1
|
Li J, Wu P, Wang J, Meng X, Ni Y, Fan L. Potassium chloride-assisted heat treatment enhances the de-glycosylation efficiency and xanthine oxidase inhibitory activity of Sophora japonica L. flavonoids. Food Chem X 2024; 24:101854. [PMID: 39398870 PMCID: PMC11470184 DOI: 10.1016/j.fochx.2024.101854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Salt-assisted heat treatment is considered an effective way to enhance the bioactivities of flavonoids in Flos Sophorae Immaturus tea (FSIt). Herein, sodium chloride (NaCl)- and potassium chloride (KCl)-assisted heat treatment was employed to process FSIt, the components, xanthine oxidase (XO) inhibitory activity, and degradation or conversion kinetics of FSIt flavonoids were recorded. Results showed that KCl-assisted heat treatment significantly increased the XO inhibition rate of FSIt from 28.05 % to 69.50 %. The de-glycosylation of flavonoids was the crucial reason for enhancing XO inhibitory activity. Notably, KCl exhibited a better catalytic effect on the de-glycosylation reaction than NaCl. Meanwhile, conversion kinetics showed that the generation rate of quercetin, kaempferol, and isorhamnetin reached the maximum at 180, 160, 160 °C, respectively. Furthermore, the established artificial neural network model could accurately predict the changes of FSIt flavonoids during salt-assisted heat treatment. Thus, KCl can be used as a valuable food processing adjuvant to enhance the bioactivities of food materials.
Collapse
Affiliation(s)
- Jun Li
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Peng Wu
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Jing Wang
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Xiangren Meng
- Chinese Cuisine Promotion and Research Base, Yangzhou University, Yangzhou 225127, China
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou 225127, China
| | - Yang Ni
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Liuping Fan
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Drabo MS, Shumoy H, De Meulenaer B, Savadogo A, Raes K. Nutritional quality of the traditionally cooked Zamnè, a wild legume and a delicacy in Burkina Faso: assessment of the process effectiveness and the properties of cooking alkalis. Food Funct 2024; 15:1279-1293. [PMID: 38197166 DOI: 10.1039/d3fo02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Zamnè is a wild legume and a famine food that attracts interest for its health benefits and has become a delicacy in Burkina Faso. This study aimed to determine the nutritional quality of the traditionally cooked Zamnè, appreciate the effectiveness of the traditional cooking process, and compare the properties of the traditionally used cooking alkalis (i.e., potash or plant ash leachate and sodium bicarbonate). Yet, as shown, the traditional cooking of Zamnè is a very aggressive process that results in high disintegration of cell walls and membranes and leaching of most water-soluble constituents and nutrients (i.e., free amino acids, soluble nitrogen, sugars, soluble dietary fibers, and soluble phenolics). In addition, the extensive boiling and the cooking alkalis induced the sequestration of calcium, iron, magnesium, and zinc, significantly impairing their bioaccessibility. Despite the difference in the modus operandi of the cooking alkalis, there was no significant difference in the cooking outcomes. The traditionally cooked Zamnè presented high dietary protein (4.8 g), lipid (3.3 g), fiber (6.7-7.7 g), and metabolizable energy (63-65 kcal) contents (per 100 g fresh weight). Most antinutritional factors (i.e., non-protein nitrogen, tannins, and trypsin inhibitors) were eliminated. The proteins were relatively well preserved despite the aggressive alkaline processing. They demonstrated an appreciable digestibility (75%) and predicted PER (1.5) and a fairly balanced essential amino acid composition - which should completely meet the requirements for adults. The lipid content and composition were also well preserved and contained predominantly linoleic (C18:2n-6), oleic (C18:1c9), stearic (C18:0), and palmitic (C16:0) acids (33, 34, 10, and 15% total fatty acids, respectively). Overall, though extensive alkaline cooking seems a straightforward option to overcome the hard-to-cook problem of Zamnè, processing alternatives might be useful to reduce nutrient losses, improve the digestibility of the final product, and capture its full nutritional value.
