1
|
Saad J, Martins ML, Dia V, Wang T. Ice recrystallization inhibition activity of pulse protein hydrolysates after immobilized metal affinity separation. Food Chem 2024; 460:140574. [PMID: 39089028 DOI: 10.1016/j.foodchem.2024.140574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Creating molecules capable of inhibiting ice recrystallization is an active research area aiming to improve the freeze-thaw characteristics of foods and biomedical materials. Peptide mixtures have shown promise in preventing freezing-induced damage, but less is known about the relationship between their amino acid compositions and ice recrystallization inhibition (IRI) activities. In this article, we used Ni2+ immobilized metal affinity chromatography (IMAC) to fractionate pulse protein hydrolysates, created by Alcalase and trypsin, into mixtures lacking and enriched in His, and Cys residues. The aim of this study was to fractionate pulse protein hydrolysates based on their amino acid compositions and evaluate their resulting physicochemical and IRI characteristics. Ni2+ IMAC fractionation induced IRI activity in all of the evaluated soy, chickpea, and pea protein hydrolysates regardless of their amino acid composition. Ni2+ IMAC fractionation produced chemically distinct fractions of peptides, differing by their molecular weights, amino acid composition, and IRI activities. The resulting peptide mixtures' molecular weight, amino acid composition, secondary structure, and sodium ion levels were found to have no correlation with their IRI activities. Thus, we demonstrate for the first time the ability of Ni2+ IMAC fractionation to induce IRI activity in hydrolyzed pulse proteins.
Collapse
Affiliation(s)
- Joshua Saad
- Department of Food Science, The University of Tennessee, 2510 River Dr, Knoxville, TN 37996-4539, USA
| | - Murillo Longo Martins
- Institute for Advanced Materials and Manufacturing, The University of Tennessee, 2641 Osprey Vista Way, Knoxville, TN 37920, USA
| | - Vermont Dia
- Department of Food Science, The University of Tennessee, 2510 River Dr, Knoxville, TN 37996-4539, USA.
| | - Toni Wang
- Department of Food Science, The University of Tennessee, 2510 River Dr, Knoxville, TN 37996-4539, USA.
| |
Collapse
|
2
|
Ma X, Wang W, Shi H, Kong X, Zhang L. Identification of novel antifreeze peptides from yak skin gelatin ultrasound-assisted enzymatic hydrolysate. ULTRASONICS SONOCHEMISTRY 2024; 111:107102. [PMID: 39433007 PMCID: PMC11533714 DOI: 10.1016/j.ultsonch.2024.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
In this paper, a new type of antifreeze peptide was identified from the ultrasonic-assisted enzymolysis product of yak skin. First, the antifreeze peptides were obtained by ultrasonic-assisted enzymolysis of yak skin gelatin. The obtained peptides with 150 W ultrasound treatment could increase the survival rate of Lactobacillus plantarum from 16 % to 60 % after four freeze-thaw cycles. Then, the component with the highest antifreeze activity in the peptides' ultrafiltration product was analyzed by LC-MS/MS to obtain 961 peptides. After screening of antifreeze activity and physical properties, three antifreeze peptide sequences were obtained (S1: GERGGPGGPGPQ, S2: PGGAEGPGRDAQQP, S3: VAPPGAPKKEH). DSC analysis, Lactobacillus plantarum cryoprotection experiments and molecular docking showed that the S1 sequence had the best antifreeze activity. This study provides a new idea for the high-value utilization of yak by-products and a potential candidate for food antifreeze agents.
Collapse
Affiliation(s)
- Xiaotong Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Wenxing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Hongmei Shi
- Gansu Gannan Animal Husbandry and Veterinary Workstation, Gannan 747000, PR China
| | - Xiangying Kong
- Qinghai Haibei Animal Husbandry and Veterinary Science Research Institute, Haibei 812200, PR China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, PR China.
