1
|
Ding T, Zhan H, Li Y, Qu G, Zhang L, Li J, Ju W, Sun Y, Deng Y. Prevention and control strategies for psychrophilic Pseudomonas fluorescens in food: A review. Food Res Int 2025; 201:115587. [PMID: 39849748 DOI: 10.1016/j.foodres.2024.115587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/27/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Psychrophilic Pseudomonas fluorescens can secrete extracellular enzymes, biofilms, and other substances even under refrigeration conditions, which have a negative impact on the quality of dairy products, aquatic products, meat products, produce, and other foods, causing food spoilage and huge economic losses. Therefore, strengthening the prevention and control of psychrophilic P. fluorescens in food is of great significance. Although some reviews have introduced information on P. fluorescens, there are few reviews that provide detailed information on the psychrophilic mechanism, detection, prevention, and control methods of psychrophilic P. fluorescens. Therefore, to comprehensively address the shortcomings of previous reviews, this review provides a detailed overview of the physiological characteristics, secreted spoilage factors, psychrophilic mechanisms, and prevention and control methods, such as bacteriophages, quorum sensing inhibitors, and nanomaterials of P. fluorescens. And future research directions for the prevention and control strategies of P. fluorescens are discussed. The future research focus will be on strengthening the detection of P. fluorescens and adopting a combination of multiple technologies to prevent and control P. fluorescens without affecting food nutrition and quality while preventing the occurrence of drug resistance. This article aims to provide references for improving the quality and safety of refrigerated food and extending its shelf life.
Collapse
Affiliation(s)
- Ting Ding
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China
| | - Hongwei Zhan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China
| | - Yanqing Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China
| | - Guanyuan Qu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China
| | - Lixiu Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China
| | - Jiao Li
- Shenyang Institute of Food and Drug Control, Shenyang 110122, China
| | - Wenming Ju
- Shandong Homey Aquatic Development Co., Ltd, Weihai, Shandong 264200, China; Shandong Marine Functional Food Technology Innovation Center, Weihai, Shandong 264200, China
| | - Yongjun Sun
- Shandong Homey Aquatic Development Co., Ltd, Weihai, Shandong 264200, China; Shandong Marine Functional Food Technology Innovation Center, Weihai, Shandong 264200, China
| | - Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Shandong Technology Innovation Center of Special Food, Shandong 266109, China.
| |
Collapse
|
2
|
Hetta HF, Ramadan YN, Rashed ZI, Alharbi AA, Alsharef S, Alkindy TT, Alkhamali A, Albalawi AS, Battah B, Donadu MG. Quorum Sensing Inhibitors: An Alternative Strategy to Win the Battle against Multidrug-Resistant (MDR) Bacteria. Molecules 2024; 29:3466. [PMID: 39124871 PMCID: PMC11313800 DOI: 10.3390/molecules29153466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Antibiotic resistance is a major problem and a major global health concern. In total, there are 16 million deaths yearly from infectious diseases, and at least 65% of infectious diseases are caused by microbial communities that proliferate through the formation of biofilms. Antibiotic overuse has resulted in the evolution of multidrug-resistant (MDR) microbial strains. As a result, there is now much more interest in non-antibiotic therapies for bacterial infections. Among these revolutionary, non-traditional medications is quorum sensing inhibitors (QSIs). Bacterial cell-to-cell communication is known as quorum sensing (QS), and it is mediated by tiny diffusible signaling molecules known as autoinducers (AIs). QS is dependent on the density of the bacterial population. QS is used by Gram-negative and Gram-positive bacteria to control a wide range of processes; in both scenarios, QS entails the synthesis, identification, and reaction to signaling chemicals, also known as auto-inducers. Since the usual processes regulated by QS are the expression of virulence factors and the creation of biofilms, QS is being investigated as an alternative solution to antibiotic resistance. Consequently, the use of QS-inhibiting agents, such as QSIs and quorum quenching (QQ) enzymes, to interfere with QS seems like a good strategy to prevent bacterial infections. This review sheds light on QS inhibition strategy and mechanisms and discusses how using this approach can aid in winning the battle against resistant bacteria.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Zainab I. Rashed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; (Y.N.R.); (Z.I.R.)
| | - Ahmad A. Alharbi
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Shomokh Alsharef
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Tala T. Alkindy
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.A.); (S.A.); (T.T.A.)
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Abdullah S. Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia; (A.A.); (A.S.A.)
