1
|
Moreira L, Milheiro J, Filipe-Ribeiro L, Cosme F, Nunes FM. Exploring factors influencing the levels of biogenic amines in wine and microbiological strategies for controlling their occurrence in winemaking. Food Res Int 2024; 190:114558. [PMID: 38945562 DOI: 10.1016/j.foodres.2024.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
Fermented beverages, including wine, can accumulate high concentrations of biogenic amines (BAs), which can pose potential health risks. BAs are produced by various yeasts and lactic acid bacteria (LAB) during winemaking. LAB are the main contributors to the formation of histamine and tyramine, the most toxic and food safety relevant biogenic amines. Numerous factors, ranging from agricultural and oenological practices to sanitation conditions, can contribute to the formation of BAs in wines. Moreover, organic and biodynamic wines impose limitations on the use of common food additives employed to control the proliferation of native and spoilage microorganisms during vinification and storage. To mitigate histamine production, commercial starter cultures incapable of synthesising histamine have been effectively utilised to reduce wine histamine content. Alternative fermentative microorganisms are currently under investigation to enhance the safety, quality, and typicity of wines, including indigenous LAB, non-Saccharomyces yeasts, and BAs degrading strains. Furthermore, exploration of extracts from BAs-degrading microorganisms and their purified enzymes has been undertaken to reduce BAs levels in wines. This review highlights microbial contributors to BAs in wines, factors affecting their growth and BA production, and alternative microorganisms that can degrade or avoid BAs. The aim is to lessen reliance on additives, providing consumers with safer wine choices.
Collapse
Affiliation(s)
- Luís Moreira
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Juliana Milheiro
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Luís Filipe-Ribeiro
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Fernanda Cosme
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, Biology and Environment Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal
| | - Fernando M Nunes
- Chemistry Research Centre - Vila Real (CQ-VR), Food and Wine Chemistry Lab, Chemistry Department, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, 5000-801 Vila Real, Portugal.
| |
Collapse
|
2
|
Barzegar F, Nabizadeh S, Kamankesh M, Ghasemi JB, Mohammadi A. The selective extraction of dietary polyamines from chicken breast using the application of a lab-on-a-chip electromembrane and dispersive liquid-liquid microextraction followed by gas chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2585-2596. [PMID: 38606467 DOI: 10.1039/d3ay02172f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Excessive dietary polyamines (PAs), including putrescine (PUT), spermine (SPM), and spermidine (SPD), have become a worldwide concern due to their carcinogenicity and reduced shelf life. A modern miniaturized on-chip electromembrane extraction (EME) has been applied to extract these compounds from chicken breast samples. This method is based fundamentally on ionic compounds' electrostatic attraction, diffusion, and solubility in the acceptor phase. The chemical structure of polyamines enables their efficient extraction using an electric driving force on a microchip device. HCl solution (0.1 mol L-1) was applied as an aqueous acceptor solvent. Dispersive liquid-liquid microextraction was performed after EME to facilitate joining three-phase EME to GC-MS and improve the merit figures. The total ranges of 3.77-7.89 μg g-1, 3.48-7.02 μg g-1, and 0.78-2.20 μg g-1 were acquired as PUT, SPM and SPD concentrations in chicken breast, respectively. The results demonstrate that the level of PAs in fresh chicken breast samples is not concerning, but it may reduce the quality of chicken meat over time. This novel analytical technique has several advantages: high recovery, substantial quickness, remarkable selectivity, and good enrichment factors. This emerging method could be generalized to other studies to analyze different foodstuffs.
Collapse
Affiliation(s)
- Fatemeh Barzegar
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Samaneh Nabizadeh
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marzieh Kamankesh
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran.
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Jahan B Ghasemi
- Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.
| | - Abdorreza Mohammadi
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kmieciak A, Jastrzębska A, Szymańska K, Krzemiński MP, Muzioł TM, Kurzawa M, Szłyk E. The Selection of the Best Derivatization Reagents for the Determination of Polyamines in Home-Made Wine Samples. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1474. [PMID: 36837108 PMCID: PMC9960030 DOI: 10.3390/ma16041474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The procedures of putrescine, spermine, spermidine, and cadaverine derivatization using 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene, 1-fluoro-2-nitro-4-(trifluoromethyl) benzene, and 3,5-bis-(trifluoromethyl)phenyl isothiocyanate for chromatographic determination in home-made wine samples are compared in the present study. The procedures discussed were compared regarding simplicity, linearity, precision, and accuracy. The polyamines derivatives were isolated and characterized by X-ray crystallography and 1H, 13C, and 19F NMR spectroscopy. The obtained structures of aliphatic amines showed that all amino groups, four in spermine, two in putrescine and cadaverine, and three in spermidine, regardless of the applied reagent, were substituted. The applicability of the described procedures was tested during the chromatographic analysis of the compounds' content in home-made wines. For this purpose, a simple and environmentally friendly sample preparation procedure was developed. The obtained results present the derivatization of polyamines with 1-fluoro-2-nitro-4-(trifluoromethyl)benzene as a better choice for the determination of these compounds in food samples.
