1
|
Nkhabindze BZ, Magagula CN, Earnshaw D, Mhlanga CF, Matsebula SN, Dladla IG. Regulatory framework for genetically modified organisms in the Kingdom of Eswatini. GM CROPS & FOOD 2024; 15:212-221. [PMID: 38963885 PMCID: PMC11225911 DOI: 10.1080/21645698.2024.2375664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
The Kingdom of Eswatini is a Party to the Convention on Biological Diversity and to the Cartagena Protocol on Biosafety. As Party, Eswatini has domesticated these agreements by passing the Biosafety Act, of 2012 to provide for the safe handling, transfer, and use of living modified organisms (LMOs) in the country. The Act regulates living modified organisms to be used for confined field trials, commercial release, import, export, and transit, and for food, feed, and processing. Guidance is provided for prospective applicants before any application is made to the Competent Authority. This framework also provides for the regulation of emerging technologies such as synthetic biology and genome editing. The regulatory framework for living modified organisms aims to provide an enabling environment for the precautionary use of modern biotechnology and its products in the country in order to safeguard biological diversity and human health.
Collapse
Affiliation(s)
- Bongani Z. Nkhabindze
- Department of Crop Production, Faculty of Agriculture, University of Eswatini, Luyengo, Eswatini
| | - Cebisile N. Magagula
- Department of Biological Sciences, Faculty of Science and Engineering, University of Eswatini, Kwaluseni, Eswatini
| | - Diana Earnshaw
- Department of Crop Production, Faculty of Agriculture, University of Eswatini, Luyengo, Eswatini
| | - Calsile F. Mhlanga
- Department of Natural Resource Management, Eswatini Environment Authority (EEA), Mbabane, Eswatini
| | - Sipho N. Matsebula
- Department of Natural Resource Management, Eswatini Environment Authority (EEA), Mbabane, Eswatini
| | - Isaac G. Dladla
- Department of Natural Resource Management, Eswatini Environment Authority (EEA), Mbabane, Eswatini
| |
Collapse
|
2
|
Berezin CT, Peccoud S, Kar DM, Peccoud J. Cryptographic approaches to authenticating synthetic DNA sequences. Trends Biotechnol 2024; 42:1002-1016. [PMID: 38418329 PMCID: PMC11309913 DOI: 10.1016/j.tibtech.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
In a bioeconomy that relies on synthetic DNA sequences, the ability to ensure their authenticity is critical. DNA watermarks can encode identifying data in short sequences and can be combined with error correction and encryption protocols to ensure that sequences are robust to errors and securely communicated. New digital signature techniques allow for public verification that a sequence has not been modified and can contain sufficient information for synthetic DNA to be self-documenting. In translating these techniques from bacteria to more complex genetically modified organisms (GMOs), special considerations must be made to allow for public verification of these products. We argue that these approaches should be widely implemented to assert authorship, increase the traceability, and detect the unauthorized use of synthetic DNA.
Collapse
Affiliation(s)
- Casey-Tyler Berezin
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Samuel Peccoud
- Department of Electrical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Diptendu M Kar
- Department of Computer Sciences, Northeastern University, Boston, MA, USA
| | - Jean Peccoud
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins, CO, USA; Department of Computer Sciences, Colorado State University, Fort Collins, CO, USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA; Department of Systems Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Wang C, Huang C, Zhu P, Du Z, Wei S, Fu W. Applicability of a General Analytical Approach for Detection of Genetically Modified Organisms: Collaborative Trial. J AOAC Int 2021; 105:476-482. [PMID: 34927696 DOI: 10.1093/jaoacint/qsab154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/21/2021] [Accepted: 11/27/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND With the commercialization of genetically modified organisms (GMOs) in the market, laboratories have undergone a significantly increased workload. A universal analytical approach was designed to achieve cost-efficient and high-throughput GMOs screening with high specificity and accuracy. The approach provides accurate qualification of authorized and unauthorized GMOs. OBJECTIVE This paper describes the assessment of this analytical approach developed to detect majority of commercialized GMOs over the world. METHODS Seven elements and three events were detected by qPCR in a single laboratory to detect 59 commercialized GMOs. Certificated reference materials and food/feed samples from Chinese market were also evaluated for the specificity, conformity and robustness of this approach and were challenged in the inter-laboratory study. RESULTS The results showed that elements and events selected can best detect GMO presence with good specificity and sensitivity. The results showed a concordance between 97.5% and 99.56% and the variance between 0.65% and 12.88%, which is in line with the minimum requirement of analytical methods of GMO testing. CONCLUSION The approach validated here can be used to manipulate GMO presence in food and feed and showed the capacity to manipulate GMOs trace in the trade and domestic agriculture grocery in China. HIGHLIGHTS A universal analytical approach used to track GMO presence was evaluated for its specificity, sensitivity and robustness.