Collapse
Affiliation(s)
- Moustapha Soungalo Drabo
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
- Laboratory of Applied Biochemistry and Immunology, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso
| | - Habtu Shumoy
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Bruno De Meulenaer
- Research Unit nutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Aly Savadogo
- Laboratory of Applied Biochemistry and Immunology, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021, Ouagadougou 03, Burkina Faso
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
3
|
Perera D, Devkota L, Garnier G, Panozzo J, Dhital S. Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chem 2023; 415:135743. [PMID: 36863234 DOI: 10.1016/j.foodchem.2023.135743] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Future dietary protein demand will focus more on plant-based sources than animal-based products. In this scenario, legumes and pulses (lentils, beans, chickpeas, etc.) can play a crucial role as they are one of the richest sources of plant proteins with many health benefits. However, legume consumption is undermined due to the hard-to-cook (HTC) phenomenon, which refers to legumes that have high resistance to softening during cooking. This review provides mechanistic insight into the development of the HTC phenomenon in legumes with a special focus on common beans and their nutrition, health benefits, and hydration behaviour. Furthermore, detailed elucidation of HTC mechanisms, mainly pectin-cation-phytate hypothesis and compositional changes of macronutrients like starch, protein, lipids and micronutrients like minerals, phytochemicals and cell wall polysaccharides during HTC development are critically reviewed based on the current research findings. Finally, strategies to improve the hydration and cooking quality of beans are proposed, and a perspective is provided.
Collapse
Affiliation(s)
- Dilini Perera
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Lavaraj Devkota
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Gil Garnier
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Joe Panozzo
- Agriculture Victoria Research, Horsham, Victoria 3400, Australia.
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton Campus, VIC 3800, Australia.
| |
Collapse
|
4
|
Mashau ME, Mukwevho TA, Ramashia SE, Siwela M. The influence of Bambara groundnut ( Vigna subterranean) flour on the nutritional, physical and antioxidant properties of steamed bread. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2130435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Thompho Admire Mukwevho
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Muthulisi Siwela
- Department of Dietetics and Human Nutrition, School of Agricultural, Earth and Environmental Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
5
|
Yahaya D, Seidu OA, Tiesaah CH, Iddrisu MB. The role of soaking, steaming, and dehulling on the nutritional quality of Bambara groundnuts (Vigna subterranea (L) Verdc.). FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.887311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bambara groundnut (Vigna subterranea (L) Verdc.) is a leguminous plant that is widely cultivated in West Africa for its nutritious seeds. However, the hard-to-cook phenomenon of this legume affects its patronage by consumers. The quality and bioavailability of nutrients are affected by processing techniques during cooking. This study evaluated the effects of processing techniques on the nutritional quality of two Bambara groundnut varieties (namely, Simbi-bile and Sinkpili-zee). For this, each variety was subjected to four processing techniques, namely, (i) dehulled and soaked in water, (ii) dehulled and soaked in 1% NaHCO3 + 1% NaCl, (iii) dehulled and steamed, and (iv) Control. After sample processing, the Association of Official Agricultural Chemists (AOAC) standard protocols were used for chemical analysis. The results on proximate composition, anti-nutritional factors, and seed minerals composition showed significant variations among treatments. The main effects of variety and processing technique markedly influenced the parameters measured. Soaked Bambara groundnut with NaHCO3 reduced anti-nutritional factors. Steamed treatments yielded highest amount of protein (25.87%) while dehulled treated Bambara groundnut produced the highest amount of carbohydrate (42.77%). Calcium, potassium, and iron showed significant reduction (p ≤ 0.05) when dehulled. Additional sodium in processing Bambara increased mineral content of the crop. Anti-nutritional factor levels were also reduced significantly in simbi-bile when soaked. Proximate components (crude protein, crude fat, crude fiber, carbohydrate, and water) had significant changes in their compositions across all the processing techniques. From the correlation analysis, oxalate and phytate have some levels of effect in all varieties on every nutritional or mineral component. Total ash correlated negatively with crude fat and positively with phytate and oxalate. Dehulled and control did not reduce the anti-nutritional factors compared to NaHCO3 + NaCl. From the results, soaking of Bambara groundnuts in 1% NaHCO3 + 1% NaCl prior to cooking was effective in improving nutritional quality while overcoming the hard-to-cook phenomenon. The findings highlight the need to adopt correct processing techniques that conserve the nutritional benefits of these edible seeds. Soaking Bambara groundnut in NaHCO3 + NaCl as a processing technique increases mineral content while reducing anti-nutritional factors, and hence should be adapted.
Collapse
|
6
|
Chongtham SK, Devi EL, Samantara K, Yasin JK, Wani SH, Mukherjee S, Razzaq A, Bhupenchandra I, Jat AL, Singh LK, Kumar A. Orphan legumes: harnessing their potential for food, nutritional and health security through genetic approaches. PLANTA 2022; 256:24. [PMID: 35767119 DOI: 10.1007/s00425-022-03923-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.
Collapse
Affiliation(s)
- Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, CAEPHT, CAU, Ranipool, Gangtok, Sikkim, 737135, India
| | | | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Odisha, 761211, India
| | - Jeshima Khan Yasin
- Division of Genomic Resources, ICAR-National Bureau Plant Genetic Resources, PUSA Campus, New Delhi, 110012, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Khudwani, Sher-E-Kashmir University of Agricultural Sciences and Technology, Srinagar, 192101, Jammu and Kashmir, India.