| |
Collapse
|
3
|
Obradović N, Balanč B, Salević-Jelić A, Volić M, Đorđević V, Pešić M, Nedović V. Physicochemical Characterization of Polysaccharide-Protein Carriers with Immobilized Yeast Cells Obtained Using the Freeze-Drying Technique. Foods 2024; 13:3570. [PMID: 39593986 PMCID: PMC11593894 DOI: 10.3390/foods13223570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
New techniques for the immobilization of yeast cells have the potential for enhancement of the beer production process. Alongside conventional materials for cell immobilization, there is a rising trend toward polysaccharide-protein systems. This study focused on the immobilization of yeast cells (Saccharomyces pastorianus) via a freeze-drying process. The whey protein isolate, sodium alginate, maltodextrin, inulin, and their blends were used for carrier preparation. The effect of a 1.0% inulin solution as a cryoprotectant on the viability of the yeast cells after the freeze-drying process was also analyzed. The powders were assessed for cell viability, moisture content, water activity, solubility, particle size, and surface charge. According to the results, the addition of whey proteins reduced the moisture content, while solubility did not significantly decrease. Samples containing whey protein showed slight diameter variations. The negative surface charge observed in all samples, especially the control, indicates a cell's tendency to aggregate, demonstrated by optical microscopy. SEM micrographs showed successful cell immobilization in polysaccharide-protein carriers. Furthermore, inulin and whey protein addition enhanced cell protection during the immobilization of cells. The freeze-drying technique demonstrates efficacy in immobilization of yeast cells, indicating its potential for applications in the food and beverage industry.
Collapse
Affiliation(s)
- Nataša Obradović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia;
| | - Bojana Balanč
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (M.V.)
| | - Ana Salević-Jelić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.-J.); (M.P.); (V.N.)
| | - Mina Volić
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia; (B.B.); (M.V.)
| | - Verica Đorđević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia;
| | - Mirjana Pešić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.-J.); (M.P.); (V.N.)
| | - Viktor Nedović
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (A.S.-J.); (M.P.); (V.N.)
| |
Collapse
|
4
|
Zhang ML, Guo XN, Sun XH, Zhu KX. Frozen dough steamed products: Deterioration mechanism, processing technology, and improvement strategies. Compr Rev Food Sci Food Saf 2024; 23:e70028. [PMID: 39374421 DOI: 10.1111/1541-4337.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 09/08/2024] [Indexed: 10/09/2024]
Abstract
Fresh dough products lead to instability in product quality, high production costs, and more production time, which seriously affects the industrial production of the food industry. The frozen dough technology mitigates the problems of short shelf-life and easy deterioration of quality during storage and transportation. It has shown a series of advantages in large-scale industrialization, high-quality standardization, and chain operation. However, the further development of frozen dough is restricted by the deterioration of the main components (gluten, starch, and yeast) caused by freezing. This review summarizes the main production process of frozen steamed bread and buns, and the deterioration reasons for the main component of frozen dough. The improvement mechanisms of raw ingredients, processing technology, processing equipment, and additives on frozen dough quality were analyzed from the perspective of improving gluten network integrity and yeast freeze tolerance. From prefermented frozen raw to steamed products without thawing has become the preferred production process to improve production efficiency. Wheat flour mixed with other flour can maintain the gluten network continuity of frozen dough. The freeze tolerance of yeast was improved by treatment with yeast suspension, yeast cell encapsulation, screening hybridization, and genetic engineering. Process optimization and new technology-assisted fermentation and freezing effectively reduce freezing damage. Various additives improve the freeze resistance of the gluten-starch matrix by promoting protein cross-linking and inhibiting water migration. In addition, ice structural proteins and ice nucleating agents have been proven to change the growth morphology and formation temperature of ice crystals. More new technologies and additive synergies need to be further explored.
Collapse
Affiliation(s)
- Meng-Li Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xiao-Hong Sun
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, PR China
- School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
5
|
Xia B, Wang J, Chen H, Lin S, Pan B, Wang N. Recent Advances in Antifreeze Peptide Preparation: A Review. Molecules 2024; 29:4913. [PMID: 39459283 PMCID: PMC11510398 DOI: 10.3390/molecules29204913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Antifreeze agents play a critical role in various fields including tissue engineering, gene therapy, therapeutic protein production, and transplantation. Commonly used antifreeze agents such as DMSO and other organic substances are known to have cytotoxic effects. Antifreeze proteins sourced from cold-adapted organisms offer a promising solution by inhibiting ice crystal formation; however, their effectiveness is hindered by a dynamic ice-shaping (DIS) effect and thermal hysteresis (TH) properties. In response to these limitations, antifreeze peptides (AFPs) have been developed as alternatives to antifreeze proteins, providing similar antifreeze properties without the associated drawbacks. This review explores the methods for acquiring AFPs, with a particular emphasis on chemical synthesis. It aims to offer valuable insights and practical implications to drive the realm of sub-zero storage.
