1
|
Chegini P, Salimi F, Pirbodagh ZA, Zare EN. Antilisterial and antioxidant exopolysaccharide from Enterococcus faecium PCH.25 isolated from cow butter: characterization and probiotic potential. Arch Microbiol 2024; 206:389. [PMID: 39210205 DOI: 10.1007/s00203-024-04112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Exopolysaccharides produced by lactic acid bacteria have gained attention for their potential health benefits and applications in functional foods. This study explores the isolation and characterization of a novel exopolysaccharide-producing strain from dairy products. The aim was to evaluate its probiotic potential and investigate the properties of the produced exopolysaccharide. A strain identified as Enterococcus faecium PCH.25, isolated from cow butter, demonstrated exopolysaccharide production. The study's novelty lies in the comprehensive characterization of this strain and its exopolysaccharide, revealing unique properties with potential applications in food, cosmetic, and pharmaceutical industries. The E. faecium PCH.25 strain exhibited strong acid tolerance, with a 92.24% viability rate at pH 2 after 2 h of incubation. It also demonstrated notable auto-aggregation (85.27% after 24 h) and co-aggregation abilities, antibiotic sensitivity, and absence of hemolytic activity, suggesting its probiotic potential. The exopolysaccharide produced by this strain showed bactericidal activity (MIC and MBC = 1.8 mg/ml) against Listeria monocytogenes and antioxidant properties (22.8%). Chemical analysis revealed a heteropolysaccharide composed of glucose and fructose monomers, with various functional groups contributing to its bioactivities. Physical characterization of the exopolysaccharide indicated thermal stability up to 270 °C, a negative zeta-potential (-27 mV), and an average particle size of 235 nm. Scanning electron microscopy and energy dispersive X-ray analysis revealed a smooth, nonporous structure primarily composed of carbon and oxygen, with an amorphous nature. These findings suggest that the exopolysaccharide from E. faecium PCH.25 has potential as a natural antibacterial and antioxidant polymer for use in functional foods, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Parvin Chegini
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
- Institute of Biological Sciences, Damghan University, Damghan, Iran.
| | | | | |
Collapse
|
2
|
Cheng Z, Chen J, Zhang Y, Li X, Zhang N, Liu F, Jiao Y. In Vitro Hypoglycemic Activities of Lactobacilli and Bifidobacterium Strains from Healthy Children's Sources and Their Effect on Stimulating GLP-1 Secretion in STC-1 Cells. Foods 2024; 13:519. [PMID: 38397496 PMCID: PMC10887728 DOI: 10.3390/foods13040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
A long-term use of chemical drugs cannot cure type II diabetes mellitus (T2DM) and their numerous toxic side effects can be harmful to human health. In recent years, probiotics have emerged as a natural resource to replace chemical drugs in alleviating many human ailments. Healthy children's intestines have a lot of colonized Lactobacilli and Bifidobacterium, and these beneficial bacteria can help promote overall health. The objective of this study was to isolate potential antidiabetic probiotic strains from healthy children and evaluate their application prospects. Firstly, Lactobacillus and Bifidobacterium strains were isolated from healthy children's feces and identified by the pheS or clpC genes with their respective 16S rRNA genes. Then, hydrophobicity, artificial gastrointestinal fluid tolerance, α-Glucosidase and Dipeptidyl peptidase IV (DPP-IV) inhibitory activities of isolated strains were determined, and antioxidant activities and promoting secretion of GLP-1 in STC-1 cells of candidate strains were tested. Results showed that 6 strains of Lactobacillus and Bifidobacterium were obtained from the feces of healthy children aged 3 years, respectively, including Lacticaseibacillus paracasei L-21 and L-25, Levilactobacillus brevis L-16, Lentilactobacillus buchneri L-9, Lactiplantibacillus plantarum L-8 and L-3, Bifidobacterium bifidum 11-1 and B-84, Bifidobacterium longum subsp. longum 6-1, 6-2, B42 and B53. The hydrophobicity and auto-aggregation levels of all these strains were higher than 30% and 50%, respectively, and the decrease in the number of colonies of all strains in the artificial gastrointestinal fluid was less than 2 log CFU/mL. Strains L-3, L-8, L-9, L-21, 6-1, 11-1, B53 and B84 were selected based on their high α-glucosidase inhibitory activity and DPP-IV inhibitory activity, and results of the antioxidant capacity assay showed that the remaining strains all had intense comprehensive antioxidant activity. Additionally, Lacticaseibacillus paracasei L-21 and Bifidobacterium longum subsp. longum B-53 had the most substantial prompting effect on GLP-1 secretion in the STC-1 cell line. These results indicated that Lacticaseibacillus paracasei L-21 and Bifidobacterium longum subsp. longum B-53 could be used as a potential antidiabetic strain; thus, its application as a food supplement and drug ingredient could be recommended after in vivo mitigation of type II diabetes test.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Jingru Chen
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Yulong Zhang
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Xinyi Li
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Ning Zhang
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Fei Liu
- Key Laboratory of Dairy Science-Ministry of Education, Food College, Northeast Agricultural University, Harbin 150030, China; (Z.C.); (J.C.); (Y.Z.); (X.L.); (N.Z.)