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, 742213, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Ingudam Bhupenchandra
- ICAR-KVK Tamenglong, ICAR RC for NEH Region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Aanandi Lal Jat
- Castor-Mustard Research Station, SDAU, S.K. Nagar, Banaskantha, Gujarat, 385 506, India
| | - Laishram Kanta Singh
- ICAR-KVK Imphal West, ICAR RC for NEH region, Manipur Centre, Lamphelpat, Imphal, Manipur, 795 004, India
| | - Amit Kumar
- ICAR Research Complex for NEH Region, Tadong, Sikkim Centre, 737102, India
| |
Collapse
|
7
|
Chinnapun D, Sakorn N. Structural characterization and antioxidant and anti-inflammatory activities of new chemical constituent from the seeds of bambara groundnut ( Vigna subterranea (L.) Verdc.). CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2087741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Natee Sakorn
- The Center for Scientific and Technological Equipment, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
8
|
Dhlakama N, Chawafambira A, Tsotsoro K. Polyphenols, antioxidant activity, and functional properties of baobab ( Adansonia digitata L) seeds soaked in monovalent ion salts. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2082467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Nyasha Dhlakama
- Department of Food Science and Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Armistice Chawafambira
- Department of Food Science and Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Kudakwashe Tsotsoro
- Department of Chemistry, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
9
|
Liu Y, Liu J, Liu G, Duan R, Sun Y, Li J, Yan S, Li B. Sodium bicarbonate reduces the cooked hardness of lotus rhizome via side chain rearrangement and pectin degradation. Food Chem 2022; 370:130962. [PMID: 34555774 DOI: 10.1016/j.foodchem.2021.130962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/04/2022]
Abstract
In this study, 0.1% (W/V) sodium bicarbonate (SB) solution was used to soften lotus rhizome, and the mechanism was characterized by monoclonal antibodies labeling (mAbs) and atomic force microscopy (AFM). The results showed that the cell wall of lotus rhizome was disintegrated under SB treatment. In addition, the mAbs results revealed that low-esterified homogalacturonan (HG) at the tricellular junction was degraded, the rearrangement of Ara and the interaction between Gal and cellulose may be related to the texture changes. Compared with distilled water treatment, SB treatment reduced the relative content of pectin from 34.1% to 19.1% while increased that of cellulose from 65.9% to 80.9%. AFM results revealed that the height of CSF skeleton decreased from about 32 nm to 1.5 nm. These results clearly demonstrate that cooking with 0.1% SB can soften lotus rhizome through degradation of pectin and arrangement of side chains of rhamnogalacturonan-Ⅰ (RG-Ⅰ).
Collapse
Affiliation(s)
- Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gongji Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ruibing Duan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yangyang Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Huagui Food Co. Ltd, Honghu, Hubei 433207, China; Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, Hubei 430070, China.
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Akintayo OA, Adegbaju KE, Akeem SA, Balogun MA, Adediran OJ, Aruna TE, Onwudinjo HO, Akintayo FM, Adesina BO, Ojo PK, Kolawole FL. Effect of Parboiling and Drying Pretreatment on the Cooking Time and Quality Attributes of Bambara Groundnut. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olaide A. Akintayo
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| | - Kikelomo E. Adegbaju
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| | - Sarafa A. Akeem
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
- Department of Food Technology University of Ibadan Ibadan Nigeria
| | - Mutiat A. Balogun
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| | | | - Tawakalitu E. Aruna
- Department of Food Science and Technology Kwara State University Malete Nigeria
| | | | - Fadilat M. Akintayo
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| | - Boluwatife O. Adesina
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
- Department of Food Science and Technology Federal University of Agriculture Abeokuta Nigeria
| | - Peter K. Ojo
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
- Department of Food Technology University of Ibadan Ibadan Nigeria
| | - Fausat L. Kolawole
- Department of Home Economics and Food Science University of Ilorin Ilorin Nigeria
| |
Collapse
|
11
|
Tan XL, Azam-Ali S, Goh EV, Mustafa M, Chai HH, Ho WK, Mayes S, Mabhaudhi T, Azam-Ali S, Massawe F. Bambara Groundnut: An Underutilized Leguminous Crop for Global Food Security and Nutrition. Front Nutr 2020; 7:601496. [PMID: 33363196 PMCID: PMC7758284 DOI: 10.3389/fnut.2020.601496] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Rapid population growth, climate change, intensive monoculture farming, and resource depletion are among the challenges that threaten the increasingly vulnerable global agri-food system. Heavy reliance on a few major crops is also linked to a monotonous diet, poor dietary habits, and micronutrient deficiencies, which are often associated with diet-related diseases. Diversification-of both agricultural production systems and diet-is a practical and sustainable approach to address these challenges and to improve global food and nutritional security. This strategy is aligned with the recommendations from the EAT-Lancet report, which highlighted the urgent need for increased consumption of plant-based foods to sustain population and planetary health. