1
|
Zhang Q, Shen J, Meng G, Wang H, Liu C, Zhu C, Zhao G. Screening and application of functional autochthonous starter culture from cured meat, which can reduce nitrite content. Int Microbiol 2024:10.1007/s10123-024-00606-7. [PMID: 39400630 DOI: 10.1007/s10123-024-00606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Cured meat is a fermented meat product from the traditional Chinese culture made by natural fermentation. In this study, five bacteria strains were screened from cured meat using 16S rDNA technology, and a functional local starter was selected, which was applied to the production of cured meat to standardize the production of cured meat and improve the quality of cured meat. By studying the fermentation characteristics of strain these strains, this study found that the fermentation characteristics of L. mesenteroides and S. lactis are ideal. L. mesenteroides and S. lactis were used as starter cultures in fermented bacon. Then, this study compared the quality of fermented beef with Sichuan bacon, Hunan bacon, and Xinyang bacon. The results suggested that L. mesenteroides and S. lactis can improve the sensory and texture properties of the products and reduce the moisture content, water activity, pH value, and protein content of fermented beef products. More importantly, L. mesenteroides can significantly reduce the nitrite content (25.34%) and nitrosamine content (29.69%) in fermented beef, which provides an excellent guarantee for the safety of cured meat. In this study, a functional fermentation strain-L. mesenteroides could degrade the nitrite content of fermented meat products and improve their sensory and textural properties-was screened to provide some reference value for the later development of functional strains suitable for fermented meat products.
Collapse
Affiliation(s)
- Qiuhui Zhang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Jialong Shen
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Gaoge Meng
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Han Wang
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chang Liu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Chaozhi Zhu
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China.
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Gaiming Zhao
- Henan Key Lab of Meat Processing and Quality Safety Control, Henan Agricultural University, Zhengzhou, 450002, PR China.
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| |
Collapse
|
2
|
Woldemariam KY, Wang Z, Cai M, Li M, Jiang W, Hu Z, Li J, Tang W, Jiao Y, Liu Y, Zheng Q, Wang J. Lipid Hydrolysis, Oxidation, and Fatty Acid Formation Pathway Mapping of Synergistically Fermented Sausage and Characterization of Lipid Mediating Genes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17536-17548. [PMID: 39073353 DOI: 10.1021/acs.jafc.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Starter cultures play a significant role in lipid hydrolysis, prevention of lipid oxidation, and synthesis of fatty acid in fermented sausage, enhancing product quality. In this study, five synergistic bacterial strains were used, including Pediococcus pentosaceus (B-3), Latilactobacillus sakei DLS-24 (D-24), Latilactobacillus acidophilus DLS-29 (D-29), Lactiplantibacillus pentosus (B-1), and Lactiplantibacillus plantarum (B-2). Sausage B1B3D24 gave the highest free fatty acid with 39.45 g/100 g at 45-Day. Based on 2-thiobarbituric acid reactive substance, B2B3 contains 112.68 MDA/kg. Lipoxygenase activity displays the lowest in B1B3D24 with 0.095 μmol/min·mg followed by B2B3 with 0.145 μmol/min·mg. B1B3D24 contains 11.35 g/kg of monounsaturated fatty acid with the highest content in eicosenoic acid (C20:1) and palmitoleic acid (C16:1). The fatty acid synthesis pathway in B1B3D24 contains an active positive interaction with PUFA to increase the isotopomers of ω-3 and ω-6 fatty acids. In addition, lipid mediating genes in B1B3D24 show the highest counts in fatty-acid synthase, carbonyl reductase 4, 3-oxoacyl-[acyl-carrier-protein] synthase III, hydroxysteroid 17-beta dehydrogenase 8, and acetyl-CoA carboxylase.