| | - Yuehua Jiao
- Center of Drug Safety Evaluation, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
3
|
Vidya S, Thiruneelakandan G, Krishnamoorthy R, Subbarayan S, Maran BAV, Alshuniaber MA, Gatasheh MK, Sunday BY, Ahmad A. Exploring marine Lactobacillus and its protein for probiotic-based oral cancer therapy. Int J Biol Macromol 2024; 254:127652. [PMID: 37898247 DOI: 10.1016/j.ijbiomac.2023.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Cancer is a life-threatening malignancy and one of the leading global causes of human mortality. New approaches are required for cancer therapy due to the unique properties of cancer cells and the side effects of chemotherapy. Probiotics have gained significant attention in the prevention and treatment of various diseases, including cancer. Therefore, the current study aimed to investigate the anti-cancer effects of probiotics, such as marine Lactobacillus species and their proteins. Five marine Lactobacillus species were isolated and identified from the Tamil Nadu Mangrove Pichavaram (TLMP) forest and named TLMP1, TLMP2, TLMP3, TLMP4, and TLMP5. The Lactobacillus isolates, and their proteins were administered to male golden Syrian hamsters. Tumor formation was effectively controlled in hamsters treated with crude Lactobacillus, extending their lifespan. Additionally, Lactobacillus proteins demonstrated an inhibitory effect on tumor formation in the treated group compared to the control. Molecular docking analysis revealed that Lactobacillus proteins interacted significantly with the cAMP-dependent protein kinase catalytic subunit alpha. Amino acid residues LYS791, MET793, ARG841, ARG842, and LEU844 were involved in active site binding and played a crucial role in inhibiting cAMP-dependent protein kinase.
Collapse
Affiliation(s)
- Sankarapandian Vidya
- Department of Microbiology & Immunology, Kampala International University, Western campus, Ishaka, Uganda.
| | | | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shanthi Subbarayan
- Department of Microbiology & Immunology, Kampala International University, Western campus, Ishaka, Uganda
| | - Balu Alagar Venmathi Maran
- Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyomachi, 852-8521 Nagasaki, Japan
| | - Mohammad A Alshuniaber
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia
| | - Bot Yakubu Sunday
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, kampala International University, Uganda
| | - Anis Ahmad
- Department of Radiation Oncology, Miller School of Medicine/Sylvester Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
4
|
Icer MA, Özbay S, Ağagündüz D, Kelle B, Bartkiene E, Rocha JMF, Ozogul F. The Impacts of Acidophilic Lactic Acid Bacteria on Food and Human Health: A Review of the Current Knowledge. Foods 2023; 12:2965. [PMID: 37569234 PMCID: PMC10418883 DOI: 10.3390/foods12152965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The need to improve the safety/quality of food and the health of the hosts has resulted in increasing worldwide interest in acidophilic lactic acid bacteria (LAB) for the food, livestock as well as health industries. In addition to the use of acidophilic LAB with probiotic potential for food fermentation and preservation, their application in the natural disposal of acidic wastes polluting the environment is also being investigated. Considering this new benefit that has been assigned to probiotic microorganisms in recent years, the acceleration in efforts to identify new, efficient, promising probiotic acidophilic LAB is not surprising. One of these effots is to determine both the beneficial and harmful compounds synthesized by acidophilic LAB. Moreover, microorganisms are of concern due to their possible hemolytic, DNase, gelatinase and mucinolytic activities, and the presence of virulence/antibiotic genes. Hence, it is argued that acidophilic LAB should be evaluated for these parameters before their use in the health/food/livestock industry. However, this issue has not yet been fully discussed in the literature. Thus, this review pays attention to the less-known aspects of acidophilic LAB and the compounds they release, clarifying critical unanswered questions, and discussing their health benefits and safety.
Collapse
Affiliation(s)
- Mehmet Arif Icer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Amasya University, Amasya 05100, Turkey;
| | - Sena Özbay
- Department of Food Technology, Kaman Vocational School, Kırşehir Ahi Evran University, Kırşehir 40360, Turkey;
| | - Duygu Ağagündüz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Emek, Ankara 06490, Turkey
| | - Bayram Kelle
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Cukurova University, Adana 01330, Turkey;
| | - Elena Bartkiene
- Department of Food Safety and Quality, Lithuanian University of Health Sciences Tilzes 18, LT-47181 Kaunas, Lithuania;
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes Street 18, LT-47181 Kaunas, Lithuania
| | - João Miguel F. Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Cukurova University, Balcalı, Adana 01330, Turkey;
- Biotechnology Research and Application Center, Cukurova University, Adana 01330, Turkey
| |
Collapse
|
5
|
Bae WY, Lee YJ, Jung WH, Shin SL, Kim TR, Sohn M. Draft genome sequence and probiotic functional property analysis of Lactobacillus gasseri LM1065 for food industry applications. Sci Rep 2023; 13:12212. [PMID: 37500806 PMCID: PMC10374649 DOI: 10.1038/s41598-023-39454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Probiotics are defined as live organisms in the host that contribute to health benefits. Lactobacillus gasseri LM1065, isolated from human breast milk, was investigated for its probiotic properties based on its genome. Draft genome map and de novo assembly were performed using the PacBio RS II system and hierarchical genome assembly process (HGAP). Probiotic properties were determined by the resistance to gastric conditions, adherence ability, enzyme production, safety assessment and mobile genetic elements. The fungistatic effect and inhibition of hyphae transition were studied using the cell-free supernatant (CFS). L. gasseri LM1065 showed high gastric pepsin tolerance and mild tolerance to bile salts. Auto-aggregation and hydrophobicity were measured to be 61.21% and 61.55%, respectively. The adherence to the human intestinal epithelial cells was measured to be 2.02%. Antibiotic-resistance genes and putative virulence genes were not predicted in the genomic analysis, and antibiotic susceptibility was satisfied by the criteria of the European Food Safety Authority. CFS showed a fungistatic effect and suppressed the tricarboxylic acid cycle in Candida albicans (29.02%). CFS also inhibited the transition to true hyphae and damaged the blastoconidia. This study demonstrates the essential properties of this novel probiotic, L. gasseri LM1065, and potential to inhibit vaginal C. albicans infection.
