1
|
Cruz-Molina AVDL, Gonçalves C, Neto MD, Pastrana L, Jauregi P, Amado IR. Whey-pectin microcapsules improve the stability of grape marc phenolics during digestion. J Food Sci 2023; 88:4892-4906. [PMID: 37905716 DOI: 10.1111/1750-3841.16806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Grape marc (GM) is an agri-food residue from the wine industry valuable for its high content of phenolic compounds. This study aimed to develop an encapsulation system for GM extract (GME) using food-grade biopolymers resistant to gastric conditions for its potential use as a nutraceutical. For this purpose, a hydroalcoholic GME was prepared with a total phenolics content of 219.62 ± 11.50 mg gallic acid equivalents (GAE)/g dry extract and 1389.71 ± 97.33 µmol Trolox equivalents/g dry extract antioxidant capacity, assessed through ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. Moreover, the extract effectively neutralized reactive oxygen species in Caco-2 cells, demonstrating an intracellular antioxidant capacity comparable to Trolox. The GME was encapsulated using whey protein isolate and pectin through nano spray drying (73% yield), resulting in spherical microparticles with an average size of 1 ± 0.5 µm and a polydispersity of 0.717. The encapsulation system protected the microcapsules from simulated gastrointestinal digestion (GID), where at the end of the intestinal phase, 82% of the initial phenolics were bioaccessible compared to 54% in the free GME. Besides, the encapsulated GME displayed a higher antioxidant activity by the ferric reducing antioxidant power assay than the free extract after GID. These results show the potential of this encapsulation system for applying GME as a nutraceutical with a high antioxidant capacity and protective effect against cellular oxidation.
Collapse
Affiliation(s)
| | | | - Mafalda D Neto
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Lorenzo Pastrana
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Paula Jauregi
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK
| | - Isabel R Amado
- INL-International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
2
|
Galaz Torres C, Ricci A, Parpinello GP, Gambuti A, Rinaldi A, Moio L, Rolle L, Paissoni MA, Mattivi F, Perenzoni D, Arapitsas P, Marangon M, Mayr Marangon C, Slaghenaufi D, Ugliano M, Versari A. Multivariate prediction of Saliva Precipitation Index for relating selected chemical parameters of red wines to the sensory perception of astringency. Curr Res Food Sci 2023; 7:100626. [PMID: 38021261 PMCID: PMC10651451 DOI: 10.1016/j.crfs.2023.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Astringency is an essential sensory attribute of red wine closely related to the saliva precipitation upon contact with the wine. In this study a data matrix of 52 physico-chemical parameters was used to predict the Saliva Precipitation Index (SPI) in 110 Italian mono-varietal red wines using partial least squares regression (PLSr) with variable selection by Variable Importance for Projection (VIP) and the significance of regression coefficients. The final PLSr model, evaluated using a test data set, had 3 components and yielded an R2test of 0.630 and an RMSEtest of 0.994, with 19 independent variables whose regression coefficients were all significant at p < 0.05. Variables selected in the final model according to the decreasing magnitude of their absolute regression coefficient include the following: Procyanidin B1, Epicatechin terminal unit, Total aldehydes, Protein content, Vanillin assay, 520 nm, Polysaccharide content, Epigallocatechin PHL, Tartaric acid, Volatile acidity, Titratable acidity, Catechin terminal unit, Proanthocyanidin assay, pH, Tannin-Fe/Anthocyanin, Buffer capacity, Epigallocatechin PHL gallate, Catechin + epicatechin PHL, and Tannin-Fe. These results can be used to better understand the physico-chemical relationship underlying astringency in red wine.
