor quality products with various bacteria and fungi contaminants. Previous reports suggested the use of starter cultures from previously fermented condiments in fermentation processes to ensure health-promoting benefits, improved quality, shelf life, and organoleptic properties for the achievement of healthy nutrition, safe, and quality food.
AIM: This study aimed to genotype potential lactobacilli from locally fermented condiments for improved food safety.
METHODS: The lactobacilli colonies isolated from fermented condiments purchased from food markets in Southwest Nigeria were profiled for probiotic activities, hemolytic activities, antibiotics susceptibility, and inhibitory activities against food pathogens. Interesting probiotic lactobacilli were identified using 16S rRNA gene sequencing and evaluated for phylogenetic relatedness with other globally reported probiotic lactobacilli.
RESULTS: Lactobacillus species which expressed significant probiotics, γ-hemolysis, anti-spoilage, and anti-listerial activities (P < 0.05) with tolerable safety profiles were identified as Lactiplantibacillus plajomi YD001 (MW280136), Lactiplantibacillus plantarum YD002 (MW280139), L. plantarum YD003 (MW280137), and Lacticaseibacillus paracasei YD004 (MW280138) possessed 50.75, 50.61, 50.75, and 52.54 mol% DNA G+C contents, respectively. The species clustered into different phylogroups with high clonal relatedness with other potential lactobacilli meta-data (≥96.80%) obtained from the public repository.
CONCLUSION: Obtained genotyped Lactobacillus species are potential starter cultures for improved fermentation processes, control of food pathogens, and spoilage organisms.
Collapse
|
21
|
Nobile V, Giardina S, Puoci F. The Effect of a Probiotic Complex on the Gut-Brain Axis: A Translational Study. Neuropsychobiology 2022; 81:116-126. [PMID: 34515196 DOI: 10.1159/000518385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The gut-brain axis refers to the network of connections that involve multiple biologic systems, allowing bidirectional communication between the gut and the brain. This communication is mainly mediated by gut microbiota, thanks to its ability to modulate several processes like the production of neurotransmitters. As such, keeping a balanced gut microbiota through probiotic intake could be a valid solution in supporting the right gut-brain communications. METHODS A two-step in vitro screening of five different probiotic strains was carried out to select the best performers in the modulation of stress markers. A first selection on SK-N-DZ neuronal cell lines was performed to evaluate the inhibition of the epigenetic enzyme LSD1, promotion of GABA, and expression of serotonin. Three out of five strains were tested for their ability to promote serotonin synthesis in the Caco2 cell line. As a result, Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 were selected as the best performing strains. To confirm their effects in humans, a proof-of-concept trial was carried out to evaluate stress-related parameters for 28 days of product intake in a group of 30 stressed students. RESULTS A significant improvement of cognitive functions, in terms of short-term memory, attention, and executive performance, as well as of psychophysiological markers, such as salivary cortisol level, skin conductance, sleep quality, and anxiety, were observed. CONCLUSIONS According to the results, L. reuteri PBS072 and B. breve BB077 are potential probiotic candidates for improving stress resilience, cognitive functions, and sleep quality.
Collapse
Affiliation(s)
| | | | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Cosenza, Italy
| |
Collapse
|
22
|
Wei B, Peng Z, Xiao M, Huang T, Zheng W, Xie M, Xiong T. Three lactic acid bacteria with anti-obesity properties: In vitro screening and probiotic assessment. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Microencapsulation of a potential probiotic Lactiplantibacillus pentosus and its impregnation onto table olives. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Asadi A, Lohrasbi V, Abdi M, Mirkalantari S, Esghaei M, Kashanian M, Oshaghi M, Talebi M. The probiotic properties and potential of vaginal Lactobacilli spp. isolated from healthy women against some vaginal pathogens. Lett Appl Microbiol 2022; 74:752-764. [DOI: 10.1111/lam.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Arezoo Asadi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Vahid Lohrasbi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Milad Abdi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Maryam Esghaei
- Department of Virology School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Maryam Kashanian
- Department of Obstetrics & Gynecology Akbarabadi Teaching Hospital, Iran University of Medical Sciences Tehran Iran
| | - Mozhgan Oshaghi
- Department of Lab Sciences Faculty of Allied Medicine Iran University of Medical Sciences Tehran Iran
| | - Malihe Talebi
- Department of Microbiology School of Medicine Iran University of Medical Sciences Tehran Iran
- Microbial Biotechnology Research Centre Iran University of Medical Sciences Shahid Hemmat Highway Tehran Iran
| |
Collapse
|
25
|
Darvishzadeh P, Orsat V. Storage Stability and In Vitro Digestion of Microencapsulated Russian Olive Water Kefir Using Spray-Drying. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Identification and characterization of Bacillus coagulans strains for probiotic activity and safety. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Eating Fermented: Health Benefits of LAB-Fermented Foods. Foods 2021; 10:foods10112639. [PMID: 34828920 PMCID: PMC8620815 DOI: 10.3390/foods10112639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. In this review, we aim to gather and discuss available information on the health-related effects of LAB-fermented foods. In particular, we focused on the most widely consumed LAB-fermented foods such as yoghurt, kefir, cheese, and plant-based products such as sauerkrauts and kimchi.