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Antioch Syrian Private University, Maaret Siadnaya 22734, Syria
| | - Matthew G. Donadu
- Hospital Pharmacy, Giovanni Paolo II Hospital, ASL Gallura, 07026 Olbia, Italy;
- Department of Medicine, Surgery and Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
3
|
Fan Q, Yan X, Jia H, Li M, Yuan Y, Yue T. Antibacterial properties of hexanal-chitosan nanoemulsion against Vibrio parahaemolyticus and its application in shelled shrimp preservation at 4 °C. Int J Biol Macromol 2024; 257:128614. [PMID: 38061528 DOI: 10.1016/j.ijbiomac.2023.128614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
Vibrio parahaemolyticus has been considered as the leading pathogen associated with seafood-borne disease. Hexanal possesses antibacterial property but the hydrophobicity and volatility limit its application. The purpose of this study was to prepare hexanal-chitosan nanoemulsion (HCN), investigate its antibacterial ability against V. parahaemolyticus, and examine the combination of HCN with sodium alginate coating on the quality attributes of shrimp during cold storage. The mean droplet size of HCN fabricated by ultrasonic emulsification was 91.28 nm. HCN showed regular spherical shape and exhibited good centrifugation stability and storage stability at 4 °C. HCN exerted anti-V. parahaemolyticus effect with the minimum inhibitory concentration and minimal bactericidal concentration of both 5 mg/mL. Furthermore, HCN induced morphological changes and destroyed bacterial membrane, resulting in cell death. The results of preservation test showed that HCN alone and its combination with sodium alginate coating effectively retarded the quality deterioration and microbial spoilage of shelled shrimps during refrigerated storage. Comparatively, the combination treatment exhibited better preservation effect. The present study suggested that HCN prepared by ultrasonic emulsification is an effective alternative to control V. parahaemolyticus contamination in seafood and also shows great application potential in the quality maintaining of seafood during cold storage.
Collapse
Affiliation(s)
- Qiuxia Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hang Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yahong Yuan
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
4
|
Xie Y, Zhang C, Mei J, Xie J. Antimicrobial Effect of Ocimum gratissimum L. Essential Oil on Shewanella putrefaciens: Insights Based on the Cell Membrane and External Structure. Int J Mol Sci 2023; 24:11066. [PMID: 37446243 DOI: 10.3390/ijms241311066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The main objective of this study was to assess the in vitro antibacterial effectiveness of Ocimum gratissimum L. essential oil (OGEO) against Shewanella putrefaciens. The minimum inhibitory concentration and minimum bactericidal concentration of OGEO acting on S. putrefaciens were both 0.1% and OGEO could inhibit the growth of S. putrefaciens in a dose-dependent manner. The restraint of the biofilm growth of S. putrefaciens was found in the crystal violet attachment assay and confocal laser scanning microscopy. The disruption of cell membranes and exudation of contents in S. putrefaciens with OGEO treatment were observed by scanning electron microscopy, hemolysis and ATPase activity. The results demonstrated that OGEO had a positive inhibitory effect on the growth of S. putrefaciens, which primarily developed its antibacterial function against S. putrefaciens by disrupting the formation of biofilms and cell membranes. This study could provide a new method of inhibiting the spoilage of food in which the dominant spoilage bacteria are S. putrefaciens.
Collapse
Affiliation(s)
- Yao Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chi Zhang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| |
Collapse
|
5
|
Zhang C, Xie Y, Qiu W, Mei J, Xie J. Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger ( Zingiber officinale) Essential Oil against Shewanella putrefaciens. PLANTS (BASEL, SWITZERLAND) 2023; 12:1720. [PMID: 37111943 PMCID: PMC10140911 DOI: 10.3390/plants12081720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Ginger (Zingiber officinale) has unique medicinal value and can be used to treat colds and cold-related diseases. The chemical composition and antibacterial activity of ginger essential oil (GEO) against Shewanella putrefaciens were determined in the present study. Zingiberene, α-curcumene, and zingerone were the main active compounds of GEO. GEO displayed significant antibacterial activity against S. putrefaciens, with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 2.0 and 4.0 μL/mL, respectively. Changes in intracellular ATP content, nucleic acid and protein structure, exopolysaccharides (EPS) content, and extracellular protease production indicated that GEO disrupted the membrane integrity of S. putrescens. At the same time, changes in biofilm metabolic activity content and the growth curve of biofilm showed that GEO could destroy the biofilm. Both scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) observations confirmed that GEO destroyed the cell membrane and lead to the leakage of the constituents. The above results indicate that GEO entered the cells via contact with bacterial membranes, and then inhibited the growth of S. putrefaciens and its biofilms by increasing membrane permeability and inhibiting various virulence factors such as EPS. The findings showed that GEO could destroy the structure of cell membrane and biofilm of tested S. putrefaciens, indicating its potential as a natural food preservative.
