1
|
Chen A, Pan C, Chen J. Comparative Analysis of Bread Quality Using Yeast Strains from Alcoholic Beverage Production. Microorganisms 2024; 12:2609. [PMID: 39770811 PMCID: PMC11676879 DOI: 10.3390/microorganisms12122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/12/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025] Open
Abstract
The impact of yeast strain selection on bread quality was evaluated using a range of commercial Saccharomyces cerevisiae strains, typically employed in various alcoholic beverage productions, to determine their effectiveness in bread making. The final products made from these strains were compared to bread produced using the commercial baker's strain S. cerevisiae ACY298. Key parameters, including specific volume, hardness, pH, residual sugars, and organic acids, were thoroughly assessed. Among the strains tested, S. cerevisiae ACY158 produced bread with a specific volume of 5.0 cm3/g and a Euclidean distance of 0.895, closely resembling ACY298. In contrast, S. cerevisiae ACY9, with a specific volume of 1.1 cm3/g and the highest Euclidean distance of 6.878, exhibited the greatest deviation from ACY298, suggesting it may be less suitable for traditional bread production. Furthermore, ACY158 displayed a balanced organic acid profile and minimal residual sugars, aligning well with consumer expectations for bread flavor and texture. These results underscore that certain alternative S. cerevisiae strains have the potential to match or exceed the performance of commercial baker's yeast, offering opportunities to optimize bread quality and diversify industrial baking practices.
Collapse
Affiliation(s)
- Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenwei Pan
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
- Jiaxing Institute of Future Food, Jiaxing 314050, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China;
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Li Z, Liu T, Zhang T, Zhang L. Improved properties of dough fermented with rice wine prepared by mixed Saccharomycopsis fibuligera SF7 and Saccharomyces cerevisiae SC1. Food Sci Biotechnol 2024; 33:3473-3480. [PMID: 39493390 PMCID: PMC11525353 DOI: 10.1007/s10068-024-01598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 11/05/2024] Open
Abstract
In view of the special aptitudes of the yeast population in both rice wine production and dough fermentation, in this study, the characteristics of dough fermented with rice wine prepared from mixed Saccharomycopsis fibuligera SF7 and Saccharomyces cerevisiae SC1 (JFC) were evaluated and compared with those of dough fermented directly with the two yeast co-cultures (FC). Dough inoculated with JFC showed higher acidity, reducing sugar content and leavening activity than dough fermented with FC. The water distribution pattern and pasting properties of the JFC-fermented dough changed dramatically after fermentation, and the dough microstructure and extensibility were improved. The steamed bread made with JFC-fermented dough had improved specific volume and showed similar volatile compound profiles to that made with commercial Jiuqu. These results indicated that mixed S. fibuligera SF7 and S. cerevisiae SC1 could be used as defined starter cultures in rice wine preparation for steamed bread production. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01598-w.