Collapse
Affiliation(s)
- Kalekristos Yohannes Woldemariam
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Zhengkai Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Min Cai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Min Li
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Wenxiang Jiang
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Zhichaw Hu
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Jinjuan Li
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Wensheng Tang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yushan Jiao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Yingli Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| | - Qiankun Zheng
- DeLiSi Technology Center for Postdoctoral Research Work Station, Shandong Dingke Testing Technology Co. Ltd, Delisi Technology Center, DeLiSi Group Co. Ltd., Changcheng Town, Zhucheng, Weifang, Shandong 262216, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
3
|
Tumelty L, Fa JE, Coad L, Friant S, Mbane J, Kamogne CT, Tata CY, Ickowitz A. A systematic mapping review of links between handling wild meat and zoonotic diseases. One Health 2023; 17:100637. [PMID: 38024256 PMCID: PMC10665173 DOI: 10.1016/j.onehlt.2023.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023] Open
Abstract
1.Hunting, trade, and consumption of wildlife present a serious threat to global public health as it places humans in close contact with zoonotic pathogens.2.We systematically mapped the literature on wild meat handling and zoonotic disease transmission (1996-2022) using the online database Web of Science and Google search engine and identified 6229 articles out of which 253 were finally selected for use in our mapping review; 51 of these provided specific information regarding transmission risks.3.The reviewed studies reported 43 zoonotic pathogens (17 bacteria, 15 viruses, and 11 parasites) that could pose a potential risk to human health.4.Sixteen hygienic and sanitary behaviours were described in the reviewed studies. Disease surveillance was the most frequent. Most of the surveillance studies were carried out in Europe and were less common in the tropics.5.To inform policy and practical actions effectively, it is imperative to broaden our understanding of how various mitigation behaviours can be employed to minimize the risk of transmission.
Collapse
Affiliation(s)
- Luke Tumelty
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor 16115, Indonesia
| | - Julia E. Fa
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor 16115, Indonesia
- Department of Natural Sciences, School of Science and the Environment, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lauren Coad
- Center for International Forestry Research (CIFOR), CIFOR Headquarters, Bogor 16115, Indonesia
- Department of Biology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
| | - Sagan Friant
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joseph Mbane
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Yaoundé, Cameroon
| | - Cedric Thibaut Kamogne
- Center for International Forestry Research-World Agroforestry (CIFOR-ICRAF), Yaoundé, Cameroon
| | | | - Amy Ickowitz
- Center for International Forestry Research (CIFOR)-World Agroforestry Center, Beit Zayit, Israel
| |
Collapse
|
4
|
Bogdanović S, Stanković S, Berić T, Tomasevic I, Heinz V, Terjung N, Dimkić I. Bacteriobiota and Chemical Changes during the Ripening of Traditional Fermented "Pirot 'Ironed' Sausage". Foods 2023; 12:foods12030664. [PMID: 36766190 PMCID: PMC9913956 DOI: 10.3390/foods12030664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
"Pirot 'ironed' sausage" (Pis) is a traditional, fermented sausage, made from different types of meat (beef and chevon), without additives or starter cultures. The physical-chemical properties (pH, water activity, fats, moisture, and protein contents) were examined in the initial meat batter stuffing and during ripening. Total bacterial diversity was examined at different time points using both culturable (traditional) and non-culturable (NGS sequencing) approaches. During the ripening, a decrease in pH value, aw, and moisture content was observed, as well as an increase in protein and fat content. At least a two-fold significant decrease was noted for colorimetric values during the ripening period. The dominance of Proteobacteria and Firmicutes was observed in the non-culturable approach in all studied samples. During the ripening process, an increase in Firmicutes (from 33.5% to 63.5%) with a decrease in Proteobacteria (from 65.4% to 22.3%) was observed. The bacterial genera that were dominant throughout the ripening process were Lactobacillus, Photobacterium, Leuconostoc, Weissella, and Lactococcus, while Carnobacterium, Brochothrix, and Acinetobacter were found also, but in negligible abundance. Among the culturable bacteria, Latilactobacillus sakei (Lactobacillus sakei) and Leuconostoc mesenteoides were present in all stages of ripening.
