1
|
Liu M, Hu XD, Huang XY, Wen L, Xu Z, Ding L, Cheng YH, Chen ML. Extraction of antimicrobial peptides from pea protein hydrolysates by sulfonic acid functionalized biochar. Food Chem 2025; 463:141162. [PMID: 39265304 DOI: 10.1016/j.foodchem.2024.141162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
The extraction methods for antimicrobial peptides (AMPs) from plants are varied, but the absence of a standardized and rapid technique remains a challenge. In this study, a functionalized biochar was developed and characterized for the extraction of AMPs from pea protein hydrolysates. The results indicated that the biochar mainly enriched AMPs through electrostatic interaction, hydrogen bonding and pore filling. Then three novel cationic antimicrobial peptides were identified, among which the RDLFK (Arg-Asp-Leu-Phe-Lys) had the greatest inhibitory effect against Staphylococcus aureus and Bacillus subtilis, showcasing IC50 value of 2.372 and 1.000 mg/mL, respectively. Additionally, it was found that RDLFK could damage bacterial cell membranes and penetrate the cells to inhibit DNA synthesis. These results provided that the biochar-based extraction method presents an efficient and promising avenue for isolating AMPs, addressing a critical gap in the current methodologies for their extraction from plant sources.
Collapse
Affiliation(s)
- Min Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Xian-Da Hu
- Laboratory of Cell and Molecular Biology, Beijing Tibetan Hospital, China Tibetology Research Center, Beijing, China
| | - Xiang-Yu Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Yun-Hui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China
| | - Mao-Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan, China.
| |
Collapse
|
2
|
Lv X, Xia Z, Yao X, Shan Y, Wang N, Zeng Q, Liu X, Huang X, Fu X, Jin Y, Ma M. Modification Effects of Microorganisms and Enzymes on Egg Components: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39526490 DOI: 10.1021/acs.jafc.4c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In eggs, there are several components: eggshell (ES), eggshell membrane (ESM), egg white (EW), and egg yolk (EY). Many modification methods exist, such as thermal treatment, high pressure, freeze-thaw cycles, ultrasonic treatment, ozonation, phosphorylation, and acylation, all aimed at improving the functional properties of EW and EY. Additionally, microorganism and enzyme modifications have proven effective in enhancing the functional properties of EW and EY. ES and ESM are unique components of eggs. The eggshell is rich in calcium carbonate, while the eggshell membrane is rich in protein. The effective utilization of ES and ESM can help promote economic income in the poultry industry and benefit the environment. Research on the modification of ES and ESM has shown that microorganisms and enzymes have the potential to improve their functional properties. After modification, egg components can be utilized in the production of egg-based and other food products for improved performance. Furthermore, enzyme modification of egg components can produce bioactive peptides, which have the potential to treat specific diseases and may even be used in the biomedical field. This review primarily focuses on the effects of microorganisms and enzymes on the modification of egg components and summarizes the roles of microbial and enzymatic modifications in this context.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nannan Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
3
|
Liu H, Zhang L, Yu J, Shao S. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Front Immunol 2024; 15:1413179. [PMID: 39247182 PMCID: PMC11377253 DOI: 10.3389/fimmu.2024.1413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammation is a normal immune response in organisms, but it often triggers chronic diseases such as colitis and arthritis. Currently, the most widely used anti-inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are accompanied by various adverse effects such as hypertension and renal dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for inflammation and mitigate side effects. Herein, this review focuses on the therapeutic effects of various BAPs on inflammation in different body parts. Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating inflammation, such as regulating the release of inflammatory mediators, modulating MAPK and NF-κB signaling pathways, and reducing oxidative stress reactions for immunomodulation. This review aims to provide a reference for the function, application, and anti-inflammation mechanisms of BAPs.