Collapse
Affiliation(s)
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| | | | - Angelita Gambuti
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100, Avellino, Italy
| | - Alessandra Rinaldi
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100, Avellino, Italy
| | - Luigi Moio
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Napoli Federico II, 83100, Avellino, Italy
| | - Luca Rolle
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy
| | - Maria Alessandra Paissoni
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10095, Grugliasco, Italy
| | - Fulvio Mattivi
- Metabolomic Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Italy
| | - Daniele Perenzoni
- Metabolomic Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Italy
| | - Panagiotis Arapitsas
- Metabolomic Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Italy
- Department of Wine, Vine and Beverage Sciences, School of Food Science, University of West Attica, Egaleo, 12243, Athens, Greece
| | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - Christine Mayr Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020, Legnaro, Italy
| | - Davide Slaghenaufi
- Department of Biotechnology, University of Verona, via della Pieve 70, San Pietro in Cariano, VR, Italy
| | - Maurizio Ugliano
- Department of Biotechnology, University of Verona, via della Pieve 70, San Pietro in Cariano, VR, Italy
| | - Andrea Versari
- Department of Agricultural and Food Sciences, University of Bologna, Italy
| |
Collapse
|
3
|
Paissoni MA, Motta G, Giacosa S, Rolle L, Gerbi V, Río Segade S. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers. Compr Rev Food Sci Food Saf 2023; 22:3328-3365. [PMID: 37282812 DOI: 10.1111/1541-4337.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
Astringency and more generally mouthfeel perception are relevant to the overall quality of the wine. However, their origin and description are still uncertain and are constantly updating. Additionally, the terminology related to mouthfeel properties is expansive and extremely diversified, characterized by common traditional terms as well as novel recently adopted descriptors. In this context, this review evaluated the mention frequency of astringent subqualities and other mouthfeel attributes in the scientific literature of the last decades (2000-August 17, 2022). One hundred and twenty-five scientific publications have been selected and classified based on wine typology, aim, and instrumental-sensorial methods adopted. Dry resulted as the most frequent astringent subquality (10% for red wines, 8.6% for white wines), while body-and related terms-is a common mouthfeel sensation for different wine types, although its concept is still vague. Alongside, promising analytical and instrumental techniques investigating and simulating the in-mouth properties are discussed in detail, such as rheology for the viscosity and tribology for the lubrication loss, as well as the different approaches for the quantitative and qualitative evaluation of the interaction between salivary proteins and astringency markers. A focus on the phenolic compounds involved in the tactile perception was conducted, with tannins being the compounds conventionally found responsible for astringency. Nevertheless, other non-tannic polyphenolic classes (i.e., flavonols, phenolic acids, anthocyanins, anthocyanin-derivative pigments) as well as chemical-physical factors and the wine matrix (i.e., polysaccharides, mannoproteins, ethanol, glycerol, and pH) can also contribute to the wine in-mouth sensory profile. An overview of mouthfeel perception, factors involved, and its vocabulary is useful for enologists and consumers.
Collapse
Affiliation(s)
- Maria Alessandra Paissoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Giulia Motta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Vincenzo Gerbi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, Alba, Italy
| |
Collapse
|
4
|
Rinaldi A, Gonzalez A, Moio L, Gambuti A. Commercial Mannoproteins Improve the Mouthfeel and Colour of Wines Obtained by Excessive Tannin Extraction. Molecules 2021; 26:molecules26144133. [PMID: 34299408 PMCID: PMC8303419 DOI: 10.3390/molecules26144133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/16/2022] Open
Abstract
In the production of red wines, the pressing of marcs and extended maceration techniques can increase the extraction of phenolic compounds, often imparting high bitterness and astringency to finished wines. Among various oenological products, mannoproteins have been shown to improve the mouthfeel of red wines. In this work, extended maceration (E), marc-pressed (P), and free-run (F) Sangiovese wines were aged for six months in contact with three different commercial mannoprotein-rich yeast extracts (MP, MS, and MF) at a concentration of 20 g/hL. Phenolic compounds were measured in treated and control wines, and sensory characteristics related to the astringency, aroma, and colour of the wines were studied. A multivariate analysis revealed that mannoproteins had a different effect depending on the anthocyanin/tannin (A/T) ratio of the wine. When tannins are strongly present (extended maceration wines with A/T = 0.2), the MP conferred mouthcoating and soft and velvety sensations, as well as colour stability to the wine. At A/T = 0.3, as in marc-pressed wines, both MF and MP improved the mouthfeel and colour of Sangiovese. However, in free-run wine, where the A/T ratio is 0.5, the formation of polymeric pigments was allowed by all treatments and correlated with silk, velvet, and mouthcoat subqualities. A decrease in bitterness was also obtained. Commercial mannoproteins may represent a way to improve the mouthfeel and colour of very tannic wines.
Collapse
Affiliation(s)
- Alessandra Rinaldi
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
- Biolaffort, 126 Quai de la Souys, 33100 Bordeaux, France
- Correspondence:
| | - Alliette Gonzalez
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
| | - Luigi Moio
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
| | - Angelita Gambuti
- Dipartimento di Agraria, Sezione di Scienze della Vigna e del Vino, Università degli Studi di Napoli Federico II, Viale Italia, Angolo Via Perrottelli, 83100 Avellino, Italy; (A.G.); (L.M.); (A.G.)