Collapse
Affiliation(s)
- Bo Xia
- Correspondence: (B.X.); (N.W.)
| | | | | | | | | | - Nan Wang
- Department of Bioenvironment, Jiyang College of Zhejiang A&F University, Zhuji 311800, China
| |
Collapse
|
6
|
Yang Y, Huang L, Huang Z, Ren Y, Xiong Y, Xu Z, Chi Y. Food-derived peptides unleashed: emerging roles as food additives beyond bioactivities. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38889067 DOI: 10.1080/10408398.2024.2360074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Innovating food additives stands as a cornerstone for the sustainable evolution of future food systems. Peptides derived from food proteins exhibit a rich array of physicochemical and biological attributes crucial for preserving the appearance, flavor, texture, and nutritional integrity of foods. Leveraging these peptides as raw materials holds great promise for the development of novel food additives. While numerous studies underscore the potential of peptides as food additives, existing reviews predominantly focus on their biotic applications, leaving a notable gap in the discourse around their abiotic functionalities, such as their physicochemical properties. Addressing this gap, this review offers a comprehensive survey of peptide-derived food additives in food systems, accentuating the application of peptides' abiotic properties. It furnishes a thorough exploration of the underlying mechanisms and diverse applications of peptide-derived food additives, while also delineating the challenges encountered and prospects for future applications. This well-time review will set the stage for a deeper understanding of peptide-derived food additives.
Collapse
Affiliation(s)
- Yanli Yang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Lunjie Huang
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhangjun Huang
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Yao Ren
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfei Xiong
- National Engineering Research Center, Luzhou Laojiao Co. Ltd, Luzhou, China
- Luzhou Pinchuang Technology Co. Ltd., National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Zhenghong Xu
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yuanlong Chi
- Innovation Center for Advanced Brewing Science and Technology, College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Meng Z, Liu Y, Xi Y, Dong Y, Cai C, Zhu Y, Li Q. The Protection of Quinoa Protein on the Quality of Pork Patties during Freeze-Thaw Cycles: Physicochemical Properties, Sensory Quality and Protein Oxidative. Foods 2024; 13:522. [PMID: 38397499 PMCID: PMC10887504 DOI: 10.3390/foods13040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The present study investigated the impact of quinoa protein (QP) on the physicochemical properties, sensory quality, and oxidative stability of myofibrillar protein (MP) in pork patties during five freeze-thaw (F-T) cycles. It was observed that repeated F-T cycles resulted in a deterioration of pork patty quality; however, the incorporation of QP effectively mitigated these changes. Throughout the F-T cycles, the sensory quality of the QP-treated group consistently surpassed that of the control group. After five F-T cycles, the thiobarbituric acid reactive substance (TBARS) content in the control group was measured at 0.423 mg/kg, whereas it significantly decreased to 0.347 mg/kg in the QP-treated group (p < 0.05). Furthermore, QP inclusion led to a decrease in pH and an increase in water-holding capacity (WHC) within pork patties. Following five F-T cycles, Ca2+-ATPase activity exhibited a significant increase of 11.10% in the QP-treated group compared to controls (p < 0.05). Additionally, supplementation with QP resulted in elevated total sulfhydryl content and reduced carbonyl content, Schiff base content, and dityrosine content within myofibrillar proteins (MPs), indicating its inhibitory effect on MP oxidation. In particular, after five F-T cycles, total sulfhydryl content reached 58.66 nmol/mL for the QP-treated group significantly higher than that observed for controls at 43.65 nmol/mL (p < 0.05). While carbonyl content increased from 2.37 nmol/mL to 4.63 nmol/mL between the first and fifth F-T cycle for controls; it only rose from 2.15 nmol/mL to 3.47 nmol/mL in the QP-treated group. The endogenous fluorescence levels were significantly higher (p < 0.05) in the QP-treated group compared to controls. In conclusion, the addition of QP enhanced the quality of pork patties and effectively inhibited the oxidative denaturation of MP during F-T cycles.