Collapse
Affiliation(s)
- Svetlana Bogdanović
- Agriculture and Food College of Applied Studies, Ćirila i Metodija 1, 18400 Prokuplje, Serbia
| | - Slaviša Stanković
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Tanja Berić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
- Correspondence: (I.T.); (I.D.)
| | - Volker Heinz
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Nino Terjung
- DIL German Institute of Food Technologies, Prof.-v.-Klitzing-Str. 7, 49610 Quakenbrueck, Germany
| | - Ivica Dimkić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Belgrade, Serbia
- Correspondence: (I.T.); (I.D.)
| |
Collapse
|
5
|
Olmo R, Wetzels SU, Armanhi JSL, Arruda P, Berg G, Cernava T, Cotter PD, Araujo SC, de Souza RSC, Ferrocino I, Frisvad JC, Georgalaki M, Hansen HH, Kazou M, Kiran GS, Kostic T, Krauss-Etschmann S, Kriaa A, Lange L, Maguin E, Mitter B, Nielsen MO, Olivares M, Quijada NM, Romaní-Pérez M, Sanz Y, Schloter M, Schmitt-Kopplin P, Seaton SC, Selvin J, Sessitsch A, Wang M, Zwirzitz B, Selberherr E, Wagner M. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems – A Selection of Case Studies. Front Microbiol 2022; 13:834622. [PMID: 35903477 PMCID: PMC9315449 DOI: 10.3389/fmicb.2022.834622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/24/2022] [Indexed: 12/14/2022] Open
Abstract
Increasing knowledge of the microbiome has led to significant advancements in the agrifood system. Case studies based on microbiome applications have been reported worldwide and, in this review, we have selected 14 success stories that showcase the importance of microbiome research in advancing the agrifood system. The selected case studies describe products, methodologies, applications, tools, and processes that created an economic and societal impact. Additionally, they cover a broad range of fields within the agrifood chain: the management of diseases and putative pathogens; the use of microorganism as soil fertilizers and plant strengtheners; the investigation of the microbial dynamics occurring during food fermentation; the presence of microorganisms and/or genes associated with hazards for animal and human health (e.g., mycotoxins, spoilage agents, or pathogens) in feeds, foods, and their processing environments; applications to improve HACCP systems; and the identification of novel probiotics and prebiotics to improve the animal gut microbiome or to prevent chronic non-communicable diseases in humans (e.g., obesity complications). The microbiomes of soil, plants, and animals are pivotal for ensuring human and environmental health and this review highlights the impact that microbiome applications have with this regard.
Collapse
Affiliation(s)
- Rocío Olmo
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
- *Correspondence: Rocío Olmo,
| | - Stefanie Urimare Wetzels
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Jaderson Silveira Leite Armanhi
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo Arruda
- Genomics for Climate Change Research Center, Universidade Estadual de Campinas, Campinas, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
- Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Paul D. Cotter
- Food Bioscience, Teagasc Food Research Centre Moorepark, Fermoy, Ireland
- APC Microbiome Ireland and VistaMilk, Cork, Ireland
| | - Solon Cordeiro Araujo
- SCA, Consultoria em Microbiologia Agrícola, Campinas, Brazil
- Brazil National Association of Inoculant Producers and Importers (ANPII), Campinas, Brazil
| | - Rafael Soares Correa de Souza
- Symbiomics Microbiome Solutions, Florianópolis, Brazil
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Campinas, Brazil
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Science, University of Torino, Torino, Italy
| | - Jens C. Frisvad
- Department of Biotechnology and Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marina Georgalaki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Hanne Helene Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | | | - Tanja Kostic
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Susanne Krauss-Etschmann
- Research Center Borstel, Leibniz Lung Center, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
- Institute for Experimental Medicine, Christian Albrechts University, Kiel, Germany
| | - Aicha Kriaa
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, Denmark
| | - Emmanuelle Maguin
- Microbiota Interaction With Human and Animal Team (MIHA), Micalis Institute, Université Paris-Saclay, INRAE, AgroParisTech, Jouy-en-Josas, France
| | - Birgit Mitter
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mette Olaf Nielsen
- Department of Animal Science, Faculty of Technical Sciences, Aarhus University, Tjele, Denmark
| | - Marta Olivares
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Narciso Martín Quijada
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Marina Romaní-Pérez
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | - Joseph Selvin
- School of Life Sciences, Pondicherry University, Puducherry, India
| | - Angela Sessitsch
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Mengcen Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Benjamin Zwirzitz
- Institute of Food Science, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Tulln, Austria
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
6
|
Grujović MŽ, Mladenović KG, Semedo-Lemsaddek T, Laranjo M, Stefanović OD, Kocić-Tanackov SD. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Compr Rev Food Sci Food Saf 2022; 21:1537-1567. [PMID: 35029033 DOI: 10.1111/1541-4337.12897] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
Traditional fermented foods are a significant source of starter and/or non-starter lactic acid bacteria (nsLAB). Moreover, these microorganisms are also known for their role as probiotics. The potential of nsLAB is huge; however, there are still challenges to be overcome with respect to characterization and application. In the present review, the most important steps that autochthonous lactic acid bacteria isolated from fermented foods need to overcome, to qualify as novel starter cultures, or as probiotics, in food technology and biotechnology, are considered. These different characterization steps include precise identification, detection of health-promoting properties, and safety evaluation. Each of these features is strain specific and needs to be accurately determined. This review highlights the advantages and disadvantages of nsLAB, isolated from traditional fermented foods, discussing safety aspects and sensory impact.