Collapse
Affiliation(s)
- Anna Kmieciak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Karolina Szymańska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marek P. Krzemiński
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Tadeusz M. Muzioł
- Department of Inorganic and Coordination Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| | - Edward Szłyk
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
4
|
Do vine cropping and breeding practices affect the biogenic amines' content of produced wines? J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Update on Biogenic Amines in Fermented and Non-Fermented Beverages. Foods 2022; 11:foods11030353. [PMID: 35159503 PMCID: PMC8834261 DOI: 10.3390/foods11030353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 01/12/2023] Open
Abstract
The formation of biogenic amines in food and beverages is mainly due to the presence of proteins and/or free amino acids that represent the substrates for microbial or natural enzymes with decarboxylation or amination activity. Fermentation occurring in many alcoholic beverages, such as wine, beer, cider, liqueurs, as well as coffee and tea, is one of the main processes affecting their production. Some biogenic amines can also be naturally present in some fruit juices or fruit-based drinks. The dietary intake of such compounds should consider all their potential sources by both foods and drinks, taking in account the health impact on some consumers that represent categories at risk for a deficient metabolic activity or assuming inhibiting drugs. The most important tool to avoid their adverse effects is based on prevention through the selection of lactic acid bacteria with low decarboxylating activity or good manufacturing practices hurdling the favoring conditions on biogenic amines' production.
Collapse
|
6
|
Fernández-Pacheco P, Ramos Monge IM, Fernández-González M, Poveda Colado JM, Arévalo-Villena M. Safety Evaluation of Yeasts With Probiotic Potential. Front Nutr 2021; 8:659328. [PMID: 34095190 PMCID: PMC8175779 DOI: 10.3389/fnut.2021.659328] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
This work has evaluated the safety aspects of 20 yeast strains, isolated from food environments, selected in previous works due to their probiotic potential. Among the different strains, there are Saccharomyces and non-Saccharomyces yeasts. Before safety evaluation, differentiation of Saccharomyces cerevisiae strains was done by PCR amplification of inter-δ region with pairs of primers δ2-12 and δ12-21, which showed that they were all different from each other and also had different profiles to Saccharomyces boulardii (the only commercial probiotic yeast). The non-Saccharomyces ones were already known. The evaluation tests carried out were antibiotic and antifungal resistance, production of biogenic amines, deconjugation activity of bile salts, and different enzymatic activities: coagulase, deoxyribonuclease, hemolysin, proteolytic, and phospholipase. None of the studied strains demonstrated coagulase, hemolytic or DNase capacity (clear virulence factors), although all of them showed protease activity, some showed phospholipase activity, and half of the yeasts were capable of conjugating bile salts. Regarding antimicrobial compounds, all were resistant to antibiotics but showed sensitivity to the antimycotics used. Nevertheless, only one strain of Hanseniaspora osmophila was excluded for use in the food industry, due to its high production of tyramine.