Collapse
Affiliation(s)
- Zhiming Meng
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Ying Liu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Yueyang Xi
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Yingying Dong
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Yingchun Zhu
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| | - Qi Li
- College of Food Science and Engineering, Shanxi Agricultural University, Jinzhong 030801, China; (Z.M.); (Y.L.); (Y.X.); (Y.D.); (Q.L.)
| |
Collapse
|
8
|
Liu M, Li J, Ma H, Qin G, Niu M, Zhang X, Zhang J, Wei Y, Han J, Liang Y, Zhang S, Yin L, Zhu H, Huang Y, Li L, Zheng X, Liu C. Structural and physicochemical characteristics of wheat starch as influenced by freeze-thawed cycles and antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves. Food Chem X 2023; 20:100927. [PMID: 38144810 PMCID: PMC10740099 DOI: 10.1016/j.fochx.2023.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 12/26/2023] Open
Abstract
The effects of freeze-thawed cycles (FTs) and a new antifreeze protein from Sabina chinensis (Linn.) Ant. cv. Kaizuca leaves (ScAFP) on the structure and physicochemical characteristics of wheat starch were studied. The mechanical breaking exerted by ice crystals on starch granules during FTs gradually deepened, sequentially squeezing the surface (2-6 FTs), amorphous region (8 FTs) and crystalline region (10 FTs) of starch granules. These changes led to reduced thermal stability, increased retrogradation tendency, and weakened gel network structure. The addition of ScAFP retarded the damage of ice crystals on starch granule structure and crystal structure during FTs, and significantly reduced the retrogradation tendency. Compared with native starch, the hardness of freeze-thawed starch without and with added ScAFP after 10 FTs decreased by 17.85% and 9.22%, respectively, indicating ScAFP improved the gel texture properties of freeze-thawed starch. This study provides new strategies for improving the quality of frozen starch-based foods.
Collapse
Affiliation(s)
- Mei Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Hao Ma
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guolan Qin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mengge Niu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaoyin Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jin Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yangkun Wei
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jiajing Han
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shenying Zhang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Lulu Yin
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haojia Zhu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Huang
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Limin Li
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueling Zheng
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chong Liu
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
9
|
Tekle S, Ozulku G, Bekiroglu H, Sagdic O. Effects of Fish Skin Gelatin Hydrolysates Treated with Alcalase and Savinase on Frozen Dough and Bread Quality. Foods 2023; 13:139. [PMID: 38201167 PMCID: PMC10778983 DOI: 10.3390/foods13010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Fish skin gelatin, as a waste product of sea bream, was used to obtain fish gelatin hydrolysate (FGH) with the treatment of alcalase (alc) and savinase (sav). The functional properties of FGHs and their usage possibilities in frozen dough bread making were investigated. FGH treated with alc showed a higher emulsifying stability index (189 min), while FGH treated with sav showed greater foaming capacity (27.8%) and fat-binding capacity (1.84 mL/g). Bread doughs were produced using two FGHs (alc and sav) and their combination (FGH-alc + FGH-sav). Using FGH treated with these enzymes individually was more effective than their combination in terms of polyacrylamide gel electrophoresis (SDS-PAGE) results and bread quality (specific volume and hardness). The addition of FGH into bread dough showed no significant effect on bread dough viscoelasticity (tan δ), while the increment level of tan δ value for control dough was higher than the dough containing FGH after frozen storage (-30 °C for 30 days). The highest freezable water content (FW%) was found in control dough (33.9%) (p < 0.05). The highest specific volume was obtained for control fresh bread and bread with FGH-alc, while the lowest volume was obtained for fresh bread containing FGH-sav (p < 0.05). After frozen storage of the doughs, the bread with FGH-alc showed the highest specific volume. FGH addition caused a significant reduction in the L* (lightness) value of fresh bread samples when compared to control bread (p < 0.05). This study suggested that usage of FGH-alc in bread making decreased the deterioration effect of frozen storage in terms of the specific volume and hardness of bread.