Collapse
Affiliation(s)
- Won-Young Bae
- Microbiome R&D Center, Lactomason, Seoul, 06620, Republic of Korea.
| | - Young Jin Lee
- Microbiome R&D Center, Lactomason, Seoul, 06620, Republic of Korea
| | - Woo-Hyun Jung
- Microbiome R&D Center, Lactomason, Seoul, 06620, Republic of Korea
| | - So Lim Shin
- Microbiome R&D Center, Lactomason, Seoul, 06620, Republic of Korea
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason, Seoul, 06620, Republic of Korea
| | - Minn Sohn
- Microbiome R&D Center, Lactomason, Seoul, 06620, Republic of Korea
| |
Collapse
|
6
|
Zou X, Pan L, Xu M, Wang X, Wang Q, Han Y. Probiotic potential of Lactobacillus sakei L-7 in regulating gut microbiota and metabolism. Microbiol Res 2023; 274:127438. [PMID: 37399653 DOI: 10.1016/j.micres.2023.127438] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
A growing body of research suggests that gut microbiota is inextricably linked to host health and disease,so we are committed to finding more probiotic resources that are beneficial to human health. This study evaluated the probiotic properties of Lactobacillus sakei L-7 isolated from home-made sausages. The basic probiotic properties of L. sakei L-7 were evaluated through in vitro tests. The strain showed 89% viability after 7 h of digestion in simulating gastric and intestinal fluid. The hydrophobicity, self-aggregation and co-aggregation of L. sakei L-7 showed it had a strong adhesion ability. C57BL/6 J mice were fed L. sakei L-7 for 4 weeks. 16 S rRNA gene analysis indicated that intake of L. sakei L-7 increased the richness of gut microbiota and abundance of beneficial bacteria Akkermansia, Allobaculum and Parabacteroides. Metabonomics analysis revealed that beneficial metabolite gamma-aminobutyric acid and docosahexaenoic acid increased significantly. While the level of metabolite sphingosine and arachidonic acid significantly decreased. In addition, serum levels of inflammatory cytokines interleukin (IL)- 6 and tumor necrosis factor (TNF)-α were significantly decreased. The results suggested that L. sakei L-7 may promote gut health and reduce the occurrence of inflammatory response, it has the potential to become a probiotic.
Collapse
Affiliation(s)
- Xuan Zou
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Min Xu
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Xiaoqing Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, the People's Republic of China
| | - Qi Wang
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin university, Tianjin 300350, the People's Republic of China.
| |
Collapse
|
7
|
Zhou H, Wang S, Liu W, Chang L, Zhu X, Mu G, Qian F. Probiotic properties of Lactobacillus paraplantarum LS-5 and its effect on antioxidant activity of fermented sauerkraut. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Nirvan H, Selwal MK, Deswal G, Vats P, Selwal KK. Evaluation of Probiotic Characteristics of Lactobacillus gasseri HN1 Isolated from Breast Milk of Indian Mothers. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Ajeeb TT, Gonzalez E, Solomons NW, Koski KG. Human milk microbial species are associated with infant head-circumference during early and late lactation in Guatemalan mother-infant dyads. Front Microbiol 2022; 13:908845. [PMID: 36466698 PMCID: PMC9709448 DOI: 10.3389/fmicb.2022.908845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
Human milk contains abundant commensal bacteria that colonize and establish the infant's gut microbiome but the association between the milk microbiome and head circumference during infancy has not been explored. For this cross-sectional study, head-circumference-for-age-z-scores (HCAZ) of vaginally delivered breastfed infants were collected from 62 unrelated Mam-Mayan mothers living in eight remote rural communities in the Western Highlands of Guatemala during two stages of lactation, 'early' (6-46 days postpartum, n = 29) or 'late' (109-184 days postpartum, n = 33). At each stage of lactation, infants were divided into HCAZ ≥ -1 SD (early: n = 18; late: n = 14) and HCAZ < -1 SD (early: n = 11; late: n = 19). Milk microbiome communities were assessed using 16S ribosomal RNA gene sequencing and DESeq2 was used to compare the differential abundance (DA) of human milk microbiota with infant HCAZ subgroups at both stages of lactations. A total of 503 ESVs annotated 256 putative species across the 64 human milk samples. Alpha-diversity using Chao index uncovered a difference in microbial community richness between HCAZ ≥ -1 SD and HCAZ < -1 SD groups at late lactation (p = 0.045) but not at early lactation. In contrast, Canonical Analysis of Principal Coordinates identified significant differences between HCAZ ≥ -1 SD and HCAZ < -1 SD at both stages of lactation (p = 0.003); moreover, 26 milk microbial taxa differed in relative abundance (FDR < 0.05) between HCAZ ≥ -1 SD and HCAZ < -1 SD, with 13 differentially abundant at each lactation stage. Most species in the HCAZ ≥ -1 SD group were Streptococcus species from the Firmicutes phylum which are considered human colonizers associated with human milk whereas the HCAZ < -1 SD group at late lactation had more differentially abundant taxa associated with environmentally and 'potentially opportunistic' species belonging to the Actinobacteria genus. These findings suggest possible associations between brain growth of breastfed infants and the milk microbiome during lactation. Importantly, these data provide the first evidence of cross talk between the human milk microbiome and the infant brain that requires further investigation.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montréal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
10
|