Collapse
Affiliation(s)
- Chi Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yao Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Aquatic Products High Quality Utilization, Storage and Transportation (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
6
|
Song L, Yang H, Meng X, Su R, Cheng S, Wang H, Bai X, Guo D, Lü X, Xia X, Shi C. Inhibitory Effects of Trans-Cinnamaldehyde Against Pseudomonas aeruginosa Biofilm Formation. Foodborne Pathog Dis 2023; 20:47-58. [PMID: 36779942 DOI: 10.1089/fpd.2022.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Pseudomonas aeruginosa biofilm formation has been considered to be an important determinant of its pathogenicity in most infections. The antibiofilm activity of trans-cinnamaldehyde (TC) against P. aeruginosa was investigated in this study. Results demonstrated that the minimum inhibitory concentration (MIC) of TC against P. aeruginosa was 0.8 mg/mL, and subinhibitory concentrations (SICs) was 0.2 mg/mL and below. Crystal violet staining showed that TC at 0.05-0.2 mg/mL reduced biofilm biomass in 48 h in a concentration-dependent mode. The formation area of TC-treated biofilms was significantly declined (p < 0.01) on the glass slides observed by light microscopy. Field-emission scanning electron microscopy further demonstrated that TC destroyed the biofilm morphology and structure. Confocal laser scanning microscopic observed the dispersion of biofilms and the reduction of exopolysaccharides after TC treatment stained with concanavalin A (Con-A)-fluorescein isothiocyanate conjugate and Hoechst 33258. Meanwhile, TC caused a significant decrease (p < 0.01) in the component of polysaccharides, proteins, and DNA in extracellular polymeric substance. The swimming and swarming motility and quorum sensing of P. aeruginosa was also found to be significantly inhibited (p < 0.01) by TC at SICs. Furthermore, SICs of TC repressed the several genes transcription associated with biofilm formation as determined by real-time quantitative polymerase chain reaction. Overall, our findings suggest that TC could be applied as natural and safe antibiofilm agent to inhibit the biofilm formation of P. aeruginosa.
Collapse
Affiliation(s)
- Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xinru Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Haoran Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Zhang Y, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Inhibitory effects of hexanal on acylated homoserine lactones (AHLs) production to disrupt biofilm formation and enzymes activity in Erwinia carotovora and Pseudomonas fluorescens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:372-381. [PMID: 36618067 PMCID: PMC9813320 DOI: 10.1007/s13197-022-05624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Erwinia carotovora and Pseudomonas fluorescens were two bacteria commonly caused the spoilage of vegetables through biofilm formation and secretion of extracellular enzymes. In this study, N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-Octanoyl-L-homoserine lactone (C8-HSL) were confirmed as acylated homoserine lactones (AHLs) signal molecule produced by E. carotovora and P. fluorescens, respectively. In addition, quorum sensing inhibitory (QSI) effects of hexanal on AHLs production were evaluated. Hexanal at 1/2 minimum inhibitory concentration (MIC) was achieved 76.27% inhibitory rate of 3-oxo-C6-HSL production in E. carotovora and a inhibitory rate of C8-HSL (60.78%) in P. fluorescens. The amount of biofilm formation and activity of extracellular enzymes treated with 1/2 MIC of hexanal were restored with different concentrations (10 ng/mL, 50 ng/mL, 100 ng/mL) of exogenous AHLs (P < 0.05), which verified QSI effect of hexanal on biofilm and extracellular enzymes were due to its inhibition on AHLs production. Molecular docking analysis showed that hexanal could interact with EcbI and PcoI protein to disrupt AHLs production. Furthermore, results showed that sub-MICs of hexanal could suppress expressions of ecbI and pcoI genes in AHL-mediated QS system of E. carotovora and P. fluorescens. This study provides theoretical support for the application of essential oils as QS inhibitors in the preservation of vegetables. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05624-9.