Collapse
|
28
|
Stability of Encapsulated Lactobacillus reuteri during Harsh Conditions, Storage Period, and Simulated In Vitro Conditions. J FOOD QUALITY 2021. [DOI: 10.1155/2021/3872190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viability of probiotics in the foods and human bodies is important, because a certain minimum count of bacteria is necessary to impose health promoting effects. In the present work, we encapsulated Lactobacillus reuteri within whey protein isolate (WPI), soy protein isolate (SPI), WPI + inulin (WPI4I), and SPI + inulin (SPI4I) through spray drying method and investigated the efficiency of the microcapsules on the protection of the cells under different conditions (heat, salt, bile salt, penicillin, pH, simulated gastrointestinal condition, and storage). The particle size of the samples was in the range of 195.2–358.1 nm. The sensitivity of unencapsulated bacteria to heat was considerably higher than that to the encapsulated bacteria, so that, at 80°C, no growth (of unencapsulated type) was observed. At 60°C and 40°C, the cell count of free bacteria decreased to 5.81 and 8.04 log CFU/mL, respectively. The bacteria encapsulated within SPI4I showed the highest viability at these temperatures. A comparison between the effects of different pH values showed pH 1.5 more lethal than 2.5 and 7. The effect of NaCl at 4% concentration on decreasing the bacterial count was more notable than 2%. However, the used wall materials in all conditions resulted in higher viability of the cells compared to the free cells. Among different types of wall materials, it was observed that WPI4I imposed the best protective effect. The higher viability of cells within WPI4I wall material was also observed during the storage time. The viability of encapsulated cells decreased from 10.35 to 10.40 log CFU/g in the first week and to 8.93–9.23 log CFU/g in the last week of storage.
Collapse
|
29
|
Antioxidants Bioaccessibility and Lactobacillus salivarius (CECT 4063) Survival Following the In Vitro Digestion of Vacuum Impregnated Apple Slices: Effect of the Drying Technique, the Addition of Trehalose, and High-Pressure Homogenization. Foods 2021; 10:foods10092155. [PMID: 34574265 PMCID: PMC8467285 DOI: 10.3390/foods10092155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
To benefit the health of consumers, bioactive compounds must reach an adequate concentration at the end of the digestive process. This involves both an effective release from the food matrix where they are contained and a high resistance to exposure to gastrointestinal conditions. Accordingly, this study evaluates the impact of trehalose addition (10% w/w) and homogenization (100 MPa), together with the structural changes induced in vacuum impregnated apple slices (VI) by air-drying (AD) and freeze-drying (FD), on Lactobacillus salivarius spp. salivarius (CECT 4063) survival and the bioaccessibility of antioxidants during in vitro digestion. Vacuum impregnated apple slices conferred maximum protection to the lactobacillus strain during its passage through the gastrointestinal tract, whereas drying with air reduced the final content of the living cells to values below 10 cfu/g. The bioaccessibility of antioxidants also reached the highest values in the VI samples, in which the release of both the total phenols and total flavonoids to the liquid phase increased with in vitro digestion. The addition of trehalose and homogenization at 100 MPa increased the total bioaccessibility of antioxidants in FD and AD apples and the total bioaccessibility of flavonoids in the VI samples. Homogenizing at 100 MPa also increased the survival of L. salivarius during in vitro digestion in FD samples.