Collapse
Affiliation(s)
- Mirjana Ž Grujović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Katarina G Mladenović
- Department of Science, Institute for Information Technologies, University of Kragujevac, Kragujevac, Republic of Serbia.,Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Teresa Semedo-Lemsaddek
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisboa, Portugal
| | - Marta Laranjo
- MED-Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Olgica D Stefanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, Republic of Serbia
| | - Sunčica D Kocić-Tanackov
- Department of Food Preservation Engineering, Faculty of Technology, University of Novi Sad, Novi Sad, Republic of Serbia
| |
Collapse
|
7
|
Wang Y, Zhang C, Liu F, Jin Z, Xia X. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit Rev Food Sci Nutr 2022; 63:5841-5855. [PMID: 35014569 DOI: 10.1080/10408398.2021.2025035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.
Collapse
Affiliation(s)
- Yingyu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | - Chenhao Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| | | | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, China
| |
Collapse
|
8
|
Duvan chvarci: Product characterization and comparison between traditional and industrial production. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Ashaolu TJ, Khalifa I, Mesak MA, Lorenzo JM, Farag MA. A comprehensive review of the role of microorganisms on texture change, flavor and biogenic amines formation in fermented meat with their action mechanisms and safety. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34014126 DOI: 10.1080/10408398.2021.1929059] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meat fermentation ensures its preservation, improved safety and quality. This prominently used traditional process has survived for ages, creating physical, biochemical, and microbial changes, and to significantly affect the functionality, organoleptic property, and nutrition of the fermented products. In some process, the growth of various pathogenic and spoilage microorganisms is inhibited. The production of fermented meat relies on naturally occurring enzymes (in the muscle or the intestinal tract) as well as microbial metabolic activities. In this review, fermented meat types and their health benefits were firstly introduced. This was followed by a description of fermentation conditions vis-à-vis starters, bacterial, yeast and mold cultures, and their role in meat. The review focuses on how microorganisms affect texture change, flavor formation, and biogenic amines (BA) accumulation in fermented meat. In addition, the production conditions and the major biochemical changes in fermented meat products were also introduced to present the best factors influencing the quality of fermented meat. Microorganisms and microbial enzymes in fermented meats were discussed as they could affect organoleptic characteristics of fermented meats. Moreover, safety concerns and prospects for further research of fermented meat were also discussed with emphasis on novel probiotic and starter cultures development; bioinformatics, omics technologies and data modeling to maximize the benefit from fermentation process in meat production.