Collapse
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| |
Collapse
|
8
|
Wang Y, Sun M, Cui X, Gao Y, Lv X, Li J, Bai F, Li X, Zhang D, Zhou K. Peptide LQLY3-1, a novel Vibrio harveyi quorum sensing inhibitor produced by Lactococcus lactis LY3-1. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Synergistic effect of propyl gallate and antibiotics against biofilms of Serratia marcescens and Erwinia carotovora in vitro. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
10
|
Wang D, Chen H, Li J, Li T, Ren L, Liu J, Shen Y. Screening and validation of quorum quenching enzyme PF2571 from Pseudomonas fluorescens strain PF08 to inhibit the spoilage of red sea bream filets. Int J Food Microbiol 2022; 362:109476. [PMID: 34798478 DOI: 10.1016/j.ijfoodmicro.2021.109476] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 01/27/2023]
Abstract
Bacteria are the main cause of spoilage for fish and fishery products. Through the inactivation of the quorum sensing (QS) system, quorum quenching (QQ) enzymes can block the synthesis of bacterial virulence factors and effectively inhibit bacteria-induced food spoilage. This study analyzed the changes of microbiota in red sea bream filets during refrigerated storage. The results showed a decrease in microbial diversity with storage time, with Aeromonas veronii becoming the dominant bacteria on day 4. A novel N-acyl homoserine lactones (AHL) acylase PF2571, from the screened QQ bacterium Pseudomonas fluorescens PF08, was identified and expressed in Escherichia coli to evaluate its QQ efficiency and effects on spoilage potential. Spoilage-related QS factors of A. veronii BY-8, including biofilm formation, motility, and protease, lipase, and alginate production, were inhibited by PF2571. Its inhibitory effect on red sea bream spoilage was demonstrated by the lower freshness indicators for PF2571 treated filets. Our study demonstrates the potential of the QQ enzyme for prolonging the shelf life of fish and fishery products.
Collapse
Affiliation(s)
- Dangfeng Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jianrong Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Tingting Li
- Key Laboratory of Biotechnology and Bioresource Utilization (Dalian Minzu University), Ministry of Education, Dalian, Liaoning 116029, China
| | - Likun Ren
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150076, China
| | - Jingyun Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yue Shen
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China; National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| |
Collapse
|
11
|
Zhang Y, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Quorum sensing inhibitory effect of hexanal on Autoinducer‐2 (AI‐2) and corresponding impacts on biofilm formation and enzyme activity in
Erwinia carotovora
and
Pseudomonas fluorescens
isolated from vegetables. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
- Joint International Research Laboratory of Food Safety Jiangnan University Wuxi China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety Jiangnan University Wuxi China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
- Joint International Research Laboratory of Food Safety Jiangnan University Wuxi China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety Jiangnan University Wuxi China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
- Joint International Research Laboratory of Food Safety Jiangnan University Wuxi China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety Jiangnan University Wuxi China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
- Joint International Research Laboratory of Food Safety Jiangnan University Wuxi China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety Jiangnan University Wuxi China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
- Joint International Research Laboratory of Food Safety Jiangnan University Wuxi China
- National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety Jiangnan University Wuxi China
| |
Collapse
|
12
|
Lamin A, Kaksonen AH, Cole IS, Chen XB. Quorum sensing inhibitors applications: a new prospect for mitigation of microbiologically influenced corrosion. Bioelectrochemistry 2022; 145:108050. [DOI: 10.1016/j.bioelechem.2022.108050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022]
|
13
|
Kim U, Kim JH, Oh SW. Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Crit Rev Food Sci Nutr 2021; 62:5783-5793. [PMID: 33663287 DOI: 10.1080/10408398.2021.1892585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multi-species biofilms are ubiquitous worldwide and are a concern in the food industry. Multi-species biofilms have a higher resistance to antimicrobial therapies than mono-species biofilms. In addition, multi-species biofilms can cause severe foodborne diseases. To remove multi-species biofilms, controlling the formation process of extracellular polymeric substances (EPS) and quorum sensing (QS) effects is essential. EPS disruption, inhibition of QS, and disinfection have been utilized to remove multi-species biofilms. This review presents information on the formation and novel removal methods for multi-species biofilms.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| |
Collapse
|
14
|
Liu F, Jin P, Sun Z, Du L, Wang D, Zhao T, Doyle MP. Carvacrol oil inhibits biofilm formation and exopolysaccharide production of Enterobacter cloacae. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|