Collapse
Affiliation(s)
- Sefik Tekle
- Department of Food Processing, Kaman Vocational School, Kirsehir Ahi Evran University, Kirsehir 40100, Turkey;
| | - Gorkem Ozulku
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey;
| | - Hatice Bekiroglu
- Food Engineering Department, Agricultural Faculty, Sirnak University, Sirnak 73300, Turkey
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey;
| |
Collapse
|
10
|
Bekiroglu H, Ozulku G, Sagdic O. Effects of Casein Hydrolysate Prepared with Savinase on the Quality of Bread Made by Frozen Dough. Foods 2023; 12:3845. [PMID: 37893738 PMCID: PMC10606816 DOI: 10.3390/foods12203845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The effect of casein savinase hydrolysate (CSH) usage on frozen dough (1%, 1.5% and 2%, g/100 g flour) was investigated in terms of rheological, thermal and structural characteristics of wheat doughs and the textural and color properties of corresponding breads. Rheological measurements showed that CSH addition into dough led to a reduction in G' and G″ values, but a similar trend was not observed in frozen dough samples. The increase in protein band intensity was observed for control dough (CD) after frozen storage (-30 °C, 28 days), while there were no increases in the band intensities of the doughs with CSH. The freezable water content of unfrozen doughs decreased gradually with the addition of CSH, dependent on concentration level. Frozen storage caused a notable reduction in the α-helices structure of the CD sample (p < 0.05) while no significant variation was observed for the doughs containing CSH (p > 0.05). The lowest specific volume reduction and hardness increment were observed for the breads containing 1.5% and 2% CSH. Frozen storage caused a significant reduction in the b* value of bread crust (p < 0.05), while no significant effect was observed for L* and a* value during frozen storage (p > 0.05). Overall, CSH incorporation into frozen dough can be an alternative that could reduce the quality deterioration of frozen bread.
Collapse
Affiliation(s)
- Hatice Bekiroglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey; (H.B.); (O.S.)
- Food Engineering Department, Agricultural Faculty, Şırnak University, Şırnak 73300, Turkey
| | - Gorkem Ozulku
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey; (H.B.); (O.S.)
| | - Osman Sagdic
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul 34220, Turkey; (H.B.); (O.S.)
| |
Collapse
|
11
|
Wang C, Rao J, Li X, He D, Zhang T, Xu J, Chen X, Wang L, Yuan Y, Zhu X. Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: Insights into protein structure integrity and gelling behaviors. Food Res Int 2023; 169:112871. [PMID: 37254320 DOI: 10.1016/j.foodres.2023.112871] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Chickpea protein (CP) and its enzymatic hydrolysates are one of the most widely consumed pulse ingredients manifesting versatile applications in food industry, such as binders, emulsifiers, and meat protein substitutes. Other than those well-known functionalities, however, the use of CP as a cryoprotectant remained unexplored. In this study, we prepared the chickpea protein hydrolysate (CPH) and investigated its cryoprotective effects to frozen surimi in terms of the protein structure integrity and gelling behaviors. Results indicated that CPH could inhibit myofibrillar protein (MP) denaturation and oxidation during the freeze-thaw cycling, as evidenced by their increased solubility, Ca2+-ATPase activity, sulfhydryl concentration, and declined content of disulfide bonds, carbonyl concentration and surface hydrophobicity. Freezing-induced changes on MP secondary structures were also retarded. Moreover, gels prepared from CPH-protected frozen surimi demonstrated more stabilized microstructure, uniform water distribution, enhanced elasticity, gel strength and water holding capacity. The CPH alone, at a reducing addition content of 4% (w/w), exhibited comparable cryoprotective performance to that of the commercial formulation (4% sucrose and 4% sorbitol). Therefore, this study provides scientific insights for development of pulse proteins as novel and high-performance food cryoprotectants.
