1
|
Zhang T, Yang Z, Zhang Y, Yi L, Duan F, Zhao Q, Gu Y, Wang S. Proteomics-guided isolation of a novel serine protease with milk-clotting activity from tamarillo (Solanum betaceum Cav.). Food Chem 2025; 465:141956. [PMID: 39541676 DOI: 10.1016/j.foodchem.2024.141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Tamarillo is widely grown in Yunnan Province, China, and has been found that it can be used in cheese-making with a distinctive fruity flavour. However, this primary component responsible for curdling milk remains unclear. This study aimed to identify the main component in tamarillo responsible for curdling milk using proteomics and ammonium sulfate (AS) precipitation. Herein, 3199 proteins were identified in tamarillo, of which 546 exhibited hydrolase activity. In particular, a novel serine protease with milk-clotting activity (MCA) and a molecular weight of 79.1 kDa, named "MCP746", was isolated from tamarillo. The milk-clotting proteases (MCPs) from tamarillo exhibited the highest MCA at 80 °C and stability under incubation temperatures below 70 °C, pH range of 5-8, and NaCl concentrations below 1 mol/L. This study revealed that serine protease is the primary MCPs of tamarillo along with a characterization of its milk-clotting characteristics, providing valuable insights into its potential application in cheese-making.
Collapse
Affiliation(s)
- Tong Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhihong Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yingcui Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Lunzhao Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fengmin Duan
- Yunnan Institute of Measuring and Testing Technology, Kunming 650228, China
| | - Qiong Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Ying Gu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Shuo Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Zhang L, Wu G, Li D, Huang A, Wang X. Isolation and identification of milk-clotting proteases from Prinsepia utilis Royle and its application in cheese processing. Food Res Int 2024; 183:114225. [PMID: 38760144 DOI: 10.1016/j.foodres.2024.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
The aim of this study was to isolate and identify the main milk-clotting proteases from Prinsepia utilis Royle. Protein isolates obtained using precipitation with 20 %-50 % ammonium sulfate (AS) showed higher milk-clotting activity (MCA) at 154.34 + 0.35 SU. Two milk-clotting proteases, namely P191 and P1831, with molecular weight of 49.665 kDa and 68.737 kDa, respectively, were isolated and identified using liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatic analysis showed that the two identified milk-clotting proteases were primarily involved in hydrolase activity and catabolic processes. Moreover, secondary structure analysis showed that P191 structurally consisted of 40.85 % of alpha-helices, 15.96 % of beta-strands, and 43.19 % of coiled coil motifs, whereas P1831 consisted of 70 % of alpha-helices, 7.5 % of beta-strands, and 22.5 % of coiled coil motifs. P191 and P1831 were shown to belong to the aspartic protease and metalloproteinase types, and exhibited stability within the pH range of 4-6 and good thermal stability at 30-80 °C. The addition of CaCl2 (<200 mg/L) increased the MCA of P191 and P1831, while the addition of NaCl (>3 mg/mL) inhibited their MCA. Moreover, P191 and P1831 preferably hydrolyzed kappa-casein, followed by alpha-casein, and to a lesser extent beta-casein. Additionally, cheese processed with the simultaneous use of the two proteases isolated in the present study exhibited good sensory properties, higher protein content, and denser microstructure compared with cheese processed using papaya rennet or calf rennet. These findings unveil the characteristics of two proteases isolated from P. utilis, their milk-clotting properties, and potential application in the cheese-making industry.
Collapse
Affiliation(s)
- Lu Zhang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Gaizhuan Wu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Dong Li
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
3
|
Zhang X, Tao L, Wei G, Yang M, Wang Z, Shi C, Shi Y, Huang A. Plant-derived rennet: research progress, novel strategies for their isolation, identification, mechanism, bioactive peptide generation, and application in cheese manufacturing. Crit Rev Food Sci Nutr 2023; 65:444-456. [PMID: 37902764 DOI: 10.1080/10408398.2023.2275295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Rennet, an aspartate protease found in the stomach of unweaned calves, effectively cuts the peptide bond between Phe105-Met106 in κ-casein, hydrolyzing the casein micelles to coagulate the milk and is a crucial additive in cheese production. Rennet is one of the most used enzymes of animal origin in cheese making. However, using rennet al.one is insufficient to meet the increasing demand for cheese production worldwide. Numerous studies have shown that plant rennet can be an alternative to bovine rennet and exhibit a good renneting effect. Therefore, it is crucial and urgent to find a reliable plant rennet. Based on our team's research on rennet enzymes of plant origin, such as from Dregea sinensis Hemsl. and Moringa oleifer Lam., for more than ten years, this paper reviews the relevant literature on rennet sources, isolation, identification, rennet mechanism, functional active peptide screening, and application in cheese production. In addition, it proposes the various techniques for targeted isolation and identification of rennet and efficient screening of functionally active peptides, which show excellent prospects for development.