Collapse
Affiliation(s)
- Haiyang Liu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Lulu Zhang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
4
|
Wen F, Chen R, Wang M, Zhang Y, Dong W, Zhang Y, Yang R. Ovotransferrin, an alternative and potential protein for diverse food and nutritional applications. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39023034 DOI: 10.1080/10408398.2024.2381094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ovotransferrin(OVT)is a protein found in many types of egg white and has a wide range of functional properties. It has 50% homology with human/bovine lactoferrin, and is expected to be one of the most important alternative proteins for use in food and nutritional applications. This paper mainly reviews the structural characteristics and chemical properties of OVT, as well as its extraction and purification methods. It also systematically describes the various biological activities of OVT and its applications in food and medical industries. The challenges and limitations in the research of OVT were suggested. This review recommends some possible methods such as nanoparticle carriers and microencapsulation to improve the bioavailability and stability of OVT. In addition, this review highlights several strategies to overcome the limitations of OVT in terms of preparation and purification. This review systematically summarizes the recent advances in OVT and will provide guidance for the its development for food and nutritional applications.
Collapse
Affiliation(s)
- Fengge Wen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Runxuan Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mengxue Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yihua Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenjing Dong
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
5
|
Revutskaya N, Polishchuk E, Kozyrev I, Fedulova L, Krylova V, Pchelkina V, Gustova T, Vasilevskaya E, Karabanov S, Kibitkina A, Kupaeva N, Kotenkova E. Application of Natural Functional Additives for Improving Bioactivity and Structure of Biopolymer-Based Films for Food Packaging: A Review. Polymers (Basel) 2024; 16:1976. [PMID: 39065293 PMCID: PMC11280963 DOI: 10.3390/polym16141976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The global trend towards conscious consumption plays an important role in consumer preferences regarding both the composition and quality of food and packaging materials, including sustainable ones. The development of biodegradable active packaging materials could reduce both the negative impact on the environment due to a decrease in the use of oil-based plastics and the amount of synthetic preservatives. This review discusses relevant functional additives for improving the bioactivity of biopolymer-based films. Addition of plant, microbial, animal and organic nanoparticles into bio-based films is discussed. Changes in mechanical, transparency, water and oxygen barrier properties are reviewed. Since microbial and oxidative deterioration are the main causes of food spoilage, antimicrobial and antioxidant properties of natural additives are discussed, including perspective ones for the development of biodegradable active packaging.
Collapse
Affiliation(s)
- Natalia Revutskaya
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Polishchuk
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Ivan Kozyrev
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Liliya Fedulova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Valentina Krylova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Viktoriya Pchelkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Tatyana Gustova
- Department of Scientific, Applied and Technological Developments, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (N.R.); (I.K.); (V.K.); (T.G.)
| | - Ekaterina Vasilevskaya
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Sergey Karabanov
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Anastasiya Kibitkina
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Nadezhda Kupaeva
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| | - Elena Kotenkova
- Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin, V. M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences, Talalikhina st., 26, 109316 Moscow, Russia; (E.P.); (L.F.); (V.P.); (E.V.); (S.K.); (A.K.); (N.K.)
| |
Collapse
|
6
|
Yus C, Gámez E, Arruebo M. Expert opinion on antimicrobial therapies: is there enough scientific evidence to state that targeted therapies outperform non-targeted ones? Expert Opin Drug Deliv 2024; 21:593-609. [PMID: 38619078 DOI: 10.1080/17425247.2024.2340661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Different active and passive strategies have been developed to fight against pathogenic bacteria. Those actions are undertaken to reduce the bacterial burden while minimizing the possibilities to develop not only antimicrobial resistance but also antimicrobial side-effects such as allergic or hypersensitivity reactions. AREAS COVERED We have reviewed preclinical results that evidence that targeted antimicrobial therapies outperform non-targeted ones. Active selective targeting against pathogenic bacteria has been achieved through the functionalization of antimicrobials, either alone or encapsulated within micro- or nanocarriers, with various recognition moieties. These moieties include peptides, aptamers, antibodies, carbohydrates, extracellular vesicles, cell membranes, infective agents, and other affinity ligands with specific bacterial tropism. Those selective ligands increase retention and enhance effectiveness reducing the side-effects and the required dose to exert the antimicrobial action at the site of infection. EXPERT OPINION When using targeted antimicrobial therapies not only reduced side-effects are observed, but also, compared to the administration of equivalent doses of the non-targeted drugs, a superior efficacy has been demonstrated against planktonic, sessile, and intracellular pathogenic bacterial persisters. The translation of those targeted therapies to subsequent phases of clinical development still requires the demonstration of a reduction in the probabilities for the pathogen to develop resistance when using targeted approaches.