Collapse
Affiliation(s)
- Zhijian Li
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001 China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Henan University of Technology, Zhengzhou, 450001 China
| | - Tongyun Liu
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001 China
| | - Tong Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001 China
| | - Lulu Zhang
- National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001 China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001 China
- Henan Province Wheat-Flour Staple Food Engineering Technology Research Centre, Henan University of Technology, Zhengzhou, 450001 China
| |
Collapse
|
3
|
Wang H, Yao W, Yuan Y, Shi S, Liu T, Wang N. Yeast-Raised Polyamidoxime Hydrogel Prepared by Ice Crystal Dispersion for Efficient Uranium Extraction from Seawater. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306534. [PMID: 38348596 PMCID: PMC11077670 DOI: 10.1002/advs.202306534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Indexed: 05/09/2024]
Abstract
Uranium extraction from seawater has attracted worldwide attention due to the massive reserves of uranium. Due to the straightforward synthesis and strong affinity toward uranyl ions (UO2 2+), the amidoxime group shows promise for use in highly efficient uranium capture. However, the low mass transfer efficiency within traditional amidoxime-based adsorbents severely limits the adsorption rate and the utilization of adsorption sites. In this work, a macroporous polyamidoxime (PAO) hydrogel is prepared by yeast-based biological foaming combined with ice crystal dispersion that effectively maintained the yeast activity. The yeast-raised PAO (Y-PAO) adsorbent has numerous bubble-like holes with an average pore diameter >100 µm. These macropores connected with the intrinsic micropores of PAO to construct efficient diffusion channels for UO2 2+ provided fast mass transporting channels, leading to the sufficient exposure of hidden binding sites. The maximum adsorption capacity of Y-PAO membrane reached 10.07 mg-U/g-ads, ≈1.54 times higher than that of the control sample. It took only eight days for Y-PAO to reach the saturation adsorption capacity of the control PAO (6.47 mg-U/g-ads, 28 days). Meanwhile, Y-PAO possessed excellent ion selectivity, good reusability, and low cost. Overall, the Y-PAO membrane is a highly promising adsorbent for use in industrial-scale uranium extraction from seawater.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Weikun Yao
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Se Shi
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China SeaHainan UniversityHaikou570228China
| |
Collapse
|
4
|
Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food Res Int 2023; 173:113425. [PMID: 37803764 DOI: 10.1016/j.foodres.2023.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Consumption of high FODMAP (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) diet is the leading cause of alteration in the human gut microbiome, thereby, causing irritable bowel syndrome (IBS). Therefore, sourdough technology can be exploited for reduction of FODMAPs in various foods to alleviate the symptoms of IBS. Several microorganisms viz. Pichia fermentans, Lactobacillus fetmentum, Saccharomyces cerevisiae, Torulaspora delbrueckii, Kluyveromyces marxianus etc. have been identified for the production of low FODMAP type II sourdough fermented products. However, more research on regulation of end-product and volatilome profile is required for maximal exploitation of FODMAP-reducing microorganisms. Therefore, the present review is focused on utilisation of lactic acid bacteria and yeasts, alone and in synergy, for the production of low FODMAP sourdough foods. Moreover, the microbial bioprocessing of cereal and non-cereal based low FODMAP fermented sourdough products along with their nutritional and therapeutic benefits have been elaborated. The challenges and future prospects for the production of sourdough fermented low FODMAP foods, thereby, bringing out positive alterations in gut microbiome, have also been discussed.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena SP 12.602-810, Brazil.
| |
Collapse
|
5
|
Chen L, Li K, Chen H, Li Z. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023; 12:3501. [PMID: 37761210 PMCID: PMC10529235 DOI: 10.3390/foods12183501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.
Collapse
Affiliation(s)
- Li Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Huitai Chen
- Hunan Guoyuan Liquor Industry Co., Ltd., Yueyang 414000, China;
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| |
Collapse
|
6
|
Rahman MH, Sun HN, Zhang M, Mu TH, Khan NM. Effect of sucrose, trehalose, maltose and xylose on rheology, water mobility and microstructure of gluten-free model dough based on high hydrostatic pressure treated starches. Int J Biol Macromol 2023; 231:123184. [PMID: 36634802 DOI: 10.1016/j.ijbiomac.2023.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
Due to functional and physicochemical properties, starch in its native state has limited range of applications. Simultaneously, information on effects of different sugars and their interactions with modified starch on gluten-free model dough is also limited. To better overcome these restrictions, the effects of sucrose, trehalose, maltose and xylose on rheology, water mobility and microstructure of gluten-free dough prepared with high hydrostatic pressure (HHP) treated maize (MS), potato (PS) and sweet potato starch (SS) were investigated. MS, PS and SS dough with trehalose exhibited a lower degree of dependence of G' on frequency sweep (z'), higher strength (K) and relative elastic part of maximum creep compliance (Je/Jmax), suggesting stable network structure formation. Total gas production (VT) of MS dough with maltose, PS dough with sucrose and SS dough with trehalose was increased from 588 to 1454 mL, 537 to 1498 mL and 637 to 1455 mL respectively. Higher weakly bound water (T22) was found in the dough with trehalose at 60 min of fermentation, suggesting more hydrogen bonds and stable network. Thus, trehalose might be a potential improver in HHP treated starch-based gluten-free products.