Characterization of potential probiotic bacteria Enterococcus faecium MC-5 isolated from the gut content of Cyprinus carpio specularis. Microb Pathog 2022; 172:105783. [PMID: 36150558 DOI: 10.1016/j.micpath.2022.105783] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/01/2023]
Abstract
The goal of this study was to determine the unique characteristics of Enterococcus faecium MC-5, a probiotic bacteria isolated from the intestine of a fish, Cyprinus carpio specularis, collected from Dal Lake in Srinagar, Kashmir, India. For this, the important valuable probiotic attributes, some functional properties, and safety assessments were analyzed in-vitro for the strain MC-5. The strain E. faecium MC-5 exhibited high resistance to low pH, high bile salt, lysozyme, and phenol. The strain MC-5 showed excellent auto- and co-aggregation properties and displayed remarkable hydrophobicity towards various tested hydrocarbons which suggested that the strain possesses venerable adhesion properties. Apart from these, the cell-free supernatant (CFS) of strain MC-5 exhibited phenomenal antimicrobial activity against the tested pathogens. A scanning electron microscope (SEM) image revealed strain MC-5 finely adhered to human colon adenocarcinoma cells (HCT-15 cells). The strain MC-5 showed high bile salt hydrolase activity and excellent cholesterol removal ability of 70.27%. The intact cells of strain MC-5 also showed strong DPPH scavenging activity. The EPS produced by E. faecium MC-5 inhibited the adhesion of Listeria monocytogenes, Staphylococcus aureus, and Salmonella enterica on HCT-15 cells with maximum inhibition rates of 41.82, 40.34, and 55.51%, respectively for displacement assay, which was higher as compared to exclusion (26.06, 26.11, and 39.23%) and competition assays (30.06, 26.7, and 41.20%). Strain MC-5 did not exhibit hemolysis and was also found susceptible to vancomycin and other clinically important antibiotics. When evaluating all the results from the present study, it is propounded that strain MC-5 has enviable probiotic characteristics and thus can be used as bio-protective cultures and/or bio-shield in food and pharmaceutical industries.
Collapse
|
11
|
Soliemani O, Salimi F, Rezaei A. Characterization of exopolysaccharide produced by probiotic Enterococcus durans DU1 and evaluation of its anti-biofilm activity. Arch Microbiol 2022; 204:419. [PMID: 35739327 DOI: 10.1007/s00203-022-02965-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/25/2022]
Abstract
Exopolysaccharides (EPS) produced by lactic acid bacteria are complicated polymers with industrial applications. LAB were isolated, screened for EPS production, and their probiotic properties determined. The anti-biofilm activity of EPS was investigated. Safety of EPS-producing isolate was investigated and it was molecularly identified through 16S rRNA sequencing. Finally, anti-biofilm and emulsification activity of EPS was studied and it was characterized using FT-IR, TGA, 1H-NMR, DLS and HPLC. Thirteen LAB were isolated from dairy products. They showed probiotic characteristics like acid resistance (0-6.51 CFU ml-1) hydrophobicity (8-54.04%), autoaggregation (0% [t = 2 h]-99.8% [t = 24 h]) and coaggregation with food borne pathogens. Among them, Enterococcus durans DU1 had ability to produce EPS. EPS of Enterococcus durans DU1 showed antibiofilm activity against Y. enterocolitica (24.06-51.36%), S. aureus (12.33-49.6%), and B. cereus (11.66-27.16%). FT-IR showed this EPS had characteristic absorption peaks due to the presence of the pyran ring of sugars. 1H NMR showed that EPS has N-acetyl, methyl, and alkyl groups in its structure. The HPLC analysis showed that EPS is a heteropolysaccharide and consists of sucrose, glucose, and fructose. EPS showed significant thermal stability (20% weight loss) under 300 °C and zeta potential of - 18.1 mV. This EPS can be used in the food industry with no adverse effect on consumers.
Collapse
Affiliation(s)
- Omid Soliemani
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran.
| | - Arezou Rezaei
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, 36716-41167, Iran
| |
Collapse
|
12
|
Amini E, Salimi F, Imanparast S, Mansour FN. Isolation and characterization of exopolysaccharide derived from Lacticaseibacillus paracasei AS20(1) with probiotic potential and evaluation of its antibacterial activity. Lett Appl Microbiol 2022; 75:967-981. [PMID: 35716384 DOI: 10.1111/lam.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
This study was done to find exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) against foodborne pathogens. Isolated LAB were screened to find the ones with the ability to produce antibacterial EPS against foodborne pathogens. Among tested EPSs, EPS of AS20(1) isolate showed inhibitory effects on the growth of Listeria monocytogenes (MIC = 0·935 mg ml-1 , MBC = 0·935 mg ml-1 ), Yersinia enterocolitica (MIC = 12·5 mg ml-1 , MBC = 50 mg ml-1 ) and Bacillus cereus (MIC = 6·25 mg ml-1 , MBC = 12·5 mg ml-1 ). According to 16S rRNA sequencing, AS20(1) showed the closest similarity to Lacticaseibacillus paracasei (100%). This antibacterial EPS showed negligible toxicity (4·4%-5·2%) against red blood cells. Lacticaseibacillus paracasei AS20(1) showed probiotic properties, including high acid resistance, hydrophobicity (47·5%), autoaggregation and coaggregation with foodborne pathogens. Also, L. paracasei AS20(1) showed no haemolysis activity and antibiotic resistance. Characterization of antibacterial EPS revealed that it is a heteropolysaccharide with various functional groups, amorphous structure, and smooth surface, sheet and compact structure, which can be suitable for food packaging. L. paracasei AS20(1) and its antimicrobial EPS can be used to make functional food.