Collapse
Affiliation(s)
- Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Enrique Gámez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| |
Collapse
|
7
|
Tan Y, Wang Y, Wan Y, Liang Y, Liu Q, Wei M, Hou T. Preparation, Structural Identification, and Screening of Egg-Derived Peptides with Facilitating Alcohol Metabolism Activity. Foods 2024; 13:745. [PMID: 38472859 DOI: 10.3390/foods13050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to obtain egg-derived peptides with facilitating alcohol metabolism (EPs) by enzymolysis, to identify their structures, and screen small polypeptides with higher activity by molecular docking. The optimum conditions for preparing EPs with facilitating alcohol metabolism were obtained by a single factor experiment, adding 2% Protamex and performing enzymolysis for 3 h with a liquid-material ratio of 35:1. The dose-response relationship experiment showed that 800 mg/kg·bw EPs played a better role in facilitating alcohol metabolism. EPs contained 40% hydrophobic amino acids (HAA), including 9.24% Leu. Eighty-four peptides were identified by HPLC-MS/MS and four peptides with potential activation of alcohol dehydrogenase were further selected by molecular docking. The tetrapeptide Trp-Ile-Val-Asp (WIVD) with the highest binding energy reached -7.16 kcal/mol. These findings suggest that egg is a good source for the preparation of peptides with facilitating alcohol metabolism activity.
Collapse
Affiliation(s)
- Yali Tan
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yulin Wang
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
| | - Yuan Wan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Liang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaocui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengya Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Hou
- Key Laboratory of Egg Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430000, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430000, China
| |
Collapse
|
8
|
Zhang X, Yang J, Suo H, Tan J, Zhang Y, Song J. Identification and molecular mechanism of action of antibacterial peptides from Flavourzyme-hydrolyzed yak casein against Staphylococcus aureus. J Dairy Sci 2023; 106:3779-3790. [PMID: 37105875 DOI: 10.3168/jds.2022-22823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Antibacterial peptides can be released from yak milk casein. To date, the amino acid sequences and mechanism of action of yak casein-derived antibacterial peptides remain unknown. The current study identified antibacterial peptides from yak casein and their molecular mechanism of action. Our results showed that yak α-casein, β-casein, and κ-casein could be effectively hydrolyzed by Flavourzyme (Solarbio Science and Technology Co. Ltd.), and the 2-h hydrolysate showed the highest antibacterial rate of 43.07 ± 2.59% against Staphylococcus aureus. The 1,000 to 3,000 Da fraction accounted for 23.61% of the 2-h hydrolysate and had an antibacterial rate of 62.64 ± 4.40%. Three novel peptides with antibacterial activity were identified from this fraction, and the β-casein-derived peptide APKHKEMPFPKYP showed the strongest antibacterial effect (half-maximal inhibitory concentration = 0.397 mg/mL). Molecular docking predicted that APKHKEMPFPKYP interacted with 2 important enzymes of Staph. aureus, dihydrofolate reductase and DNA gyrase, through hydrophobic, hydrogen bonding, salt bridge, and π-π stacking interactions. Our findings suggest that the yak casein-derived peptides may serve as a potential source of natural preservatives to inhibit Staph. aureus.
Collapse
Affiliation(s)
- Xilu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing and Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiao Tan
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
9
|
Copling A, Akantibila M, Kumaresan R, Fleischer G, Cortes D, Tripathi RS, Carabetta VJ, Vega SL. Recent Advances in Antimicrobial Peptide Hydrogels. Int J Mol Sci 2023; 24:7563. [PMID: 37108725 PMCID: PMC10139150 DOI: 10.3390/ijms24087563] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Advances in the number and type of available biomaterials have improved medical devices such as catheters, stents, pacemakers, prosthetic joints, and orthopedic devices. The introduction of a foreign material into the body comes with a risk of microbial colonization and subsequent infection. Infections of surgically implanted devices often lead to device failure, which leads to increased patient morbidity and mortality. The overuse and improper use of antimicrobials has led to an alarming rise and spread of drug-resistant infections. To overcome the problem of drug-resistant infections, novel antimicrobial biomaterials are increasingly being researched and developed. Hydrogels are a class of 3D biomaterials consisting of a hydrated polymer network with tunable functionality. As hydrogels are customizable, many different antimicrobial agents, such as inorganic molecules, metals, and antibiotics have been incorporated or tethered to them. Due to the increased prevalence of antibiotic resistance, antimicrobial peptides (AMPs) are being increasingly explored as alternative agents. AMP-tethered hydrogels are being increasingly examined for antimicrobial properties and practical applications, such as wound-healing. Here, we provide a recent update, from the last 5 years of innovations and discoveries made in the development of photopolymerizable, self-assembling, and AMP-releasing hydrogels.