Collapse
Affiliation(s)
- Chao Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ting Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jianteng Xu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Chen
- Key Laboratory of Bulk Grain and Oil Deep Processing Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
12
|
Cui M, Li J, Li J, Wang F, Li X, Yu J, Huang Y, Liu Y. Screening and characterization of a novel antifreeze peptide from silver carp muscle hydrolysate. Food Chem 2023; 403:134480. [DOI: 10.1016/j.foodchem.2022.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
|
13
|
Quantitative analysis perspective: Ice growth and super-chilling state of frozen dough under quick freezing. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
14
|
Chen J, Xiao J, Tu J, Yu L, Niu L. The alleviative effect of sweet potato protein hydrolysates on the quality deterioration of frozen dough bread in comparison to trehalose. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Cao S, Cai J, Wang X, Zhou K, Liu L, He L, Qi X, Yang H. Cryoprotective effect of collagen hydrolysates from squid skin on frozen shrimp and characterizations of its antifreeze peptides. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Du X, Wang B, Li H, Liu H, Shi S, Feng J, Pan N, Xia X. Research progress on quality deterioration mechanism and control technology of frozen muscle foods. Compr Rev Food Sci Food Saf 2022; 21:4812-4846. [PMID: 36201389 DOI: 10.1111/1541-4337.13040] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 01/28/2023]
Abstract
Freezing can prolong the shelf life of muscle foods and is widely used in their preservation. However, inevitable quality deterioration can occur during freezing, frozen storage, and thawing. This review explores the eating quality deterioration characteristics (color, water holding capacity, tenderness, and flavor) and mechanisms (irregular ice crystals, oxidation, and hydrolysis of lipids and proteins) of frozen muscle foods. It also summarizes and classifies the novel physical-field-assisted-freezing technologies (high-pressure, ultrasound, and electromagnetic) and bioactive antifreeze (ice nucleation proteins, antifreeze proteins, natural deep eutectic solvents, carbohydrate, polyphenol, phosphate, and protein hydrolysates), regulating the dynamic process from water to ice. Moreover, some novel thermal and nonthermal thawing technologies to resolve the loss of water and nutrients caused by traditional thawing methods were also reviewed. We concluded that the physical damage caused by ice crystals was the primary reason for the deterioration in eating quality, and these novel techniques promoted the eating quality of frozen muscle foods under proper conditions, including appropriate parameters (power, time, and intermittent mode mentioned in ultrasound-assisted techniques; pressure involved in high-pressure-assisted techniques; and field strength involved in electromagnetic-assisted techniques) and the amounts of bioactive antifreeze. To obtain better quality frozen muscle foods, more efficient technologies and substances must be developed. The synergy of novel freezing/thawing technology may be more effective than individual applications. This knowledge may help improve the eating quality of frozen muscle foods.
Collapse
Affiliation(s)
- Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haijing Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shuo Shi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jia Feng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Fine structures of added maltodextrin impact stability of frozen bread dough system. Carbohydr Polym 2022; 298:120028. [DOI: 10.1016/j.carbpol.2022.120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
|
18
|
Zhu K, Zheng Z, Dai Z. Identification of antifreeze peptides in shrimp byproducts autolysate using peptidomics and bioinformatics. Food Chem 2022; 383:132568. [PMID: 35255363 DOI: 10.1016/j.foodchem.2022.132568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
In the present study, a novel method based on peptidomics and bioinformatic was applied to identification and characterization of antifreeze peptides (AFPs) from shrimp byproducts autolysate (SBPA). According to the results of in silico prediction and high peptide structural inflexibility, DEYEESGPGIVH and EQICINFCNEK were picked as potential AFP-1 and AFP-2, respectively. The outcomes of DSC determination indicated that TH of synthesized AFP-1 and AFP-2 (10 mg/mL) were 1.37 °C and 1.57 °C, respectively. Besides, 0.1 %-3 % AFPs showed significant cryoprotection in shrimp muscle after 3 and 6 freeze-thaw cycles, evidenced by higher SSP content, Ca2+-ATPase activity, sulfhydryl content and lower surface hydrophobicity than control; while the higher concentration resulted in better protection against freeze induced denaturation. Both AFP-1&2 showed favorable hydrogen bonding affinity which facilitated ice binding and ice crystal growth inhibition. This work could provide new ideals for identification and characterization of AFPs.
Collapse
Affiliation(s)
- Kai Zhu
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhenxiao Zheng
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China
| | - Zhiyuan Dai
- The Joint Key Laboratory of Aquatic Products Processing of Zhejiang Province, 310012 Hangzhou, China; Institute of Seafood, Zhejiang Gongshang University, 310012 Hangzhou, China.
| |
Collapse
|
19
|
Koczoń P, Josefsson H, Michorowska S, Tarnowska K, Kowalska D, Bartyzel BJ, Niemiec T, Lipińska E, Gruczyńska-Sękowska E. The Influence of the Structure of Selected Polymers on Their Properties and Food-Related Applications. Polymers (Basel) 2022; 14:polym14101962. [PMID: 35631843 PMCID: PMC9146511 DOI: 10.3390/polym14101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Every application of a substance results from the macroscopic property of the substance that is related to the substance’s microscopic structure. For example, the forged park gate in your city was produced thanks to the malleability and ductility of metals, which are related to the ability of shifting of layers of metal cations, while fire extinguishing powders use the high boiling point of compounds related to their regular ionic and covalent structures. This also applies to polymers. The purpose of this review is to summarise and present information on selected food-related biopolymers, with special attention on their respective structures, related properties, and resultant applications. Moreover, this paper also highlights how the treatment method used affects the structure, properties, and, hence, applications of some polysaccharides. Despite a strong focus on food-related biopolymers, this review is addressed to a broad community of both material engineers and food researchers.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | | | - Sylwia Michorowska
- Department of Bioanalysis and Drug Analysis, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Katarzyna Tarnowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Dorota Kowalska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Tomasz Niemiec
- Animals Nutrition Department, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland;
| | - Edyta Lipińska
- Department of Biotechnology, Microbiology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland; (P.K.); (K.T.); (D.K.)