Collapse
Affiliation(s)
- E Amini
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - S Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - F N Mansour
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Srikham K, Daengprok W, Niamsup P, Thirabunyanon M. Characterization of Streptococcus salivarius as New Probiotics Derived From Human Breast Milk and Their Potential on Proliferative Inhibition of Liver and Breast Cancer Cells and Antioxidant Activity. Front Microbiol 2022; 12:797445. [PMID: 34975821 PMCID: PMC8714912 DOI: 10.3389/fmicb.2021.797445] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
Breast milk is well known as the abundant source of beneficial bacteria. A new alternative source of human probiotic origin from breast milk is in demand and currently of interest for both the functional food industry and biopharmaceuticals. The aim in this study was to investigate the anticancer and antioxidant efficacies of the new potential probiotics isolated from human breast milk. Three strains of lactic acid bacteria (LAB) have shown their potential probiotic criteria including antimicrobial activity, non-hemolytic property, and survival in acid and bile salt conditions. These strains showed high abilities on cell surface hydrophobicity, auto-aggregation, and co-aggregation. The genera identification by 16S rRNA sequencing and comparison revealed that they were Streptococcus salivarius BP8, S. salivarius BP156, and S. salivarius BP160. The inhibition of liver cancer cells (HepG2) and breast cancer cells (MCF-7) proliferation by these probiotic strains using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 44.83–59.65 and 29.85–37.16%, respectively. The probiotic action mode was inducted via apoptotic mechanisms since they stimulate the liver and breast cancer cell death through DNA fragmentation and positive morphological changes by acridine orange (AO) and propidium iodide (PI) staining. The antioxidant activity of these probiotics in the form of intact cells, cell free supernatant (CFS), and heat-killed cells was evaluated by a 2,2–diphenyl–1–picrylhydrazyl (DPPH) assay, resulting in the scavenging activity rates of 16.93–25.43, 15.47–28.03, and 13.67–23.0%, respectively. These S. salivarius probiotic strains protected the L929 mouse fibroblasts against oxidative stress with very high survival rates at 94.04–97.77%, which was significantly higher (P < 0.05) than L-ascorbic acid at 75.89–78.67% in the control groups. The results indicated that S. salivarius BP8 and S. salivarius BP160 probiotic strains could be applied as functional foods or new alternative bioprophylactics for treating liver and breast cancers.
Collapse
Affiliation(s)
- Kantapich Srikham
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Wichittra Daengprok
- Program in Food Science and Technology, Faculty of Engineering and Agro Industry, Maejo University, Chiang Mai, Thailand
| | - Piyanuch Niamsup
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| | - Mongkol Thirabunyanon
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand
| |
Collapse
|
14
|
Characterization of probiotic lactobacilli and development of fermented soymilk with improved technological properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
15
|
de Lima MZT, de Almeida LR, Mera AM, Bernardes A, Garcia W, Muniz JRC. Crystal Structure of a Sucrose-6-phosphate Hydrolase from Lactobacillus gasseri with Potential Applications in Fructan Production and the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10223-10234. [PMID: 34449216 DOI: 10.1021/acs.jafc.1c03901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fructooligosaccharides (FOSs) are polymers of fructose with a prebiotic activity because of their production and fermentation by bacteria that inhabit the gastrointestinal tract and are widely used in the industry and new functional foods. Lactobacillus gasseri stands out as an important homofermentative microorganism related to FOS production, and its potential applications in the industry are undeniable. In this study, we report the production and characterization of a sucrose-6-phosphate hydrolase from L. gasseri belonging to the GH32 family. Apo-LgAs32 and LgAs32 complexed with β-d-fructose structures were determined at a resolution of 1.94 and 1.84 Å, respectively. The production of FOS, fructans, 1-kestose, and nystose by the recombinant LgAs32, using sucrose as a substrate, shown in this study is very promising. When compared to its homologous enzyme from Lactobacillus reuteri, the production of 1-kestose by LgAs32 is increased; thus, LgAs32 can be considered as an alternative in fructan production and other industrial applications.