Collapse
Affiliation(s)
- Tolulope J Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Egypt
| | - Matta A Mesak
- Chemistry Department, School of Sciences and Engineering, The American University, Cairo, New Cairo, Egypt
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain.,Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, Ourense, Spain
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Kamilari E, Efthymiou M, Anagnostopoulos DA, Tsaltas D. Cyprus Sausages' Bacterial Community Identification Through Metataxonomic Sequencing: Evaluation of the Impact of Different DNA Extraction Protocols on the Sausages' Microbial Diversity Representation. Front Microbiol 2021; 12:662957. [PMID: 34079530 PMCID: PMC8165277 DOI: 10.3389/fmicb.2021.662957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Cyprus traditional sausages from the Troodos mountainous region of Pitsilia gained the protected geographical indication (PGI) designation from the European Committee (EU 2020/C 203/06). Still, we lack authentication protocols for the distinction of “Pitsilia” from industrially produced Cyprus sausages. Microbial activity is an essential contributor to traditional sausages’ sensorial characteristics, but whether the microbial patterns might be associated with the area of production is unclear. In the present research, we applied high-throughput sequencing (HTS) to provide a linkage between the area of production and Cyprus sausages’ bacterial diversity. To strengthen our findings, we used three different DNA extraction commercial kits: (i) the DNeasy PowerFood Microbial Kit (QIAGEN); (ii) the NucleoSpin Food Kit (MACHEREY-NAGEL); and (iii) the blackPREP Food DNA I Kit (Analytik Jena), in which we applied three different microbial cell wall lysis modifications. The modifications included heat treatment, bead beating, and enzymatic treatment. Results regarding metagenomic sequencing were evaluated in terms of number of reads, alpha diversity indexes, and taxonomic composition. The efficacy of each method of DNA isolation was assessed quantitatively based on the extracted DNA yield and the obtained copy number of (a) the 16S rRNA gene, (b) the internal transcribed spacer (ITS) region, and (c) three Gram-positive bacteria that belong to the genera Latilactobacillus (formerly Lactobacillus), Bacillus, and Enterococcus via absolute quantification using qPCR. Compared with some examined industrial sausages, Pitsilia sausages had significantly higher bacterial alpha diversity (Shannon and Simpson indexes). Principal coordinates analysis separated the total bacterial community composition (beta diversity) of the three Pitsilia sausages from the industrial sausages, with the exception of one industrial sausage produced in Pitsilia, according to the manufacturer. Although the eight sausages shared the abundant bacterial taxa based on 16S rDNA HTS, we observed differences associated with bacterial diversity representation and specific genera. The findings indicate that the microbial communities may be used as an additional tool for identifying of the authenticity of Cypriot sausages.
Collapse
Affiliation(s)
- Eleni Kamilari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Marina Efthymiou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios A Anagnostopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Dimitrios Tsaltas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
11
|
Perez S, Corti-Monzón G, Yeannes MI, Zaritzky NE, Villegas-Plazas M, Junca H, Murialdo SE. Assembly of hyperhalophilic complex consortia of isolates from anchovy ripening attaining histamine degradation and their microbiome configuration. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Predominant yeasts in Chinese Dong fermented pork (Nanx Wudl) and their aroma-producing properties in fermented sausage condition. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Zhao G, Liu C, Hadiatullah H, Yao Y, Lu F. Effect of Hericium erinaceus on bacterial diversity and volatile flavor changes of soy sauce. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Chen X, Mi R, Qi B, Xiong S, Li J, Qu C, Qiao X, Chen W, Wang S. Effect of proteolytic starter culture isolated from Chinese Dong fermented pork (Nanx Wudl) on microbiological, biochemical and organoleptic attributes in dry fermented sausages. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2020.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Ji D, Ma J, Xu M, Agyei D. Cell-envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications. Compr Rev Food Sci Food Saf 2020; 20:369-400. [PMID: 33443792 DOI: 10.1111/1541-4337.12676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/27/2020] [Accepted: 10/30/2020] [Indexed: 01/25/2023]
Abstract
Proteins displayed on the cell surface of lactic acid bacteria (LAB) perform diverse and important biochemical roles. Among these, the cell-envelope proteinases (CEPs) are one of the most widely studied and most exploited for biotechnological applications. CEPs are important players in the proteolytic system of LAB, because they are required by LAB to degrade proteins in the growth media into peptides and/or amino acids required for the nitrogen nutrition of LAB. The most important area of application of CEPs is therefore in protein hydrolysis, especially in dairy products. Also, the physical location of CEPs (i.e., being cell-envelope anchored) allows for relatively easy downstream processing (e.g., extraction) of CEPs. This review describes the biochemical features and organization of CEPs and how this fits them for the purpose of protein hydrolysis. It begins with a focus on the genetic organization and expression of CEPs. The catalytic behavior and cleavage specificities of CEPs from various LAB are also discussed. Following this, the extraction and purification of most CEPs reported to date is described. The industrial applications of CEPs in food technology, health promotion, as well as in the growing area of water purification are discussed. Techniques for improving the production and catalytic efficiency of CEPs are also given an important place in this review.
