1
|
Shi L, Wang Q, Xie Z, Wu C, Peng T, Nian X, Li L, Li H, Chen T. The changes of fungal community and flavor substances in Yunnan-style sausages: A comparative analysis of different drying methods. Food Chem 2024; 460:140750. [PMID: 39128368 DOI: 10.1016/j.foodchem.2024.140750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
This study aimed to investigate alterations in the fungal community and flavor substances in Yunnan-style sausages subjected to natural air-dried fermentation (NF), variable-temperature drying (VT), and constant-temperature drying (CT) and analyze the potential relationship between fungal community and flavor substances. The findings revealed that the NF group and VT group were more conducive to enhancing the accumulation of dominant fungi and characteristic flavor substances in Yunnan-style sausages. Glu, Ala, His, and Lys were identified as key taste substances based on their taste activity values (TAV ≥ 1). A total of 272 volatile compounds(VOCS) were detected in the sausage samples, while 28 key aroma compounds were screened based on the odor activity value (OAV ≥ 1). Multivariate statistical analysis showed that 12 key aroma compounds (VIP > 1) could be considered discriminative compounds, including (E,E)-2,4-nonadienal, nonanal, heptanal, benzaldehyde, Dodecanal, cyclohexanol, and hexyl-Benzene, etc. Furthermore, Wickerhamoomyces and Debaryomyces were positively correlated with most of the key flavor substances and physicochemical indices (|r| > 0.6, P < 0.05), which were potential flavor-contributing fungi in Yunnan-style sausages.
Collapse
Affiliation(s)
- Lifen Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Qi Wang
- College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, Sichuan 644003, China
| | - Zhengze Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Chunxia Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Tingting Peng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xuruo Nian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Lang Li
- Yunnan Rural Science & Technology Service Center, Kunming, Yunnan 650505, China
| | - Hong Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| | - Tao Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China.
| |
Collapse
|
2
|
Wang Y, Zhou H, Zhou K, Han Q, Wang Z, Xu B. Study on the roles of microorganisms and endogenous enzymes in the evolution of metabolic characteristics of lean portion during traditional Chinese bacon processing. Food Res Int 2022; 162:112087. [DOI: 10.1016/j.foodres.2022.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/25/2022]
|
3
|
Walayat N, Liu J, Nawaz A, Aadil RM, López-Pedrouso M, Lorenzo JM. Role of Food Hydrocolloids as Antioxidants along with Modern Processing Techniques on the Surimi Protein Gel Textural Properties, Developments, Limitation and Future Perspectives. Antioxidants (Basel) 2022; 11:486. [PMID: 35326135 PMCID: PMC8944868 DOI: 10.3390/antiox11030486] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/26/2022] Open
Abstract
Texture is an important parameter in determining the quality characteristics and consumer acceptability of seafood and fish protein-based products. The addition of food-based additives as antioxidants (monosaccharides, oilgosaccharides, polysaccharides and protein hydrolysates) in surimi and other seafood products has become a promising trend at an industrial scale. Improvement in gelling, textural and structural attributes of surimi gel could be attained by inhibiting the oxidative changes, protein denaturation and aggregation with these additives along with new emerging processing techniques. Moreover, the intermolecular crosslinking of surimi gel can be improved with the addition of different food hydrocolloid-based antioxidants in combination with modern processing techniques. The high-pressure processing (HPP) technique with polysaccharides can develop surimi gel with better physicochemical, antioxidative, textural attributes and increase the gel matrix than conventional processing methods. The increase in protein oxidation, denaturation, decline in water holding capacity, gel strength and viscoelastic properties of surimi gel can be substantially improved by microwave (MW) processing. The MW, ultrasonication and ultraviolet (UV) treatments can significantly increase the textural properties (hardness, gumminess and cohesiveness) and improve the antioxidative properties of surimi gel produced by different additives. This study will review potential opportunities and primary areas of future exploration for high-quality surimi gel products. Moreover, it also focuses on the influence of different antioxidants as additives and some new production strategies, such as HPP, ultrasonication, UV and MW and ohmic processing. The effects of additives in combination with different modern processing technologies on surimi gel texture are also compared.