Collapse
Affiliation(s)
- Xueting Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Liang Tao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Min Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Zilin Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Identification, structure, and caseinolytic properties of milk-clotting proteases from Moringa oleifera flowers. Food Res Int 2022; 159:111598. [DOI: 10.1016/j.foodres.2022.111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/28/2022] [Indexed: 11/04/2022]
|
5
|
Yang X, Zhang Z, Zhang W, Qiao H, Wen P, Zhang Y. Proteomic analysis, purification and characterization of a new milk-clotting protease from Tenebrio molitor larvae. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Hodas F, Zorzenon MRT, Milani PG. Moringa oleifera potential as a functional food and a natural food additive: a biochemical approach. AN ACAD BRAS CIENC 2021; 93:e20210571. [PMID: 34706010 DOI: 10.1590/0001-3765202120210571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/23/2021] [Indexed: 11/21/2022] Open
Abstract
Several works have shown different aspects of the use of the plant Moringa oleifera. However, few review studies bring an approach to its use in food preparation, specifying its role as a functional food and its use as a natural additive, focusing on food biochemistry and including sensory acceptance and safety. Composed by multiple bioactive substances, Moringa oleifera has the potential to be used as a food additive, mainly as a preservative with the potential to prevent lipid oxidation and other unwanted chemical reactions that lead to product deterioration. Furthermore, it can improve the physicochemical characteristics of food, increasing its quality and shelf life. It also promotes nutritional improvement, elevating protein, mineral, and vitamin levels. Despite this, the sensorial characteristics of this plant result in a low consumer acceptance of the fortified products, which is a problem for the food industry. Apart from inconclusive works, some data involving Moringa's safety are contradictory, resulting in its commercialization prohibition in Brazil in 2019. This review focused on important data about Moringa use to contribute to the literature and to the food industry, describing information about this medicinal plant effects on food products.
Collapse
Affiliation(s)
- Fabiane Hodas
- Universidade Estadual de Maringá (UEM), Centro de Ciências Biológicas, Departamento de Bioquímica, Avenida Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Maria Rosa T Zorzenon
- Programa de Pós-Graduação em Bioquímica, Universidade Estadual de Maringá (UEM), Centro de Ciências Biológicas, Departamento de Bioquímica, Avenida Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| | - Paula G Milani
- Programa de Pós-Graduação em Bioquímica, Universidade Estadual de Maringá (UEM), Centro de Ciências Biológicas, Departamento de Bioquímica, Avenida Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
7
|
Zhao Q, Zhao C, Shi Y, Wei G, Yang K, Wang X, Huang A. Proteomics analysis of the bio-functions of Dregea sinensis stems provides insights regarding milk-clotting enzyme. Food Res Int 2021; 144:110340. [PMID: 34053536 DOI: 10.1016/j.foodres.2021.110340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Dregea sinensis (D. sinensis) stems have traditionally been used as milk coagulant in Dali of Yunnan Province, China. In this study, proteomics was used to investigate the bio-functions of D. sinensis stem proteins, leading to the purification and identification of the milk-clotting enzyme. A total of 205 proteins mainly involved in the catalytic and metabolic processes were identified, of which 28 proteins exhibited hydrolase activity. Among the 28 proteins, we focused on two enzymes (M9QMC9 and B7VF65). Based on proteomics, a cysteine protease (M9QMC9) with a molecular weight of 25.8 kDa and milk-clotting activity was purified from D. sinensis stems using double ammonium sulfate precipitation and was confirmed using liquid chromatography-mass spectrometry (LC-MS/MS). The milk-clotting temperature using the purified enzyme was around 80 °C (specific activity at 314.38 U/mg), and it was found to be stable in the pH range of 6-9 in NaCl concentration of <0.8 mol/L. These findings indicated that the enzyme isolated from D. sinensis stems has potential in the dairy and food sectors, especially in the cheese-making industry.