Collapse
Affiliation(s)
- Aryanna Copling
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA;
| | - Maxwell Akantibila
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Raaha Kumaresan
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
| | - Gilbert Fleischer
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Dennise Cortes
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Rahul S. Tripathi
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Valerie J. Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; (M.A.); (G.F.); (D.C.); (R.S.T.)
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA;
- Department of Orthopedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| |
Collapse
|
10
|
Pimchan T, Tian F, Thumanu K, Rodtong S, Yongsawatdigul J. Isolation, identification, and mode of action of antibacterial peptides derived from egg yolk hydrolysate. Poult Sci 2023; 102:102695. [PMID: 37120868 PMCID: PMC10172704 DOI: 10.1016/j.psj.2023.102695] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Egg yolk is a coproduct of egg white processing. The protein hydrolysis of egg yolks to exhibit antimicrobial activity is a strategy for its valorization. The objective of this study is to fractionate antibacterial peptides from pepsin-hydrolyzed egg yolks using flash chromatography. In addition, the mode of actions of the fractionated peptides were elucidated and plausible antibacterial peptides were reported. The fraction 6 (F6) obtained from a C18-flash column exhibited antibacterial activity against Staphylococcus aureus ATCC 29213 and Salmonella typhimurium TISTR 292 at minimal inhibitory concentration (MIC) values of 0.5 to 1 mmol/L (Leucine equivalent). The fractionated peptides induced DNA leakage as monitored by 260 nm. Propidium iodide and SYTO9 staining observed under a confocal microscope suggested the disintegration of cell membranes. Synchrotron-based Fourier-transform infrared spectroscopy analysis revealed that the egg yolk peptides at 1 × MIC induced an alteration of phospholipids at cell membranes and modified conformation of intracellular proteins and nucleic acids. Scanning electron microscopy revealed obvious cell ruptures when S. aureus was treated at 1 × MIC for 4 h, whereas damage of cell membranes and leakage of intracellular components were also observed for the transmission electron microscopy. Egg yolk peptides showed no hemolytic activity in human erythrocytes at concentrations up to 4 mmol/L. Peptide identification by LC-MS/MS revealed 3 cationic and 10 anionic peptides with 100% sequence similarity to apolipoprotein-B of Gallus gallus with hydrophobicity ranging from 27 to 75%. The identified peptide KGGDLGLFEPTL exhibited the highest antibacterial activity toward S. aureus at MIC of 2 mmol/L. Peptides derived from egg yolk hydrolysate present significant potential as antistaphylococcal agents for food and/or pharmaceutical application.
Collapse
|
11
|
The Impact of Processing and Extraction Methods on the Allergenicity of Targeted Protein Quantification as Well as Bioactive Peptides Derived from Egg. Molecules 2023; 28:molecules28062658. [PMID: 36985630 PMCID: PMC10053729 DOI: 10.3390/molecules28062658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
This review article discusses advanced extraction methods to enhance the functionality of egg-derived peptides while reducing their allergenicity. While eggs are considered a nutrient-dense food, some proteins can cause allergic reactions in susceptible individuals. Therefore, various methods have been developed to reduce the allergenicity of egg-derived proteins, such as enzymatic hydrolysis, heat treatment, and glycosylation. In addition to reducing allergenicity, advanced extraction methods can enhance the functionality of egg-derived peptides. Techniques such as membrane separation, chromatography, and electrodialysis can isolate and purify specific egg-derived peptides with desired functional properties, improving their bioactivity. Further, enzymatic hydrolysis can also break down polypeptide sequences and produce bioactive peptides with various health benefits. While liquid chromatography is the most commonly used method to obtain individual proteins for developing novel food products, several challenges are associated with optimizing extraction conditions to maximize functionality and allergenicity reduction. The article also highlights the challenges and future perspectives, including optimizing extraction conditions to maximize functionality and allergenicity reduction. The review concludes by highlighting the potential for future research in this area to improve the safety and efficacy of egg-derived peptides more broadly.