Collapse
Affiliation(s)
- Mariana Z T de Lima
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Leonardo R de Almeida
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Alain M Mera
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Amanda Bernardes
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| | - Wanius Garcia
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP 09210-580, Brazil
| | - João R C Muniz
- Sao Carlos Institute of Physics (IFSC), University of Sao Paulo (USP), Sao Carlos, SP 13563-120, Brazil
| |
Collapse
|
16
|
The Antioxidant, Anti-Diabetic, and Anti-Adipogenesis Potential and Probiotic Properties of Lactic Acid Bacteria Isolated from Human and Fermented Foods. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7030123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, lactic acid bacteria (LAB) strains derived from human and fermented food sources were examined to identify their properties related to obesity, as well as establish their safety and stability as probiotics. LAB (Lacticaseibacillus rhamnosus MG4502, Lactobacillus gasseri MG4524, Limosilactobacillus reuteri MG5149, and Weissella cibaria MG5285) exhibited antioxidant activity through DPPH (>26.1%) and ABTS (>40.1%) radical scavenging assays and α-glucosidase inhibitory activities (>60.3%), respectively. The LAB strains promoted anti-adipogenesis by reducing lipid accumulation in 3T3-L1 cells by Oil Red O staining (>70.3%). In addition, we found that these LAB strains were resistant to simulated gastric and intestinal fluids (pH 3, 4, 7, and 8) and showed potential for health promotion, based on hemolysis, cell adhesion, antibiotic susceptibility, and enzyme production. Thus, LAB may be used as probiotic ingredients with beneficial effects.
Collapse
|
17
|
Asan-Ozusaglam M, Gunyakti A. A new probiotic candidate bacterium from human milk: Limosilactobacillus vaginalis MA-10. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2020.00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractThe probiotic and technological potentials of lactic acid bacteria originating from human milk are becoming a remarkable research area. In the present study, Limosilactobacillus vaginalis MA-10 isolated from human milk was investigated in vitro for its probiotic and technological aspects. According to the results obtained in the study, MA-10 strain exhibited non-haemolytic activity and various degrees of sensitivity to most of the tested antibiotics. The strain showed good resistance to the gastrointestinal system and maintained its viability under these conditions. Its antimicrobial activity against human or clinical bacterial and fungal microorganisms and fish bacteria was determined in the range of 2.38–11.22 mm. The MA-10 strain was able to assimilate cholesterol ranging from 31.42 to 82.30%. The strain showed 9.34% ferrous-ion chelating and 32% DPPH free radical scavenging activities. These initial results from the present study confirm that L. vaginalis MA-10 may be a new source with appropriated probiotic and technological traits for various industries, and further in vivo assays.Due to the limited number of studies on L. vaginalis strains originated from human breast milk in the literature, the data obtained in this study are thought to be important for revealing the basic probiotic properties of the strain.
Collapse
Affiliation(s)
- M. Asan-Ozusaglam
- 1Department of Biotechnology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - A. Gunyakti
- 1Department of Biotechnology, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
- 2Institute of Biotechnology, Ankara University, 06110, Ankara, Turkey
| |
Collapse
|
18
|
Zhou Q, Zhao S, Huang Y, Hu J, Kuang J, Liu D, Brennan CS. Lactobacillus Gasseri
LGZ 1029 in yogurt: rheological behaviour and volatile compound composition. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Qin‐yu Zhou
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
| | - Shan Zhao
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
| | - Yan‐yan Huang
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
| | - Jin‐shuang Hu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
| | - Jia‐hua Kuang
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
| | - Dong‐mei Liu
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
| | - Charles S. Brennan
- School of Food Science and Engineering South China University of Technology 381 Wushan Road Guangzhou Guangdong510640China
- Centre for Food Research and Innovation Department of Wine, Food and Molecular Biosciences Lincoln University Lincoln85084New Zealand
| |
Collapse
|
19
|
Fernández-Pastor S, Castelló DS, López-Mendoza MC. Stability of the Antimicrobial Capacity of Human Milk Against Cronobacter Sakazakii During Handling. J Hum Lact 2021; 37:139-146. [PMID: 32579054 DOI: 10.1177/0890334420932574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neonatal infections with Cronobacter sakazakii have recently been associated with the consumption of expressed human milk. STUDY AIMS (1) To evaluate whether human milk has antimicrobial capacity against C. sakazakii and (2) to determine the stability of its capacity when it is subjected to various treatments. METHODS The antimicrobial capacity of human milk against C. sakazakii was evaluated using an observational, cross-sectional, comparative design. Mature human milk samples (N = 29) were subjected to different treatments. After incubation at 37°C for 72 hr, samples were compared with fresh milk on the stability of their antimicrobial capacity. Two-way analysis of variance (ANOVA) was performed. RESULTS In fresh milk, counts of C. sakazakii were reduced by 47.26% (SD = 6.74) compared to controls. In treated milk, reductions were: refrigeration at 4°C for 72 hr (M = 33.84, SD = 13.84), freezing at -20°C for 1, 2, and 3 months (M = 40.31, SD = 9.10; M = 35.96, SD = 9.39; M = 26.20, SD = 13.55, respectively), Holder pasteurization (M = 23.56, SD = 15.61), and human milk bank treatment with (M = 14.37, SD = 18.02) and without bovine fortifier (M = 3.70, SD = 23.83). There were significant differences (p < .05) between fresh and treated milk. CONCLUSIONS Human milk has antimicrobial capacity against C. sakazakii. However, its capacity is negatively influenced by common preservation and hygienization methods. Milk should be stored refrigerated for a maximum of 72 hr or frozen for a short period of time.