- Correspondence:
| |
Collapse
|
20
|
Ma Q, Shibata M, Hagiwara T. Ice crystal recrystallization inhibition of type I antifreeze protein, type III antifreeze protein, and antifreeze glycoprotein: effects of AF(G)Ps concentration and heat treatment. Biosci Biotechnol Biochem 2022; 86:635-645. [PMID: 35134820 DOI: 10.1093/bbb/zbac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
This study compared ice recrystallization behaviors of frozen dessert model systems containing type I antifreeze protein (AFP I), type III antifreeze protein (AFP III), and antifreeze glycoprotein (AFGP) at -10 °C. Specifically, effects of AF(G)P concentration and heat treatment (95 °C for 10 min) were examined. The concentration dependence of the ice recrystallization rate constant reasonably well fit a sigmoidal function: the fitting procedure was proposed, along with cooperative coefficient α, and a new index of AF(G)P ice recrystallization inhibition (IRI) activity (C50). After 95 °C heat treatment for 10 min, AFP III lost its ice crystal recrystallization inhibitory activity the most: AFP I was less affected; AFGP was almost entirely unaffected. These different thermal treatment effects might reflect a lower degree of protein aggregation because of hydrophobic interaction after heat treatment or might reflect the simplicity and flexibility of the higher order structures of AFP I and AFGP.
Collapse
Affiliation(s)
- Qingbao Ma
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Mario Shibata
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tomoaki Hagiwara
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| |
Collapse
|
21
|
Yuan C, Li X, Huang Y, Yang D, Zhang Y, Shi Y, Wu J, Wang S, Zhang L. Cryoprotective effect of low molecular weight collagen peptides on myofibrillar protein stability and gel properties of frozen silver carp surimi. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01362-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|
23
|
Feng W, Ma S, Huang J, Li L, Wang X, Bao Q. Recent advances in the technology of quick‐frozen baozi: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenjuan Feng
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Sen Ma
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Jihong Huang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Li Li
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Xiaoxi Wang
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| | - Qingdan Bao
- College of Food Science and Engineering Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|
24
|
Survivability of Collagen-Peptide Microencapsulated Lactic Acid Bacteria during Storage and Simulated Gastrointestinal Conditions. FERMENTATION 2021. [DOI: 10.3390/fermentation7030177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The intracellular homeostasis of lyophilized lactic acid bacteria (LAB) is destroyed by extreme cold stress, resulting in decreased stability. This study aimed to verify the validity of collagen as a potential protective agent for improving microbial stability deteriorated by freezing. The collagen types used in this study were low molecular weight collagen (LC) of less than 1000 Da and low molecular weight collagen-peptide (LCP) of less than 300 Da. By the accelerated stability test according to the addition of each collagen type, a 3% LCP displaying a protective effect on the viability of various LAB strains (Lactoplantibacillus plantarum MG989, Lactococcus lactis MG5125, Enterococcus faecium MG5232, Bifidobacterium animalis ssp. lactis MG741, and Streptococcus thermophilus MG5140) was finally selected. It was evaluated whether LCP enhances bacterial stability, survivability in the gastrointestinal (GI) tract, and heat resistance. LCP significantly improved the viability of all strains in the GI tract compared to sucrose and skim milk, which are conventional protective agents. Based on morphological observations, LCP was uniformly coated on the cell surface, resulting in protective effects against multiple external stress stimuli. Such findings indicate the applicability of LCP as an unprecedented protective agent, which can improve the stability of various probiotics with antifreeze effects.