Collapse
Affiliation(s)
- Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Jingying Ma
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Min Xu
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
High-throughput sequencing approach to reveal the bacterial diversity of traditional yak jerky from the Tibetan regions. Meat Sci 2020; 172:108348. [PMID: 33120176 DOI: 10.1016/j.meatsci.2020.108348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 07/09/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022]
Abstract
A high-throughput sequencing approach was used to investigate the bacterial community diversity of traditional Tibetan yak jerky, which was collected from three different regions in Tibet and with different natural drying times. Tibetan yak jerky from different regions had different bacterial communities, which was mainly reflected in the relative abundance levels of unclassified Cyanobacteria, Psychrobacter and Acinetobacter. The unclassified Cyanobacteria was the dominant genus of Qamdo yak jerky, Acinetobacter was the dominant genus of Shigatse yak jerky, and Psychrobacteria was the dominant genus of Nyingchi yak jerky. With increasing natural drying time, the diversity of bacterial communities in yak jerky decreased, and unclassified Cyanobacteria become the dominant genus. Spearman's correlation analysis and canonical correspondence analysis revealed that physicochemical factors (moisture content, water activity, shear force and pH) were significantly correlated with bacterial community. Our results will be beneficial to improve and standardize the safety and quality of traditional Tibetan yak jerky.
Collapse
|
17
|
Jurić S, Tanuwidjaja I, Fuka MM, Vlahoviček-Kahlina K, Marijan M, Boras A, Kolić NU, Vinceković M. Encapsulation of two fermentation agents, Lactobacillus sakei and calcium ions in microspheres. Colloids Surf B Biointerfaces 2020; 197:111387. [PMID: 33049659 DOI: 10.1016/j.colsurfb.2020.111387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/19/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022]
Abstract
Alginate microspheres loaded with two fermentation active agents, calcium cations and strain LS0296 identified as Lactobacillus sakei, have been prepared and characterized. The role of calcium cation is twofold, it acts as gelling cation and as fermentation active agent. Encapsulation and the presence of calcium ions in the same compartment do not inhibit the activity of LS0296. Molecular interactions in microspheres are complex, including mainly hydrogen bonds and electrostatic interactions. In vitro calcium cations and strain LS0296 release profiles were fitted to the Korsmeyer-Peppas empirical model. The calcium cation release process is driven at first by Fickian diffusion through microspheres and then by anomalous transport kinetics. The in vitro LS0296 release process is driven by Fickian diffusion through microspheres showing a much slower releasing rate than calcium cations. The release of LS0296 strain is followed by a decrease in the pH value. Results obtained give us a new insight into complex interactions between bacterial cultures and microsphere constituents. Prepared formulations of calcium alginate microspheres loaded with LS0296 could be used as a new promising tool and a model for different starter cultures encapsulation and use in the production of fermented foods.
Collapse
Affiliation(s)
- Slaven Jurić
- University of Zagreb, Faculty of Agriculture, Department of Chemistry, Croatia.
| | - Irina Tanuwidjaja
- University of Zagreb, Faculty of Agriculture, Department of Microbiology, Croatia.
| | - Mirna Mrkonjić Fuka
- University of Zagreb, Faculty of Agriculture, Department of Microbiology, Croatia.
| | | | - Marijan Marijan
- University of Zagreb, Faculty of Agriculture, Department of Chemistry, Croatia.
| | - Anita Boras
- University of Zagreb, Faculty of Agriculture, Department of Microbiology, Croatia.
| | | | - Marko Vinceković
- University of Zagreb, Faculty of Agriculture, Department of Chemistry, Croatia.