Collapse
Affiliation(s)
- Sandra Fernández-Pastor
- 16731 Department of Animal Production and Food Science and Technology, University CEU-Cardenal Herrera, CEU Universities, Valencia, Spain
| | | | - M C López-Mendoza
- 16731 Department of Animal Production and Food Science and Technology, University CEU-Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
20
|
Ankaiah D, Mitra S, Srivastava D, Sivagnanavelmurugan M, Ayyanna R, Jha N, Venkatesan A. Probiotic characterization of bacterial strains from fermented South Indian tomato pickle and country chicken intestine having antioxidative and antiproliferative activities. J Appl Microbiol 2021; 131:949-963. [PMID: 33404172 DOI: 10.1111/jam.14991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022]
Abstract
AIM The present study aims to evaluate the potential antioxidant and antiproliferative properties of probiotic bacterial isolates Weissella cibaria p3B, Bacillus subtilis CS, and Bacillus tequilensis CL, isolated from South Indian fermented tomato pickle (homemade) and gut content of indigenous country chicken. METHODS AND RESULTS The bacterial isolates exhibited antimicrobial activity against food-borne, human pathogenic bacteria, along with better survival under different bile and acidic conditions, hydrophobicity towards several hydrocarbons, and adherence to intestinal epithelial cells (INT-407 cells). Also, the intact cell (IC) mixture of the three species showed better DPPH, ABTS, and Fe2+ chelating activity as compared to the individual IC or cell extract (CE) activity. Among the three bacterial species, W. cibaria p3B revealed maximum antiproliferative activity against HeLa and Caco-2 cancer cells, all of which were nontoxic to INT-407 cells. Apart from being non-hemolytic, the bacterial isolates did not display any necrotic inhibition in HeLa and Caco-2 cells. The cell free supernatant (CFS) of the three bacterial isolates were tested for the production of antimicrobial peptides or bacteriocins. It found that the CFS of bacterial isolates was stable at various temperature, pH and sensitive to proteolytic enzymes confirms protenoius in nature of the antimicrobil peptides or bacteriocins. CONCLUSION The bacterial isolates showed promising antimicrobial, antioxidant as well as antiproliferative activities with better survival ability at different pH and bile concentrations. The three bacterial isolates were able to produce potential antimicrobial peptides or bacteriocins. SIGNIFICANCE AND IMPACT OF THE STUDY These results indicate better compatibility of our bacterial isolates against synthetic drugs to avoid adverse side effects and can be processed as dietary supplements against food and human pathogens. They can also provide antioxidative and antiproliferative benefits to humans and animals.
Collapse
Affiliation(s)
- D Ankaiah
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - S Mitra
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - D Srivastava
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - M Sivagnanavelmurugan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - R Ayyanna
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - N Jha
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - A Venkatesan
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
21
|
Maldonado-Torres R, Morales-Camacho JI, López-Valdez F, Huerta-González L, Luna-Suárez S. Assessment of Techno-Functional and Nutraceutical Potential of Tomato ( Solanum lycopersicum) Seed Meal. Molecules 2020; 25:E4235. [PMID: 32942707 PMCID: PMC7571165 DOI: 10.3390/molecules25184235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 01/15/2023] Open
Abstract
Tomato (Solanum lycopersicum) is a widely consumed fruit all around the world. The industrial exploitation of tomato generates a lot of waste. Most of the utilization of tomato seeds waste is focused on animal feeding, as well as a food ingredient aimed to increase the protein content, and raw material for some organic bioactive component extraction. The aim of this work was to evaluate the techno-functional properties of tomato seed meal (TSM) and its nutraceutical properties after applying defatting processing (TSMD), and to evaluate the nutraceutical properties after a fermentation processing (TSMDF) by Lactobacillus sp. The results showed that, at alkaline conditions (pH 8-9), the techno-functional properties for TSM and TSMD improved. In comparison with TSM, TSMD showed higher water holding capacity (WHC ≈32%), higher oil holding capacity (OHC ≈13%), higher protein solubility (49-58%), more than 10 times foaming activity (FA), more than 50 times foam stability (Fst), as well as an improved emulsifying activity (EA) and emulsion stability (Est) wich were better at pH 9. Regarding the nutraceutical properties, after 48 h of fermentation (TSMDF), the antioxidant activity was doubled and a significant increase in the iron chelating activity was also observed. During the same fermentation time, the highest angiotensin-converting enzyme inhibition (ACEI) was achieved (IC50 73.6 μg/mL), more than 10 times higher than TSMD, which leads to suggest that this fermented medium may be a powerful antihypertensive. Therefore, the strategy proposed in this study could be an option for the exploitation of tomato wastes.
Collapse
Affiliation(s)
- Ramón Maldonado-Torres
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| | - Jocksan I. Morales-Camacho
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, Sta. Catarina Mártir, San Andrés Cholula, Puebla 72810, Mexico;
| | - Fernando López-Valdez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| | - Luis Huerta-González
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, CIBA-IPN, Tepetitla, Tlaxcala 90700, Mexico; (R.M.-T.); (F.L.-V.); (L.H.-G.)