Collapse
|
12
|
Huang Y, Chen S, Yao Y, Wu N, Xu M, Du H, Zhao Y, Tu Y. Ovotransferrin alleviated acute gastric mucosal injury in BALB/c mice caused by ethanol. Food Funct 2023; 14:305-318. [PMID: 36503960 DOI: 10.1039/d2fo02364d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute gastric mucosal injury is a common gastrointestinal disorder, which influences patients' life quality. It was found that ovotransferrin (OVT) reduces the abundance of Helicobacter pylori associated with gastric disease in the intestine of immunosuppressed mice. To clarify its gastric protective function, the present study investigated the effect of OVT on BALB/c mice with ethanol-induced gastric mucosal injury. Results showed that OVT attenuated the ethanol-induced gastric mucosal injury. Furthermore, OVT effectively downregulated the expression of inflammatory markers (tumor necrosis factor-α, interleukin (IL)-1β and IL-6) but enhanced the secretion of IL-4, IL-10 and prostaglandin E2. And OVT pretreatment significantly inhibited the activation of the MAPK/NF-κB pathway. Additionally, OVT improved gastric antioxidant ability by increasing superoxide dismutase and glutathione levels and decreasing malondialdehyde and myeloperoxidase content. Pretreatment with OVT modulated the equilibrium between B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X. The above results indicated that OVT alleviated inflammatory responses, oxidative stress and apoptosis in gastric mucosal injury mice caused by ethanol.
Collapse
Affiliation(s)
- Yan Huang
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, 330045, China. .,Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang 330045, China.,Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
13
|
González-López N, Insuasty-Cepeda DS, Huertas-Ortiz KA, Reyes-Calderón JE, Martínez-Ramírez JA, Fierro-Medina R, Jenny Rivera-Monroy Z, García-Castañeda JE. Gradient Retention Factor Concept Applied to Method Development for Peptide Analysis by Means of RP-HPLC. ACS OMEGA 2022; 7:44817-44824. [PMID: 36530233 PMCID: PMC9753532 DOI: 10.1021/acsomega.2c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/05/2022] [Indexed: 06/17/2023]
Abstract
Using the van Deemter model, the efficiency of three stationary phase systems in the analysis of a mixture of synthetic peptides was evaluated: (i) monolithic, (ii) packed, and (iii) core-shell columns, and it was shown that the efficiency of the monolithic column is superior to the others, specifically using it, the lowest values of H min (0.03 and 0.1 mm) were obtained, and additionally its efficiency was not significantly affected by increasing the flow. Using the concept of the gradient retention factor (k*), a method for chromatographic separation of a peptide complex mixture was designed, implemented, and optimized and then transferred from a packed column to a monolithic one. The results showed that it was possible to separate all components of the mixture using both evaluated columns; moreover, the analysis time was reduced from 70 to 10 min, conserving the critical pair resolution (1.4), by the transfer method using the k* concept. The method developed was tested against a mixture of doping peptides, showing that this method is efficient for separating peptides of various natures. This investigation is very useful for the development of methods for the analysis of complex peptide mixtures since it provides a systematic approach that can be extrapolated to different types of columns and instrumentation.