Collapse
|
25
|
Cryoprotective effects of silver carp muscle hydrolysate on frozen dough subjected to multiple freeze–thaw cycles and their underlying mechanisms. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Cao C, Xiao Z, Ge C, Wu Y. Animal by-products collagen and derived peptide, as important components of innovative sustainable food systems-a comprehensive review. Crit Rev Food Sci Nutr 2021; 62:8703-8727. [PMID: 34080446 DOI: 10.1080/10408398.2021.1931807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In 2020, the world's food crisis and health industry ushered into a real outbreak. On one side, there were natural disasters such as the novel coronavirus (2019-nCoV), desert locusts, floods, and droughts exacerbating the world food crisis, while on the other side, the social development and changes in lifestyles prompted the health industry to gradually shift from a traditional medical model to a new pattern of prevention, treatment, and nourishment. Therefore, this article reviews animal by-products collagen and derived peptide, as important components of innovative sustainable food systems. The review also considered the preparation, identification, and characterization of animal by-product collagen and collagen peptides as well as their impacts on the food system (including food processing, packaging, preservation, and functional foods). Finally, the application and research progress of animal by-product collagen and peptide in the food system along with the future development trend were discussed. This knowledge would be of great significance for a comprehensive understanding of animal by-product collagen and collagen peptides and would encourage the use of collagen in food processing, preservation, and functional foods.
Collapse
Affiliation(s)
- Changwei Cao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhichao Xiao
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China.,College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Livestock Product Processing Engineering and Technology Research Center of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yinglong Wu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
27
|
Zhu F. Frozen steamed breads and boiled noodles: Quality affected by ingredients and processing. Food Chem 2021; 349:129178. [PMID: 33607545 DOI: 10.1016/j.foodchem.2021.129178] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/11/2023]
Abstract
Chinese steamed breads (CSB) and noodles are staple foods for many people. The production of frozen steamed products and boiled noodles has kept increasing. This is due to the increasing demand of ready-to-eat frozen food products from the market. Frozen storage significantly increases the self-life of the products and reduces the production costs. On the other hand, the freezing and frozen storage lead to quality loss of the frozen products. This review summarizes effects of freezing and frozen storage on diverse quality attributes (e.g., structural and textural properties) of frozen northern-type steamed breads and boiled noodles. Food safety of the frozen products related to the COVID-19 pandemic is discussed. To counteract the quality loss of the frozen products, suitable processing methods, selection of basic ingredients and uses of various food additives can be done. Research gaps to improve the textural, cooking and nutritional quality of frozen CSB and noodles are suggested.
Collapse
Affiliation(s)
- Fan Zhu
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
28
|
Chen X, Wu J, Cai X, Wang S. Production, structure–function relationships, mechanisms, and applications of antifreeze peptides. Compr Rev Food Sci Food Saf 2020; 20:542-562. [DOI: 10.1111/1541-4337.12655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
- College of Chemical Engineering Fuzhou University Fuzhou Fujian China
| | - Jinhong Wu
- Department of Food Science and Engineering School of Agriculture and Biology Shanghai Jiao Tong University Shanghai China
| | - Xixi Cai
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| | - Shaoyun Wang
- College of Biological Science and Technology Fuzhou University Fuzhou Fujian China
| |
Collapse
|
29
|
Chen X, Shi X, Cai X, Yang F, Li L, Wu J, Wang S. Ice-binding proteins: a remarkable ice crystal regulator for frozen foods. Crit Rev Food Sci Nutr 2020; 61:3436-3449. [PMID: 32715743 DOI: 10.1080/10408398.2020.1798354] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ice crystal growth during cold storage presents a quality problem in frozen foods. The development of appropriate technical conditions and ingredient formulations is an effective method for frozen food manufacturers to inhibit ice crystals generated during storage and distribution. Ice-binding proteins (IBPs) have great application potential as ice crystal growth inhibitors. The ability of IBPs to retard the growth of ice crystals suggests that IBPs can be used as a natural ice conditioner for a variety of frozen products. In this review, we first discussed the damage caused by ice crystals in frozen foods during freezing and frozen storage. Next, the methods and technologies for production, purification and evaluation of IBPs were summarized. Importantly, the present review focused on the characteristics, structural diversity and mechanisms of IBPs, and the application advances of IBPs in food industry. Finally, the challenges and future perspectives of IBPs are also discussed. This review may provide a better understanding of IBPs and their applications in frozen products, providing some valuable information for further research and application of IBPs.
Collapse
Affiliation(s)
- Xu Chen
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Xiaodan Shi
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Fujia Yang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Ling Li
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|