| |
Collapse
|
22
|
Bhushan B, Sakhare SM, Narayan KS, Kumari M, Mishra V, Dicks LMT. Characterization of Riboflavin-Producing Strains of Lactobacillus plantarum as Potential Probiotic Candidate through in vitro Assessment and Principal Component Analysis. Probiotics Antimicrob Proteins 2020; 13:453-467. [PMID: 32808141 DOI: 10.1007/s12602-020-09696-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lactic acid bacteria (LAB) are known for their probiotic properties, but only a few strains produce riboflavin. We evaluated the probiotic properties of four riboflavin-producing strains of Lactobacillus plantarum (BBC33, BBC32A, BIF43, and BBC32B) by using in vitro assessment and carried out multivariate principal component analysis (PCA) to select the best strain. Safety, antioxidant, and exopolysaccharide-producing properties were also studied. Lact. plantarum BBC33 showed better probiotic potential, followed by strain BIF43. Lact. plantarum BBC32A degraded mucin and excluded as a potential probiotic candidate. Lact. plantarum BIF43, BBC33, and BBC32A tolerated simulated gastrointestinal conditions and their overnight cell-free culture supernatants (CFSs, pH 4.0-4.3) inhibited the growth of Escherichia coli AF10, Salmonella Typhi MTCC98, Bacillus cereus NCDC250, and Pseudomonas aeruginosa NCDC105. Lact. plantarum BIF43 and BBC33 did not degrade mucin, adhered to human epithelial colorectal adenocarcinoma Caco-2 cells (22-25%), and aggregated with indicators (30-50%). Moreover, both were non-hemolytic and sensitive to most antibiotics tested. Of the two selected strains, BIF43 showed better exopolysaccharides (EPS) producing phenotype. The CFSs of all strains showed high (85-93%) 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. PCA confirmed the results obtained from in vitro probiotic experiments and supported the selection of Lact. plantarum BIF33 and BBC43, as potential probiotics.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, 131028, India
| | - Sumit M Sakhare
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, 131028, India
| | - Kapil Singh Narayan
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, 131028, India
| | - Mamta Kumari
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, 131028, India
| | - Vijendra Mishra
- Department of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, 131028, India.
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
23
|
Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. J Biosci Bioeng 2020; 130:471-479. [PMID: 32753308 DOI: 10.1016/j.jbiosc.2020.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
In present study, we investigated the probiotic potential of three Pediococcus spp. isolated from Iranian traditional fermented cereal-dairy product, Tarkhineh. These 3 strains were identified as Pediococcus acidilactici VKU2, P. acidilactici IAH-5 and P. pentosaceus DHR005 by 16S rRNA gene sequencing. All the strain were found tolerate to pH 3 and 0.3% oxall for 3 h as well as simulated gastric and intestinal juice. P. acidilactici IAH-5 showed the highest cholesterol removal (67.52%), hydroxyl radical scavenging activity (58.32%), hydrophobicity (40.3%) and auto-aggregation (48%). Pediococcus spp. inhibited the growth of tested pathogens (Escherichia coli ATCC 25922, Pseudomonas aeruginosa PTCC 1707, Salmonella typhimurium PTCC 1609, and Staphylococcus aureus ATCC 25923) which the most susceptible strain was S. aureus. In competition assay, P. acidilactici IAH-5 was able to inhibited adhesion of 67.3% of S. typhimurium and in inhibition assay 45.8% of the pathogenic adhesion to Caco-2 cells were decreased. P. acidilactici VKU2 and P. acidilactici IAH-5 showed 16.32 and 12.25% adhesion to simulated epithelial cell line which were also confirmed by scanning electron microscopy. Pediococcus spp. did not showed DNase production or hemolytic activity which confirm its safety aspects. Our findings suggested that the P. acidilactici IAH-5 has the best properties with probiotic features and cholesterol assimilation for its application as novel bio-therapeutic and bio-preservation agents.
Collapse
|
24
|
Lakra AK, Domdi L, Hanjon G, Tilwani YM, Arul V. Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109261] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Lyons KE, Ryan CA, Dempsey EM, Ross RP, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients 2020; 12:E1039. [PMID: 32283875 PMCID: PMC7231147 DOI: 10.3390/nu12041039] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/27/2022] Open
Abstract
Human breast milk is considered the optimum feeding regime for newborn infants due to its ability to provide complete nutrition and many bioactive health factors. Breast feeding is associated with improved infant health and immune development, less incidences of gastrointestinal disease and lower mortality rates than formula fed infants. As well as providing fundamental nutrients to the growing infant, breast milk is a source of commensal bacteria which further enhance infant health by preventing pathogen adhesion and promoting gut colonisation of beneficial microbes. While breast milk was initially considered a sterile fluid and microbes isolated were considered contaminants, it is now widely accepted that breast milk is home to its own unique microbiome. The origins of bacteria in breast milk have been subject to much debate, however, the possibility of an entero-mammary pathway allowing for transfer of microbes from maternal gut to the mammary gland is one potential pathway. Human milk derived strains can be regarded as potential probiotics; therefore, many studies have focused on isolating strains from milk for subsequent use in infant health and nutrition markets. This review aims to discuss mammary gland development in preparation for lactation as well as explore the microbial composition and origins of the human milk microbiota with a focus on probiotic development.
Collapse
Affiliation(s)
- Katríona E. Lyons
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland
| | - C. Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork T12 YE02, Ireland
| | - Eugene M. Dempsey
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork T12 YE02, Ireland
- INFANT Research Centre, University College Cork, Cork T12 DFK4, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| |
Collapse
|
26
|
Rajab S, Tabandeh F, Shahraky MK, Alahyaribeik S. The effect of lactobacillus cell size on its probiotic characteristics. Anaerobe 2020; 62:102103. [DOI: 10.1016/j.anaerobe.2019.102103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
|
27
|
Roobab U, Batool Z, Manzoor MF, Shabbir MA, Khan MR, Aadil RM. Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|