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China; Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Bangladesh
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China.
| | - Nasir Mehmood Khan
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, China; Department of Agriculture, Shaheed Benazir Bhutto University, Sheringal, Upper Dir, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
The Ability of the Yeast Wickerhamomyces anomalus to Hydrolyze Immunogenic Wheat Gliadin Proteins. Foods 2022; 11:foods11244105. [PMID: 36553848 PMCID: PMC9778486 DOI: 10.3390/foods11244105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Gliadins proteins make up around 30% of total wheat flour proteins. They are involved in many immune disorders affecting an increasing number of people who eat foods made with wheat flour. The triggering factor is the accumulation in the gut of immunogenic peptides derived from incomplete degradation of gliadins by gastric proteases. Previous research has revealed the effectiveness of sourdough-fermentation technology or related lactic acid bacteria in reducing wheat flour allergenic proteins. However, there are no single yeast cultures for producing reduced allergenicity wheat products. This study evaluated sourdough-related yeast Wickerhamomyces anomalus strains for their ability to hydrolyze gliadin proteins. All yeast strains were able to degrade gliadins and use them as carbon and nitrogen sources. The proliferation of the yeast strains depended on the gliadin addition; complete hydrolysis was observed after 24 h. The strain showing higher proteolytic activity fermented, acceptably wheat flour dough. The gliadin content of the leavened dough was reduced by 50%. Bread made from the W. anomalus-fermented dough showed a 78% reduction in immunogenic α-gliadins. 50% of the decrease was attributed to the proteolytic activity of the yeast cells, and the other 35% to the baking process. These results show the potential of the yeast W. anomalus as a starter for reducing immunogenicity wheat products.
Collapse
|
8
|
Niçin RT, Özdemir N, Şimşek Ö, Çon AH. Production of volatiles relation to bread aroma in flour-based fermentation with yeast. Food Chem 2022; 378:132125. [PMID: 35033716 DOI: 10.1016/j.foodchem.2022.132125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022]
Abstract
The aim of this study is to produce a bread aroma mixture in flour-based fermentation that can potentially be added in bread dough forming after selection of yeast strains and optimization of the fermentation conditions. S. cerevisiae PFC121 produced bread aroma compounds in higher amounts compared to other 20 strains. Also, this strain provided a more balanced volatiles in bread samples that gained consumer appreciation. When the PLS analysis were evaluated, 3-methyl-1-butanol, 2-phenylethyl alcohol, nonanal, and benzaldehyde were closely related with the whole wheat flour. Conversely, 2-methyl-1-propyl acetate, and 2-methyl-1-propanol were observed to be correlated with the fermentation temperature. PCA showed that 20 °C fermentation temperature was effective on the accumulation of benzaldehyde and nonanal. Extending the fermentation time increased alcohol and ester accumulation. In conclusion, S. cerevisiae PFC121 is a potential strain to produce bread related volatiles at the fermentation conditions that are wheat flour, 30 °C, 6 pH and 48-h.
Collapse
Affiliation(s)
- Ramazan Tolga Niçin
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, İstanbul, Turkey.
| | - Nilgün Özdemir
- Ondokuz Mayıs University, Engineering Faculty, Department of Food Engineering, Samsun, Turkey.
| | - Ömer Şimşek
- Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, İstanbul, Turkey.
| | - Ahmet Hilmi Çon
- Ondokuz Mayıs University, Engineering Faculty, Department of Food Engineering, Samsun, Turkey.