Collapse
Affiliation(s)
- Pilar Fernández-Pacheco
- Analytical Chemistry and Food Technology Department, Faculty of Environmental Science and Biochemistry, Castilla-La Mancha University, Toledo, Spain
| | - Inés María Ramos Monge
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Mónica Fernández-González
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - Justa María Poveda Colado
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| | - María Arévalo-Villena
- Analytical Chemistry and Food Technology Department and Instituto Regional de Investigación Científica Aplicada (IRICA), Faculty of Chemical Sciences and Technologies, Castilla-La Mancha University, Ciudad Real, Spain
| |
Collapse
|
7
|
Lin LJ, Du FM, Zeng J, Liang ZJ, Zhang XY, Gao XY. Deep insights into fungal diversity in traditional Chinese sour soup by Illumina MiSeq sequencing. Food Res Int 2020; 137:109439. [PMID: 33233120 DOI: 10.1016/j.foodres.2020.109439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/28/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022]
Abstract
Sour soup is a traditional condiment in Guizhou Province, China. The purpose of this study was to investigate the differences in the fungi present in 5 types of sour soup (tomato sour soup, chili sour soup, cherry tomato sour soup, spoiled tomato sour soup, and red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation) and to determine the reasons for the deterioration of tomato sour soup by comparing the fungal communities in normal and deterioratedtomato sour soup. A total of 5 phyla were detected in all 5 samples, including Ascomycota (69.38%), Basidiomycota (7.63%), Zygomycota (1.59%), Chytridiomycota (0.01%) and unclassified phyla (21.39%). Ascomycota was the main phylum in each sample except the red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation. That sour soup contained many unrecognized phyla. At the genus level, there were major differences among the different samples. Dekkera spp. and Pichia spp. were the main dominant fungus in tomato sour soup, Saccharomyces spp. and Pichia spp. were the dominant fungus in chili sour soup, and Pichia spp. were the dominant fungus in cherry tomato sour soup. When sour soup went bad, the fungus of sour soup changed greatly, and the unknown fungal genera, Cladospora spp., Saccharomyces spp. and Emericella spp. became the dominant fungal genera. In addition, after the secondary fermentation of tomato and chili sour soup mixed with garlic and ginger, the fungal genera of the base fermentation were replaced by unknown fungal genera. Moreover, there were various spoilage fungi in sour soup, which indicated that there were safety risks in naturally fermented sour soup and should be further controlled. This study revealed the fungal flora in sour soup made from different vegetables and compared the fungal diversity of spoiled and normal tomato sour soup and thereby provided a basis for understanding the fungal diversity of sour soup in China and guiding the production of sour soup.
Collapse
Affiliation(s)
- Liang-Jing Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Fang-Min Du
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jian Zeng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Yong Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Xiang-Yang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
8
|
Filipe-Ribeiro L, Cosme F, Nunes FM. New molecularly imprinted polymers for reducing negative volatile phenols in red wine with low impact on wine colour. Food Res Int 2020; 129:108855. [PMID: 32036903 DOI: 10.1016/j.foodres.2019.108855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 01/14/2023]
Abstract
4-Ethylphenol (4-EP) and 4-ethylguaiacol (4-EG) formation in red wines by Dekkera/Brettanomyces yeasts reduce significantly wine consumer's acceptability. Polymers with specific adsorption for volatile phenols (VPs) could be a valuable tool for wine producers for removing this negative sensory defect. In this work, a new molecularly imprinted polymer (MIP) was synthesised using ethylene glycol dimethacrylate (EDMA) as cross-linker and ethylene glycol methyl ether acrylate as functional monomers. Although there was observed a competitive binding of the more abundant structurally related phenolic compounds of the wine matrix, it was still able to reduce 38 to 63% the wine VPs, depending on the wine VPs levels, presenting higher performance than the respective non-imprinted polymers (NIP). Sensory analysis of the MIP treated wine resulted in a significant decrease in the phenolic attribute and significant increase of the fruity and floral attributes, with no significant differences in the wine colour perceived by the expert panel. The sensory improvement of the MIP was significantly higher than that observed for the correspondent NIP.
Collapse
Affiliation(s)
- Luís Filipe-Ribeiro
- Chemistry Department, CQ-VR, Chemistry Research Centre - Vila Real, Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real 5000-801, Portugal.
| | - Fernanda Cosme
- Biology and Environmental Department, CQ-VR, Chemistry Research Center - Vila Real, Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real 5000-801, Portugal
| | - Fernando M Nunes
- Chemistry Department, CQ-VR, Chemistry Research Centre - Vila Real, Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real 5000-801, Portugal
| |
Collapse
|
9
|
Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem 2020; 314:126222. [PMID: 31981884 DOI: 10.1016/j.foodchem.2020.126222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Climate change has an impact on the chemical risks associated to wine consumption related with grape development and microbial contamination. We can classify chemical hazards in wine into two groups: those present in grapes due to agricultural practices, environmental contamination or fungal growth and those coming from fermentation and the winemaking process. The first group includes mycotoxins, whilst the second encompasses ethyl carbamate, biogenic amines, sulfur dioxide and proteins used as technological ingredients such as fining material. Usually the effective control of chemical hazards is achieved by assuring that they either are minimized or absent in the final product since their removal is somewhat difficult and sometimes it may affect sensory properties, which is a major issue in wine. Interestingly, it is possible to give recommendations to avoid excess of these compounds, but more research is needed to face future challenges related to climate change and consumer demands.
Collapse
Affiliation(s)
- Cristina Ubeda
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Villenave d Onron, France
| | - Ana B Cerezo
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain.
| |
Collapse
|