Collapse
Affiliation(s)
- Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agricultural, Faisalabad 38000, Pakistan;
| | - María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, A Coruna, Spain
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, 32900 San Cibrao das Vinas, Ourense, Spain;
- Facultade de Ciencias, Universidade de Vigo, 32004 Rua Doutor Temes Fernandez, Ourense, Spain
| |
Collapse
|
4
|
Chan SS, Feyissa AH, Jessen F, Roth B, Jakobsen AN, Lerfall J. Modelling water and salt diffusion of cold-smoked Atlantic salmon initially immersed in refrigerated seawater versus on ice. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Zhang X, Sun J, Li P, Zeng F, Wang H. Hyperspectral detection of salted sea cucumber adulteration using different spectral preprocessing techniques and SVM method. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Li J, Shi J, Wang T, Huang X, Zou X, Li Z, Zhang D, Zhang W, Xu Y. Effects of pulsed electric field pretreatment on mass transfer kinetics of pickled lotus root (Nelumbo nucifera Gaertn.). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Li R, Kuang W, Hu Y, Jin W, Liao E, Chen J, Zhou X, Wang H. Study on the water state, migration, and microstructure modification during the process of salt-reduced stewed duck. J Food Sci 2021; 86:4087-4099. [PMID: 34337755 DOI: 10.1111/1750-3841.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/28/2021] [Accepted: 06/22/2021] [Indexed: 11/28/2022]
Abstract
High salt content is one of the major problems for stewed products. To help address this issue, the effect of salt reduction on water migration in stewed ducks was investigated through diverse approaches, including water activity (Aw) and water-holding capacity (WHC) assay, as well as low-field nuclear magnetic resonance (LF-NMR) and scanning electron microscopy (SEM) observation. Our results showed that Aw value remained stable, while centrifugal loss decreased, and cooking loss increased significantly (p < 0.05). The analysis of NMR indicated that, during the marinating stage, the proportion of immobilized water increased from 86.86%-89.66% (sodium chloride group) and 90.51% (salt-reduced group), respectively. After 2 h, the free water content became 0, and then became stable until the end of marinating. In the stewing stage, at the beginning 20 min, relaxation time of immobilized water decreased to about 35 ms and the ratio of immobilized water significantly reduced (p < 0.05) by 5.38% (sodium chloride group) and 5.95% (salt-reduced group), respectively. Free water peak was detected upon stewing of 10 min, and 20 min later, there was no significant difference in the proportion of free water (p > 0.05). In general, no significance was observed in water behavior and microstructure of stewed duck meat between the salt reduction group and sodium chloride group. In addition, SEM analysis revealed that marinating could expand the muscle fiber gap to accommodate more immobilized water. However, the fiber was looser at the initial stage of stewing and then became more compact. PRACTICAL APPLICATION: This work demonstrates potentially feasible to produce salt-reduced duck products.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wei Kuang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yili Hu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| | - Xiaorong Zhou
- College of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.,National Research and Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, China
| |
Collapse
|
8
|
Oswell NJ, Gilstrap OP, Pegg RB. Variation in the terminology and methodologies applied to the analysis of water holding capacity in meat research. Meat Sci 2021; 178:108510. [PMID: 33895433 DOI: 10.1016/j.meatsci.2021.108510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 12/20/2020] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Studies examining meat quality variation, possibly resulting from animal physiology, processing, or ingredient additions, are likely to include at least one measure of water holding capacity (WHC). Methods for evaluating WHC can be classified as direct or indirect. Direct methods either gauge natural release of fluids from muscle or require the application of force to express water. The indirect methods do not actually measure WHC. They attempt to separate meat into two or three categories based on predictions of direct method results: the extreme of high and low WHC and an optional 'normal' group. Considerable statistical analyses are required to generate these predictive models. Presently, there are inconsistent terms (e.g., water holding, WHC, water binding, water binding potential/capacity) used to describe WHC and no standardized techniques recommended to evaluate it. To ensure that results can be compared across different laboratories, a better consensus must be reached in how these terms are employed and how this critical parameter is determined.
Collapse
Affiliation(s)
- Natalie J Oswell
- Department of Food Science & Technology, College of Agricultural and Environmental Sciences, The University of Georgia, 100 Cedar Street, Athens, GA 30602, USA
| | - Olivia P Gilstrap
- College of Agriculture + Food Science, Florida Agricultural and Mechanical University, Perry-Paige Building, 1740 S Martin Luther King Boulevard, Tallahassee, FL 32307, USA
| | - Ronald B Pegg
- Department of Food Science & Technology, College of Agricultural and Environmental Sciences, The University of Georgia, 100 Cedar Street, Athens, GA 30602, USA.
| |
Collapse
|
9
|
Dimensional change and cook loss during heating of fish: Problem formulation and semi-empirical modeling approach. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Hassoun A, Heia K, Lindberg SK, Nilsen H. Spectroscopic Techniques for Monitoring Thermal Treatments in Fish and Other Seafood: A Review of Recent Developments and Applications. Foods 2020; 9:E767. [PMID: 32532043 PMCID: PMC7353598 DOI: 10.3390/foods9060767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022] Open
Abstract
Cooking is an important processing method, that has been used since ancient times in order to both ensure microbiological safety and give desired organoleptic properties to the cooked food. Fish and other seafood products are highly sensitive to thermal treatments and the application of severe heat can result in negative consequences on sensory and nutritional parameters, as well as other quality attributes of the thermally processed products. To avoid such undesired effects and to extend the shelf life of these perishable products, both the heat processing methods and the assessment techniques used to monitor the process should be optimized. In this review paper, the most common cooking methods and some innovative ones will first be presented with a brief discussion of their impact on seafood quality. The main methods used for monitoring heat treatments will then be reviewed with a special focus on spectroscopic techniques, which are known to be rapid and non-destructive methods compared to traditional approaches. Finally, viewpoints of the current challenges will be discussed and possible directions for future applications and research will be suggested. The literature presented in this review clearly demonstrates the potential of spectroscopic techniques, coupled with chemometric tools, for online monitoring of heat-induced changes resulting from the application of thermal treatments of seafood. The use of fluorescence hyperspectral imaging is especially promising, as the technique combines the merits of both fluorescence spectroscopy (high sensitivity and selectivity) and hyperspectral imaging (spatial dimension). With further research and investigation, the few current limitations of monitoring thermal treatments by spectroscopy can be addressed, thus enabling the use of spectroscopic techniques as a routine tool in the seafood industry.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS Norwegian Institute of Food, Fisheries, and Aquaculture Research Muninbakken 9-13, 9291 Tromsø, Norway; (K.H.); (S.-K.L.); (H.N.)
| | | | | | | |
Collapse
|