Collapse
|
30
|
Wang D, Wang Y, Lan H, Wang K, Zhao L, Hu Z. Enhanced production of γ-aminobutyric acid in litchi juice fermented by Lactobacillus plantarum HU-C2W. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Barzegar H, Alizadeh Behbahani B, Falah F. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Sci Nutr 2021; 9:4094-4107. [PMID: 34401061 PMCID: PMC8358388 DOI: 10.1002/fsn3.2365] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/19/2021] [Accepted: 05/15/2021] [Indexed: 12/18/2022] Open
Abstract
The objective of this study was to investigate probiotic, antimicrobial, technological and safety properties of lactobacillus strains isolated from local Iranian cheese made from raw milk. Six different samples were prepared, after serial dilution, culture was performed on MRS culture medium. The gram-positive and catalase-negative lactobacillus strains were subjected to grouping and identifying using biochemical tests, carbohydrates fermentation profiles, and 16S rDNA analysis. The results of sequence analysis showed the Lactobacillus spp. belonged to Lactobacillus brevis, Lactobacillus acidophilus, Lactobacillus plantarum, and Lactobacillus casei. After 3 hr incubation at pH=2, 3-6 log units of strains decreased which Lactobacillus acidophilus (B14) and Lactobacillus brevis (B2) showed highest resistance to low pH as well as simulated GIT juices. The highest and lowest hydrophobicity degree was belonged to L. acidophilus (B14) (65.9%) and L. casei (B22) (25.6%), respectively. Also, the highest auto-aggregation and coaggregation were observed in L. acidophilus (B14) (51.3%) and L. plantarum (B20) (43.6%). The adhered percentage of strains varied from 2.5% to 14.6%. L. plantarum (B20) showed highest proteolytic activity followed by L. acidophilus (B14). Also, the highest autolytic activity belonged to L. acidophilus (B14). All of the strains showed low acidifying potential, except for L. acidophilus (B17) which decreased 2.05 unit of pH after 24 hr. The isolates did not show lipolytic activity as well as biogenic amines production (except L. brevis B3). All of the strains were sensitive to chloramphenicol and erythromycin except L. acidophilus (B15) and L. casei (B22). All strains showed no hemolysis activity which make them safe for consumption. Based on the obtained results, L. acidophilus (B14) presented the best probiotic and technological characteristics and is proposed for using as coculture in the dairy industrial.
Collapse
Affiliation(s)
- Hassan Barzegar
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Behrooz Alizadeh Behbahani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Fereshteh Falah
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
32
|
Functional Properties of Chlorella vulgaris, Colostrum, and Bifidobacteria, and Their Potential for Application in Functional Foods. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The market for new functional foods and food supplements is rapidly evolving, with a current emphasis on using natural sources. Algae, probiotics, and colostrum are rich sources of nutrients and bioactive compounds with positive effects on human and animal health. To determine the potential for developing new functional foods combining these components, we evaluated their synergistic effects. We assessed the growth of selected bifidobacteria in a medium supplemented with Chlorella vulgaris and its immunomodulatory and cytotoxic effects on the human peripheral mononuclear cells and colon cancer cell lines Caco-2 and HT29. The hypocholesterolemic effects of Chlorella powder and bovine colostrum fermented by Bifidobacterium animalis subsp. lactis BB12® on lipid metabolism in rats fed a high-fat diet were also determined. Chlorella addition promoted Bifidobacteria growth, with significantly increased inflammatory cytokine (TNF-α and IL-6) levels following 1.0% (w/v) Chlorella stimulation. Rats fed diets containing fermented colostrum with 0.5% (w/v) added Chlorella powder exhibited significantly decreased triglyceride, very low-density lipoprotein, and alanine and aspartate aminotransferase levels, compared to those of the control group. These results support that C. vulgaris is not cytotoxic in intestinal cell models and affords prebiotic and immunomodulatory effects, as well as synergistic triglyceride-lowering effects with bovine colostrum and B. animalis subsp. lactis BB-12.
Collapse
|
33
|
Ahmed S, Muhammad T, Zaidi A. Cottage cheese enriched with lactobacilli encapsulated in alginate–chitosan microparticles forestalls perishability and augments probiotic activity. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sadia Ahmed
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Tariq Muhammad
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory National Institute for Biotechnology and Genetic Engineering (NIBGE) Jhang Road Faisalabad38000Pakistan
- NIBGE_C, Pakistan Institute of Engineering and Applied Sciences (PIEAS) Lehtrar Road Islamabad45650Pakistan
| |
Collapse
|
34
|