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilized African legume, has the potential to contribute to improved food and nutrition security, while providing solutions for environmental sustainability and equity in food availability and affordability. This paper discusses the potential role of Bambara groundnut in diversifying agri-food systems and contributing to enhanced dietary and planetary sustainability, with emphasis on areas that span the value chain: from genetics, agroecology, nutrition, processing, and utilization, through to its socioeconomic potential. Bambara groundnut is a sustainable, low-cost source of complex carbohydrates, plant-based protein, unsaturated fatty acids, and essential minerals (magnesium, iron, zinc, and potassium), especially for those living in arid and semi-arid regions. As a legume, Bambara groundnut fixes atmospheric nitrogen to improve soil fertility. It is resilient to adverse environmental conditions and can yield on poor soil. Despite its impressive nutritional and agroecological profile, the potential of Bambara groundnut in improving the global food system is undermined by several factors, including resource limitation, knowledge gap, social stigma, and lack of policy incentives. Multiple research efforts to address these hurdles have led to a more promising outlook for Bambara groundnut; however, there is an urgent need to continue research to realize its full potential.
Collapse
Affiliation(s)
- Xin Lin Tan
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Susan Azam-Ali
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Ee Von Goh
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Maysoun Mustafa
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Hui Hui Chai
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wai Kuan Ho
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Sean Mayes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Tafadzwanashe Mabhaudhi
- Center for Transformative Agricultural and Food Systems, School of Agricultural, Earth & Environmental Sciences, University of KwaZulu-Natal, Scottsville, South Africa
| | - Sayed Azam-Ali
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Festo Massawe
- Future Food Beacon Malaysia, University of Nottingham Malaysia, Semenyih, Malaysia
- School of Biosciences, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
12
|
Akrimi R, Hajlaoui H, Rizzo V, Muratore G, Mhamdi M. Agronomical traits, phenolic compounds and antioxidant activity in raw and cooked potato tubers growing under saline conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3719-3728. [PMID: 32248537 DOI: 10.1002/jsfa.10411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/29/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Potato yields and tuber compositions are linked to mechanisms adopted by plants to cope with salinity and often can change after cooking. The current study aimed to evaluate the effects of salinity, variety and cooking method in the composition of potato tubers. Three potato varieties (Spunta, Bellini and Alaska) grown under distinct salt levels (T1: 2.2 ms cm-1 EC, T2: 8.5 ms cm-1 EC before electromagnetic treatment and 6.3 ms cm-1 EC after electromagnetic treatment, T3: 8.5 ms cm-1 EC) were studied. Yield and tuber quality attributes (starch, dry matter, specific density and tuber size) were evaluated. Carotenoids, total and individual phenolics determined by high-performance liquid chromatography (HPLC), relative antioxidant capacity (RAC) and ions content were analyzed, in both raw and water boiled tubers. RESULTS Tuber yield, starch, dry matter, ions and antioxidants were significantly influenced by the salinity level and variety. The least production and the highest antioxidants were obtained under T3. Antioxidants were influenced by cooking method, the interactions treatment × cooking method and variety × cooking method. Individual phenolic compounds exhibited different response to cooking as quercetin, caffeic acid and catechin decreased significantly after boiling. However, coumaric acid increased in Alaska tubers. CONCLUSION Salinity level, variety and cooking method are important determinants of tuber yield and composition. Electromagnetic water may be useful to enhance potato production and tuber quality in areas suffering from water salinization. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rawaa Akrimi
- Higher Institute of Biotechnology of Monastir, Monastir, Tunisia
| | - Hichem Hajlaoui
- Regional Center of Agricultural Research, Sidi Bouzid, Tunisia
| | - Valeria Rizzo
- Di3A - Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Giuseppe Muratore
- Di3A - Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Mahmoud Mhamdi
- Higher Institute of Agronomy of Chott Mariem, Chott Mariem, Tunisia
| |
Collapse
|
13
|
Escobedo A, Mora C, Mojica L. Thermal and enzymatic treatments reduced α‐galactooligosaccharides in common bean (
Phaseolus vulgaris
L.) flour. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alejandro Escobedo
- Tecnología Alimentaria Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Zapopan Mexico
| | - Carlos Mora
- Tecnología Alimentaria Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Zapopan Mexico
| | - Luis Mojica
- Tecnología Alimentaria Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ) Zapopan Mexico
| |
Collapse
|