| |
Collapse
|
9
|
Zhou Q, Ma K, Song Y, Wang Z, Fu Z, Wang Y, Zhang X, Cui M, Tang N, Xing X. Exploring the diversity of the fungal community in Chinese traditional Baijiu daqu starters made at low-, medium- and high-temperatures. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Screening of Sourdough Starter Strains and Improvements in the Quality of Whole Wheat Steamed Bread. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113510. [PMID: 35684446 PMCID: PMC9182275 DOI: 10.3390/molecules27113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022]
Abstract
In this study, yeast, lactic acid bacteria, and acetic acid bacteria were isolated from traditional Chinese sourdough to enhance the organoleptic quality of whole wheat steamed bread. The Saccharomyces cerevisiae, Lactobacillus johnsonii, and Acetobacter pasteurianum showed superior fermentability and acid production capacity when compared with other strains from sourdough, which were mixed to produce the compound starter. It was found that the volume of whole wheat steamed bread leavened with compound starter increased by 12.8% when compared with that of the whole wheat steamed bread made by commercial dry yeast (DY-WB). A total of 38 volatile flavors were detected in the whole wheat steamed bread fermented by the compound starter (CS-WB), and the type of volatile flavors increased by 14 species when compared to the bread fermented by the dry yeast. In addition, some unique volatile flavor substances were detected in CS-WB, such as acetoin, 3-hydroxy-butanal, butyraldehyde, cuparene, etc. Moreover, the hardness and the chewiness of CS-WB decreased by 31.1 and 33.7% when compared with DY-WB, respectively, while the springiness increased by 10.8%. Overall, the formulated compound starter showed a desirable improvement in the whole wheat steamed bread and could be exploited as a new ingredient for steamed bread.
Collapse
|
11
|
Wang J, Zhao M, Xie N, Huang M, Feng Y. Community structure of yeast in fermented soy sauce and screening of functional yeast with potential to enhance the soy sauce flavor. Int J Food Microbiol 2022; 370:109652. [PMID: 35390573 DOI: 10.1016/j.ijfoodmicro.2022.109652] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 01/26/2023]
Abstract
Yeast plays an important role in the formation of desirable aroma during soy sauce fermentation. In this study, the structure and diversity of yeast communities in seven different soy sauce residues were investigated by ITS sequencing analysis, and then the aroma characteristics of selected yeast species were examined by a combination of gas chromatography-mass spectrometry (GC-MS), headspace solid-phase microextraction (SPME) and liquid-liquid extraction (LLE). A total of 18 yeast genera were identified in seven soy sauce residues. Among them, Candid and Zygosaccharomyces were detected in all samples, followed by Millerozyma, Wickerhamiella, Meyerozyma, Trichosporon and Wickerhamomyces, which were found in more than two-thirds of the samples. Subsequently, eight representative species, isolated from soy sauce residues, were subjected to environmental stress tolerance tests and aroma production tests. Among them, three isolated species were regarded as potential aroma-enhancing microbes in soy sauce. Wickerhamiella versatilis could increase the contents of ethyl ester compounds and alcohols, thereby improving the fruity and alcoholic aroma of soy sauce. Candida sorbosivorans enhanced sweet and caramel-like aroma of soy sauce by producing 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 3-hydroxy-2-methyl-4h-pyran-4-one (maltol). Starmerella etchellsii could enhance the contents of 2,6-dimethylpyrazine, methyl pyrazine and benzeneacetaldehyde. This study is of great significance for the development and application of flavor functional yeasts in soy sauce fermentation.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China
| | - Mouming Zhao
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China
| | - Nuoyi Xie
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mingtao Huang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yunzi Feng
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing & Nutrition Regulation Technology, Guangzhou 510650, Guangdong, China.