Collapse
Affiliation(s)
- Nicolás
Mateo González-López
- Pharmacy
Department, Universidad Nacional de Colombia,
Bogotá, Carrera
45 No 26-85, Building 450, 11321Bogotá, Colombia
| | | | - Kevin Andrey Huertas-Ortiz
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Juan Esteban Reyes-Calderón
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Jorge Ariel Martínez-Ramírez
- Pharmacy
Department, Universidad Nacional de Colombia,
Bogotá, Carrera
45 No 26-85, Building 450, 11321Bogotá, Colombia
| | - Ricardo Fierro-Medina
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia,
Bogotá, Carrera 45 No 26-85, Building 451, 11321Bogotá, Colombia
| | | |
Collapse
|
14
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
15
|
Naeem M, Malik MI, Umar T, Ashraf S, Ahmad A. A Comprehensive Review About Bioactive Peptides: Sources to Future Perspective. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Doderlin: Isolation and Characterization of a Broad-Spectrum Antimicrobial Peptide from Lactobacillus acidophilus. Res Microbiol 2022. [DOI: 10.1016/j.resmic.2022.103995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Wang Y, Song Y, Chang Y, Liu Y, Chen G, Xue C. Dynamic changes of peptidome and release of polysaccharide in sea cucumber (Apostichopus japonicus) hydrolysates depending on enzymatic hydrolysis approaches. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Aderinola TA, Duodu KG. Production, health-promoting properties and characterization of bioactive peptides from cereal and legume grains. Biofactors 2022; 48:972-992. [PMID: 36161374 PMCID: PMC9828255 DOI: 10.1002/biof.1889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
The search for bioactive components for the development of functional foods and nutraceuticals has received tremendous attention. This is due to the increasing awareness of their therapeutic potentials, such as antioxidant, anti-inflammatory, antihypertensive, anti-cancer properties, etc. Food proteins, well known for their nutritional importance and their roles in growth and development, are also sources of peptide sequences with bioactive properties and physiological implications. Cereal and legume grains are important staples that are processed and consumed in various forms worldwide. However, they have received little attention compared to other foods. This review therefore is geared towards surveying the literature for an appraisal of research conducted on bioactive peptides in cereal and legume grains in order to identify what the knowledge gaps are. Studies on bioactive peptides from cereal and legume grains are still quite limited when compared to other food items and most of the research already carried out have been done without identifying the sequence of the bioactive peptides. However, the reports on the antioxidative, anticancer/inflammatory, antihypertensive, antidiabetic properties show there is much prospect of obtaining potent bioactive peptides from cereal and legume grains which could be utilized in the development of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Taiwo Ayodele Aderinola
- Department of Food Science and Technology, School of Agriculture and Agricultural TechnologyThe Federal University of TechnologyAkureNigeria
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| | - Kwaku Gyebi Duodu
- Department of Consumer and Food Sciences, Faculty of Natural and Agricultural SciencesUniversity of PretoriaHatfieldSouth Africa
| |
Collapse
|
19
|
Isolation and characterization of a new strain of Bacillus amyloliquefaciens and its effect on strawberry preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Freitas ED, Bataglioli RA, Oshodi J, Beppu MM. Antimicrobial peptides and their potential application in antiviral coating agents. Colloids Surf B Biointerfaces 2022; 217:112693. [PMID: 35853393 PMCID: PMC9262651 DOI: 10.1016/j.colsurfb.2022.112693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus pandemic has evidenced the importance of creating bioactive materials to mitigate viral infections, especially in healthcare settings and public places. Advances in antiviral coatings have led to materials with impressive antiviral performance; however, their application may face health and environmental challenges. Bio-inspired antimicrobial peptides (AMPs) are suitable building blocks for antimicrobial coatings due to their versatile design, scalability, and environmentally friendly features. This review presents the advances and opportunities on the AMPs to create virucidal coatings. The review first describes the fundamental characteristics of peptide structure and synthesis, highlighting the recent findings on AMPs and the role of peptide structure (α-helix, β-sheet, random, and cyclic peptides) on the virucidal mechanism. The following section presents the advances in AMPs coating on medical devices with a detailed description of the materials coated and the targeted pathogens. The use of peptides in vaccine formulations is also reported, emphasizing the molecular interaction of peptides with different viruses and the current clinical stage of each formulation. The role of several materials (metallic particles, inorganic materials, and synthetic polymers) in the design of antiviral coatings is also presented, discussing the advantages and the drawbacks of each material. The final section offers future directions and opportunities for using AMPs on antiviral coatings to prevent viral outbreaks.