Collapse
Affiliation(s)
- Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Cunchao Zhao
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangqiang Wei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Kun Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
8
|
Wang X, He L, Zhao Q, Chen H, Shi Y, Fan J, Chen Y, Huang A. Protein function analysis of germinated Moringa oleifera seeds, and purification and characterization of their milk-clotting peptidase. Int J Biol Macromol 2021; 171:539-549. [PMID: 33434550 DOI: 10.1016/j.ijbiomac.2021.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The present study aimed to investigate the biological functions of germinated M. oleifera seed proteins and to identify the identity of milk-clotting proteases. A total of 963 proteins were identified, and those with molecular weights between 10 and 30 kDa were most abundant. The identified proteins were mainly involved in energy-associated catalytic activity and metabolic processes, and carbohydrate and protein metabolisms. The numbers of proteins associated with the hydrolytic and catalytic activities were higher than the matured dry M. oleifera seeds reported previously. Of the identified proteins, proteases were mainly involved in the milk-clotting activity. Especially, a cysteine peptidase with a molecular mass of 17.727 kDa exhibiting hydrolase and peptidase activities was purified and identified. The identified cysteine peptidase was hydrophilic, and its secondary structure consisted of 27.60% alpha helix, 9.20% beta fold, and 63.20% irregular curl; its tertiary structure was also constructed using M. oleifera seed 2S protein as the protein template. The optimal pH and temperature of the purified protease were pH 4.0 and 60 °C, respectively. The protease had high acidic stability and good thermostability, thus could potentially be applied in the dairy industry.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Haoran Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yue Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
9
|
Exploring the Milk-Clotting and Proteolytic Activities in Different Tissues of Vallesia glabra: a New Source of Plant Proteolytic Enzymes. Appl Biochem Biotechnol 2020; 193:389-404. [PMID: 33009584 DOI: 10.1007/s12010-020-03432-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 01/18/2023]
Abstract
Proteolytic enzymes are widely distributed in nature, playing essential roles in important biological functions. Recently, the use of plant proteases at the industrial level has mainly increased in the food industry (e.g., cheesemaking, meat tenderizing, and protein hydrolysate production). Current technological and scientific advances in the detection and characterization of proteolytic enzymes have encouraged the search for new natural sources. Thus, this work aimed to explore the milk-clotting and proteolytic properties of different tissues of Vallesia glabra. Aqueous extracts from the leaves, fruits, and seeds of V. glabra presented different protein profiles, proteolytic activity, and milk-clotting activity. The milk-clotting activity increased with temperature (30-65 °C), but this activity was higher in leaf (0.20 MCU/mL) compared with that in fruit and seed extracts (0.12 and 0.11 MCU/mL, respectively) at 50 °C. Proteolytic activity in the extracts assayed at different pH (2.5-12.0) suggested the presence of different types of active proteases, with maximum activity at acidic conditions (4.0-4.5). Inhibitory studies indicated that major activity in V. glabra extracts is related to cysteine proteases; however, the presence of serine, aspartic, and metalloproteases was also evident. The hydrolytic profile of caseins indicated that V. glabra leaves could be used as a rennet substitute in cheesemaking, representing a new and promising source of proteolytic enzymes.
Collapse
|
10
|
Comparative proteome analysis of matured dry and germinating Moringa oleifera seeds provides insights into protease activity during germination. Food Res Int 2020; 136:109332. [DOI: 10.1016/j.foodres.2020.109332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022]
|
11
|
Liu WL, Wu BF, Shang JH, Zhao YL, Huang AX. Moringa oleifera Lam Seed Oil Augments Pentobarbital-Induced Sleeping Behaviors in Mice via GABAergic Systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3149-3162. [PMID: 32062961 DOI: 10.1021/acs.jafc.0c00037] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Moringa oleifera Lam. (MO), which is widely consumed as both food and herbal medicine in tropical and subtropical regions, has a wide spectrum of health benefits. Yet, whether the oil obtained from MO seeds could affect (improve) the sleep activity remains unclear. Herein, we used the locomotor activity, pentobarbital-induced sleeping, and pentetrazol-induced convulsions test to examine sedative-hypnotic effects (SHE) of MO oil (MOO) and explored the underlying mechanisms. Besides, the main components of MOO like oleic acid, β-Sitosterol, and Stigmasterol were also evaluated. The results showed that they possessed good SHE. Except for oleic acid and Stigmasterol, they could significantly elevate γ-amino butyric acid (GABA) and reduce glutamic acid (Glu) levels in the hypothalamus of mice. Moreover, SHE was blocked by picrotoxin, flumazenil, and bicuculline, except for oleic acid, which could not be antagonized by picrotoxin. Molecular mechanisms showed that MOO and β-Sitosterol significantly upregulated the amount of protein-level expression of Glu decarboxylase-65 (GAD65) and α1-subunit of GABAA receptors in the hypothalamus of mice, not affecting GAD67, γ2 subunits. These data indicated that MOO modulates sleep architectures via activation of the GABAA-ergic systems.
Collapse
Affiliation(s)
- Wei-Liang Liu
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Bai-Fen Wu
- Yunnan University of Business Management, Kunming 650106, People's Republic of China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Ai-Xiang Huang
- College of Food Science & Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| |
Collapse
|
12
|
Label-free quantitative proteomic analysis of the biological functions of Moringa oleifera seed proteins provides insights regarding the milk-clotting proteases. Int J Biol Macromol 2020; 144:325-333. [DOI: 10.1016/j.ijbiomac.2019.12.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
|