| |
Collapse
|
12
|
Condessa BMB, da Silva KV, da Silva JFM, de Morais PB, Leal Zimmer FMA, de Almeida AF, Niculau EDS, Nogueira KL, Santos CCADA. Performance of wild
Saccharomyces
and Non‐
Saccharomyces
yeasts as starter cultures in dough fermentation and bread making. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Paula Benevides de Morais
- Bionorte – Legal Amazon Biodiversity and Biotechnology Network Federal University of Tocantins Palmas Brazil
| | | | - Alex Fernando de Almeida
- Graduate Program in Food Science and Technology Federal University of Tocantins (UFT) Palmas Brazil
| | | | | | | |
Collapse
|
13
|
Li Z, Zhang T, Li H. Sorption of Se(IV) from aqueous solution by wheat bran-hydroxyapatite (HA) composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:58721-58729. [PMID: 34118005 DOI: 10.1007/s11356-021-14787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Natural biocompatible material is promising candidate for selenite sorption from water since it allows to reuse selenium while dispose of waste materials. In this study, innovative wheat bran-hydroxyapatite (HA) composite was prepared by in situ precipitation method. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) revealed that the hydroxyapatite aggregated in the fiber matrix of the wheat bran. The results of batch sorption experiments including sorption kinetics, isotherms, and the effect of solution pH showed that the sorption of Se(IV) on the wheat bran-HA adsorbent was fast, endothermic, and pH-independent in the range from 5.0 to 7.0. Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis suggested that interaction occurred between Se(IV) and the hydroxyl groups on the composite. Column studies showed that wheat bran-HA composite was suitable to be utilized for continuous Se(IV) removal. The wheat bran-HA composite has a potential application for Se(IV) removal in water treatment.
Collapse
Affiliation(s)
- Zhijian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Tong Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Haifeng Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, 450001, China
| |
Collapse
|
14
|
Peng N, Yao Z, Wang Z, Huang J, Khan MT, Chen B, Zhang M. Fungal deterioration of the bagasse storage from the harvested sugarcane. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:152. [PMID: 34215313 PMCID: PMC8254370 DOI: 10.1186/s13068-021-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Sugarcane is an essential crop for sugar and ethanol production. Immediate processing of sugarcane is necessary after harvested because of rapid sucrose losses and deterioration of stalks. This study was conducted to fill the knowledge gap regarding the exploration of fungal communities in harvested deteriorating sugarcane. Experiments were performed on simulating production at 30 °C and 40 °C after 0, 12, and 60 h of sugarcane harvesting and powder-processing. RESULTS Both pH and sucrose content declined significantly within 12 h. Fungal taxa were unraveled using ITS amplicon sequencing. With the increasing temperature, the diversity of the fungal community decreased over time. The fungal community structure significantly changed within 12 h of bagasse storage. Before stored, the dominant genus (species) in bagasse was Wickerhamomyces (W. anomalus). Following storage, Kazachstania (K. humilis) and Saccharomyces (S. cerevisiae) gradually grew, becoming abundant fungi at 30 °C and 40 °C. The bagasse at different temperatures had a similar pattern after storage for the same intervals, indicating that the temperature was the primary cause for the variation of core features. Moreover, most of the top fungal genera were significantly correlated with environmental factors (pH and sucrose of sugarcane, storage time, and temperature). In addition, the impact of dominant fungal species isolated from the deteriorating sugarcane on sucrose content and pH in the stored sugarcane juice was verified. CONCLUSIONS The study highlighted the importance of timeliness to refine sugar as soon as possible after harvesting the sugarcane. The lessons learned from this research are vital for sugarcane growers and the sugar industry for minimizing post-harvest losses.
Collapse
Affiliation(s)
- Na Peng
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Ziting Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Ziting Wang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Jiangfeng Huang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Muhammad Tahir Khan
- Sugarcane Biotechnology Group, Nuclear Institute of Agriculture (NIA), Tando Jam, Pakistan
| | - Baoshan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Muqing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
15
|
Zhang Y, Wang B, Wang W, Wang H, Liu X, Zhang H. Study on the mechanism of ultrasonic treatment impact on the dough's fermentation capability. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Cao Y, Zhang H, Yang Z, Zhang M, Guo P, Li H. Influence of the fermentation time and potato pulp addition on the technological properties and volatile compounds of wheat dough and steamed bread. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|