| |
Collapse
|
18
|
The survival rate and efficiency of non-encapsulated and encapsulated native starter cultures to improve the quality of artisanal game meat sausages. Journal of Food Science and Technology 2020; 58:710-719. [PMID: 33568865 DOI: 10.1007/s13197-020-04587-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
This study addresses the application of native, multiple strain starter cultures for standardization of game meat sausages production. The designed starter cultures consisting of two indigenous Lactobacillus sakei and one Leuconostoc mesenteroides strains. These strains were used in both, the encapsulated and non-encapsulated form, in the game meat dough, individually or in combination, with eight treatments in total. Microbiological and physicochemical characteristics of the sausages were monitored throughout the manufacturing process, while sensory properties, biogenic amine content, and volatile compounds were evaluated in the final products. As revealed by rep-PCR, native starter cultures, encapsulated or non-encapsulated, had survived the whole sausage production process; however, to varying degrees. The application of indigenous decarboxylase negative Lb. sakei strains significantly (P < 0.05) reduced tyramine content, rapidly decreased pH and promoted the number reduction of Enterobacteriaceae and elimination of E. coli, L. monocytogenes and coliforms in ready-to-eat products. A total of 84 volatile compounds were identified by SPME-GC-MS in the eight treatment batches of game meat sausages, with only minor differences between the treatments. No significant differences in sensory traits (P > 0.05) between tested treatments were found, although treatment with the Lb. sakei strains received the highest scores for the sensory traits including cross-section, odour, hardness, aroma, and overall acceptability. Combination of multi-strain Lb. sakei starter cultures resulted in growth prevention of undesirable microbiota, reduction of tyramine content and increased the acceptability parameters of full-ripened sausages, which make them good candidates for industrial as well as artisanal application.
Collapse
|
19
|
Dias I, Laranjo M, Potes ME, Agulheiro-Santos AC, Ricardo-Rodrigues S, Fialho AR, Véstia J, Fraqueza MJ, Oliveira M, Elias M. Autochthonous Starter Cultures Are Able to Reduce Biogenic Amines in a Traditional Portuguese Smoked Fermented Sausage. Microorganisms 2020; 8:microorganisms8050686. [PMID: 32397076 PMCID: PMC7285050 DOI: 10.3390/microorganisms8050686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/20/2020] [Accepted: 05/03/2020] [Indexed: 01/19/2023] Open
Abstract
Traditional smoked fermented sausages are highly appreciated in Portugal and are mostly manufactured according to traditional procedures. The aim of the present work was to evaluate the effect of autochthonous starter cultures on the safety and quality of a smoked fermented sausage, Painho da Beira Baixa (PBB), preserving its sensory quality. Physicochemical parameters, namely pH and water activity (aW), microbiological parameters, biogenic amines, colour, texture profile and sensory attributes were assessed. Different starters were selected based on our previous work. Staphylococcus equorum S2M7, Staphylococcus xylosus CECT7057, Lactobacillus sakei CV3C2, Lactobacillus sakei CECT7056 and a yeast strain (2RB4) were co-inoculated in meat batters at defined concentrations. Starters had a significant effect on the reduction of pH. Enterobacteria and Listeria monocytogenes were not detected in inoculated end-product sausages. Moreover, sausages inoculated with S. equorum S2M7/L. sakei CV3C2/yeast 2RB4 showed a significant reduction in the total content of biogenic amines. No significant differences between treatments were observed for colour and texture parameters, except for adhesiveness. The studied starters did not compromise the sensory characteristics of PBB. To our knowledge, this is the first comprehensive study on the quality and safety of this type of smoked fermented sausage from the central region of Portugal.
Collapse
Affiliation(s)
- Igor Dias
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
- CIEQV—Life Quality Research Centre, Avenida Dr. Mário Soares n° 110, 2040-413 Rio Maior, Portugal;
- ESAS, UIIPS—Instituto Politécnico de Santarém, Quinta do Galinheiro, S. Pedro, 1001-904 Santarém, Portugal
- Correspondence:
| | - Marta Laranjo
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
| | - Maria Eduarda Potes
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
- Departamento de Medicina Veterinária, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Ana Cristina Agulheiro-Santos
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
- Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Sara Ricardo-Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
| | - Ana Rita Fialho
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
| | - Joana Véstia
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
| | - Maria João Fraqueza
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Margarida Oliveira
- CIEQV—Life Quality Research Centre, Avenida Dr. Mário Soares n° 110, 2040-413 Rio Maior, Portugal;
- ESAS, UIIPS—Instituto Politécnico de Santarém, Quinta do Galinheiro, S. Pedro, 1001-904 Santarém, Portugal
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Miguel Elias
- MED—Mediterranean Institute for Agriculture, Environment and Development, IIFA-Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (M.L.); (M.E.P.); (A.C.A.-S.); (S.R.-R.); (A.R.F.); (J.V.); (M.E.)
- Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|