Rodríguez-Sánchez S, Ramos IM, Seseña S, Poveda JM, Palop ML. Potential of Lactobacillus strains for health-promotion and flavouring of fermented dairy foods. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Özkan ER, Demirci T, Öztürk Hİ, Akın N. Screening Lactobacillus strains from artisanal Turkish goatskin casing Tulum cheeses produced by nomads via molecular and in vitro probiotic characteristics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:2799-2808. [PMID: 33135796 DOI: 10.1002/jsfa.10909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/16/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Eleven Lactobacillus (L.) strains were newly isolated from traditional Turkish Tulum cheeses and were characterized regarding their potential probiotic characteristics (bile and acid tolerance, gastric and pancreatic juice tolerance, lysozyme tolerance, adhesion ability), virulence determinants (hemolytic activity, antibiotic resistance, biogenic amine production), and functional properties (antibacterial activity, β-galactosidase activity, production of exopolysaccharides, cholesterol removal). RESULTS These isolates were identified as L. brevis, L. plantarum, L. paracasei, L. coryniformis, L. rhamnosus and L. helveticus by 16S rRNA sequencing. With regard to safety aspects, none of the tested Lactobacillus isolates showed hemolytic activity or biogenic amine production. All the Lactobacillus isolates except isolate 24 were found to be sensitive or intermediate sensitive to penicillin, which is a frequently used antibiotic. Nine Lactobacillus isolates showed antibacterial activity against Staphylococcus aureus ATCC 25923, while only isolates 15 and 449 exhibited inhibitory activity against Listeria monocytogenes ATCC 7644. All isolated strains survived, even in the presence of 10.00 g L-1 bile after 48 h, and exhibited good survival at pH 3, but only two isolates survived at pH 2. Among the strains, isolate 15 exhibited satisfactory auto-aggregative, cell-surface hydrophobicity features, cholesterol-lowering activity and good acid tolerance. Isolate 15 also showed the strongest bile and simulated pancreatic juice resistance and moderate lysozyme tolerance. CONCLUSION These outcomes suggest that isolate 15, identified as a L. plantarum strain from Tulum cheese, may be a promising probiotic candidate and could be suitable for use in several fermented foods. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Talha Demirci
- Department of Food Engineering, University of Selcuk, Konya, Turkey
| | - Hale İnci Öztürk
- Department of Food Engineering, Konya Food and Agriculture University, Konya, Turkey
| | - Nihat Akın
- Department of Food Engineering, University of Selcuk, Konya, Turkey
| |
Collapse
|
36
|
Vijayalakshmi S, Adeyemi DE, Choi IY, Sultan G, Madar IH, Park MK. Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. Lebensm Wiss Technol 2020; 130:109617. [DOI: https:/doi.10.1016/j.lwt.2020.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
|
37
|
Comprehensive in silico analysis of lactic acid bacteria for the selection of desirable probiotics. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
|
39
|
Roobab U, Batool Z, Manzoor MF, Shabbir MA, Khan MR, Aadil RM. Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Shekh SL, Boricha AA, Chavda JG, Vyas BRM. Probiotic potential of lyophilized Lactobacillus plantarum GP. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01556-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Purpose
Freeze drying of Lactobacillus plantarum GP in the presence of wall materials to achieve improved survival and retention of probiotic functionality during storage.
Methods
L. plantarum cells were lyophilized in the presence of inulin, fructooligosaccharides, lactulose, and/or skim milk. The lyophilized vials were stored at 8–10 °C up to 6 months and cells from these vials were evaluated for their probiotic functionality.
Results
L. plantarum GP freeze dried in the presence of wall material lactulose displayed viability of 98 ± 2.8% promising survival rate in the stress conditions of human digestive tract. The freeze dried cells of Lactobacilli retained the ability to adhere intestinal mucin layer, form biofilm, inhibit food spoilage and enteropathogens, produce β-galactosidase, bile salt hydrolase and γ-amino butyric acid, remove cholesterol, and scavenge DPPH radical.
Conclusion
Lyophilized cells of L. plantarum GP retained all the functional characteristics without any significant loss during storage, which prompts to incorporate prebiotics for the development of stable functional food products.
Collapse
|
41
|
Bancalari E, Castellone V, Bottari B, Gatti M. Wild Lactobacillus casei Group Strains: Potentiality to Ferment Plant Derived Juices. Foods 2020; 9:foods9030314. [PMID: 32182865 PMCID: PMC7142771 DOI: 10.3390/foods9030314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Plant derived beverages have recently gained consumers’ interest, particularly due to their intrinsic functional properties. They can also act as non-dairy carriers for probiotics and prebiotics, meeting the needs of lactose allergic/intolerant people and vegans. Direct fermentation of fruit and vegetables juices by probiotic lactic acid bacteria could be a tool to increase safety, shelf-life, nutrients bioavailability and to improve sensorial features of plant derived juices. This study aims to screen wild Lactobacillus casei-group strains isolated from dairy matrices for probiotic features, such as acid and bile salts resistance, and test them for the potentiality to ferment celery and orange juices. Strains’ ability to produce exopolysaccharides (EPS) in situ is also checked. These evaluations were performed for the first time in fruit and vegetables matrices by means of an impedometric analysis, recently shown to be a suitable and rapid method to measure microorganisms’ growth, acidification performances and EPS production. This study allowed the selection of three potentially probiotic L. casei-group wild strains able to ferment fruit and vegetable juices and also producing EPS. These strains with three-in-one abilities could be used to produce new functional fermented plant derived juices.
Collapse
|