Collapse
Affiliation(s)
- Chenguang Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Chunmeng Huang
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China.,College of Plant Protection, China Agricultural University, Beijing, 100083 China
| | - Pengyu Zhu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China
| | - Zhixin Du
- Technical Center of Nanning Customs District, Nanning, Guangxi, 530021 China
| | - Shuang Wei
- Inspection and Quarantine Technology Centre of China Customs, Guangzhou, Guangdong, 510623 China
| | - Wei Fu
- Chinese Academy of Inspection and Quarantine, Beijing, 100176 China.,College of Plant Protection, China Agricultural University, Beijing, 100083 China
| |
Collapse
|
5
|
Chen L, Zhou J, Li T, Fang Z, Li L, Huang G, Gao L, Zhu X, Zhou X, Xiao H, Zhang J, Xiong Q, Zhang J, Ma A, Zhai W, Zhang W, Peng H. GmoDetector: An accurate and efficient GMO identification approach and its applications. Food Res Int 2021; 149:110662. [PMID: 34600664 DOI: 10.1016/j.foodres.2021.110662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
The rapid increase of genetically modified organisms (GMOs) entering the food and feed markets, and the contamination of donor (micro)organisms of transgenic elements make it more challenging for the existing GMO detection. In this study, we developed a high-throughput and contamination-removal GMO detection approach named as GmoDetector. GmoDetector targeted 64 common transgenic elements and 76 GMO-specific events collected from 251 singular GM events, and combined with next generation sequencing (NGS) and target enrichment technology to detect various GMOs. As a result, GmoDetector was able to exclude the donor (micro)organism contamination, and detect the authorized and unauthorized GMOs (UGMOs) in any forms of food or feed, such as processed or unprocessed. The sensitivity of GmoDetector is as low as 0.1% (GMO content), which has met the GMO labeling threshold for all countries. Therefore, GmoDetector is a robust tool for accurate and efficient detection of the authorized and UGMOs.
Collapse
Affiliation(s)
- Lihong Chen
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Junfei Zhou
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Tiantian Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Zhiwei Fang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Lun Li
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Gang Huang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Lifen Gao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Xiaobo Zhu
- Wuhan Qingfahesheng Seed Co., Ltd., Wuhan, Hubei 430056, PR China
| | - Xusheng Zhou
- Wuhan Qingfahesheng Seed Co., Ltd., Wuhan, Hubei 430056, PR China
| | - Huafeng Xiao
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Jing Zhang
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - QiJie Xiong
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China
| | - Jianan Zhang
- MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, PR China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Wenxue Zhai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | - Weixiong Zhang
- Department of Computer Science and Engineering, Department of Genetics, Washington University in St. Louis, MO 63130, USA.
| | - Hai Peng
- Institute for Systems Biology, Jianghan University, Wuhan, Hubei 430056, PR China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, PR China; Mingliao Biotechnology Co., Ltd., Wuhan 430056, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
6
|
Abstract
Droplet digital polymerase chain reaction (ddPCR) is a method used to detect and quantify nucleic acids even when present in exceptionally low numbers. While it has proven to be valuable for clinical studies, it has failed to be widely adopted for environmental studies but despite some limitations, ddPCR may represent a better option than classical qPCR for environmental samples. Due to the complexity of the chemical and biological composition of environmental samples, protocols tailored to clinical studies are not appropriate, and results are difficult to interpret. We used environmental DNA samples originating from field studies to determine a protocol for environmental samples. Samples included field soils which had been inoculated with the soil fungus Rhizophagus irregularis (environmental positive control), field soils that had not been inoculated and the targeted fungus was not naturally present (environmental negative control), and root samples from both field categories. To control for the effect of soil inhibitors, we also included DNA samples of an organismal control extracted from pure fungal spores (organismal positive control). Finally, we included a no-template control consisting only of the PCR reaction reagents and nuclease free water instead of template DNA. Using original data, we examined which factors contribute to poor resolution in root and soil samples and propose best practices to ensure accuracy and repeatability. Furthermore, we evaluated manual and automatic threshold determination methods and we propose a novel protocol based on multiple controls that is more appropriate for environmental samples.
Collapse
|