| |
Collapse
|
5
|
Huang S, Zou Y, Ye Z, Chen J, Luo J, Lan Y, Guo L, Lin J, Zheng Q. A comparative study on the physio‐chemical properties, antioxidant and immuno‐stimulating activities of two national geographical indication products of
Tremella fuciformis
in China. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shishi Huang
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| | - Yuan Zou
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| | - Zhiwei Ye
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| | - Jieming Chen
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| | - Jinhai Luo
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods South China Agricultural University Guangzhou510642China
| | - Liqiong Guo
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| | - Junfang Lin
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| | - Qianwang Zheng
- Institute of Food Biotechnology College of Food Science South China Agricultural University Guangzhou Guangdong510640China
- Research Center for Micro‐Ecological Agent Engineering and Technology of Guangdong Province Guangzhou510640China
| |
Collapse
|
6
|
Differences in Astringency Subqualities Evaluated by Consumers and Trained Assessors on Sangiovese Wine Using Check-All-That-Apply (CATA). Foods 2021; 10:foods10020218. [PMID: 33494331 PMCID: PMC7911570 DOI: 10.3390/foods10020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/28/2022] Open
Abstract
The astringency of red wine represents an important factor of quality and liking evaluation by consumers, but it is sometimes associated to a negative feature. We studied the differences in astringency subqualities of Sangiovese wines between consumers and trained assessors. Wines belonging to three denominations (Chianti Classico, Toscana, Morellino di Scansano) and a Chianti Classico specification (Chianti Riserva), from three price ranges (low, medium, high) were evaluated. Regular wine consumers and trained panel assessed the wines applying the Check-All-That-Apply (CATA) questionnaire relative to six astringency attributes (silk, velvet, dry, aggressive, hard, mouthcoat). Differences between panels were more associated with the high-price wines, which were characterised by negative subqualities for consumers. Preference maps revealed that mouthcoat was the term mainly associated with consumers’ liking, while other subqualities as persistent, rich, and full-body, provided by the trained assessors, may represent the drivers of liking for Sangiovese wine. This study has demonstrated that a trained sensory panel provides highly valuable information regarding the mouthfeel characteristics of Sangiovese wines and the attributes driving consumer liking.
Collapse
|
7
|
Canuti V, Cantu A, Picchi M, Lerno LA, Tanabe CK, Zanoni B, Heymann H, Ebeler SE. Evaluation of the Intrinsic and Perceived Quality of Sangiovese Wines from California and Italy. Foods 2020; 9:foods9081088. [PMID: 32784991 PMCID: PMC7466209 DOI: 10.3390/foods9081088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Sangiovese is the most cultivated red grape variety in Italy where it is certified for the production of several Protected Designation of Origin (PDO) wines, and it is one of the most cultivated Italian red grape varieties in California. Despite the global distribution of this variety, there is a lack of international studies on Sangiovese grapes and wines. For this reason, the present study aimed to compare 20 commercial Sangiovese wines from 2017 harvest, 9 produced in Italy (Tuscany) and 11 in California, in order to evaluate the intrinsic and perceived quality. The eligibility, identity, and style properties (the intrinsic quality) of the wines were evaluated. A group of 11 Italian experts evaluated the perceived quality by rating the typicality of the wines. The experimental data showed that the intrinsic quality of Sangiovese wine samples was affected by the growing area; in particular, the wine resulted very different for the color indices and polyphenol composition. The above differences in intrinsic quality levels did not lead to a different evaluation of the perceived quality (typicality) by the wine experts. The results evidenced that Sangiovese variety is recognizable also if grown outside its original terroir, and fresh and fruity wines were considered more typical. This study expands our current knowledge of Sangiovese wines and the contribution of regional characteristics to the composition of wine.
Collapse
Affiliation(s)
- Valentina Canuti
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies (DAGRI), University of Florence, via Donizetti 6, 50144 Firenze, Italy; (M.P.); (B.Z.)
- Correspondence:
| | - Annegret Cantu
- Department of Viticulture and Enology and The Food Safety and Measurement Facility, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.C.); (L.A.L.); (C.K.T.); (H.H.); (S.E.E.)
| | - Monica Picchi
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies (DAGRI), University of Florence, via Donizetti 6, 50144 Firenze, Italy; (M.P.); (B.Z.)
| | - Larry A. Lerno
- Department of Viticulture and Enology and The Food Safety and Measurement Facility, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.C.); (L.A.L.); (C.K.T.); (H.H.); (S.E.E.)
| | - Courtney K. Tanabe
- Department of Viticulture and Enology and The Food Safety and Measurement Facility, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.C.); (L.A.L.); (C.K.T.); (H.H.); (S.E.E.)
| | - Bruno Zanoni
- Department of Agricultural, Food, Environmental and Forestry Sciences and Technologies (DAGRI), University of Florence, via Donizetti 6, 50144 Firenze, Italy; (M.P.); (B.Z.)
| | - Hildegarde Heymann
- Department of Viticulture and Enology and The Food Safety and Measurement Facility, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.C.); (L.A.L.); (C.K.T.); (H.H.); (S.E.E.)
| | - Susan E. Ebeler
- Department of Viticulture and Enology and The Food Safety and Measurement Facility, University of California, One Shields Avenue, Davis, CA 95616, USA; (A.C.); (L.A.L.); (C.K.T.); (H.H.); (S.E.E.)
| |
Collapse
|