Collapse
Affiliation(s)
- Emanuelle D Freitas
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Rogério A Bataglioli
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil
| | - Josephine Oshodi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Marisa M Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Campinas, São Paulo 13083-852, Brazil.
| |
Collapse
|
21
|
Ma B, Hu G, Guo S, Zeng Q, Chen Y, Hwan Oh D, Jin Y, Fu X. Use of Peptide-Modified Nanoparticles as a Bacterial Cell Targeting Agent for Enhanced Antibacterial Activity and Other Biomedical Applications. Food Res Int 2022; 161:111638. [DOI: 10.1016/j.foodres.2022.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022]
|
22
|
Preparation and characterization of a novel antibacterial hydrogel based on thiolated ovalbumin/gelatin with silver ions. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
23
|
Johny LC, Kudre TG, Suresh PV. Production of egg white hydrolysate by digestion with pineapple bromelain: optimization, evaluation and antioxidant activity study. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1769-1780. [PMID: 34219806 PMCID: PMC8236224 DOI: 10.1007/s13197-021-05188-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/04/2023]
Abstract
Chicken egg white is known to be an excellent source of good quality proteins to make hydrolysate with potential bioactive properties. Enzymatic digestion is a well-known method to produce protein hydrolysates; however, the type of enzyme determines the bioactive potential of the protein hydrolysates due to difference in their catalytic specificity. In this study, process optimization, production and evaluation of whole egg white protein hydrolysate (WEWPH) using pineapple bromelain through the Box-Behnken design were carried out. The design experiment (r 2 = 0.9557) displayed a significant (p < 0.01) effect of pH of egg white (9.0), hydrolysis time (24 h), and enzyme/substrate ratio (3.2 unit/g substrate) on hydrolysis and to form bioactive WEWPH. Antioxidant activity of the WEWPH was confirmed by DPPH radical scavenging assay. Gel filtration chromatography, SDS-PAGE and FTIR spectroscopy analysis of WEWPH revealed the digestion of egg white and the integrity of WEWPH in terms of secondary structure. The WEWPH exhibited strong scavenging activities of DPPH (EC50 = 238.3 µg/ml), ABTS ABTS (EC50 = 54.9 µg/ml), peroxyl (EC50 = 391.6 µg/ml) and superoxide radicals. The WEWPH also displayed reducing power and singlet oxygen quenching activity. These results reveal that the bioactive WEWPH could be a promising ingredient in health food and nutraceuticals. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05188-0.
Collapse
Affiliation(s)
- Lidiya C. Johny
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
- Academy of Scientific and Innovative Research, Gazhiabad, India
| | - Tanaji G. Kudre
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
| | - P. V. Suresh
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570 020 India
- Academy of Scientific and Innovative Research, Gazhiabad, India
| |
Collapse
|
24
|
Tripathi N, Goshisht MK. Recent Advances and Mechanistic Insights into Antibacterial Activity, Antibiofilm Activity, and Cytotoxicity of Silver Nanoparticles. ACS APPLIED BIO MATERIALS 2022; 5:1391-1463. [PMID: 35358388 DOI: 10.1021/acsabm.2c00014] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The substantial increase in multidrug-resistant (MDR) pathogenic bacteria is a major threat to global health. Recently, the Centers for Disease Control and Prevention reported possibilities of greater deaths due to bacterial infections than cancer. Nanomaterials, especially small-sized (size ≤10 nm) silver nanoparticles (AgNPs), can be employed to combat these deadly bacterial diseases. However, high reactivity, instability, susceptibility to fast oxidation, and cytotoxicity remain crucial shortcomings for their uptake and clinical application. In this review, we discuss various AgNPs-based approaches to eradicate bacterial infections and provide comprehensive mechanistic insights and recent advances in antibacterial activity, antibiofilm activity, and cytotoxicity (both in vitro and in vivo) of AgNPs. The mechanistic of antimicrobial activity involves four steps: (i) adhesion of AgNPs to cell wall/membrane and its disruption; (ii) intracellular penetration and damage; (iii) oxidative stress; and (iv) modulation of signal transduction pathways. Numerous factors affecting the bactericidal activity of AgNPs such as shape, size, crystallinity, pH, and surface coating/charge have also been described in detail. The review also sheds light on antimicrobial photodynamic therapy and the role of AgNPs versus Ag+ ions release in bactericidal activities. In addition, different methods of synthesis of AgNPs have been discussed in brief.
Collapse
Affiliation(s)
- Neetu Tripathi
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Manoj Kumar Goshisht
- Department of Chemistry, Government Naveen College Tokapal, Bastar, Chhattisgarh 494442, India
| |
Collapse
|
25
|
Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022; 373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The current health scenarios describe growing public health problems, such as diabetes, hypertension and cancer. Therefore, researchers focused on studying these health issues are interested in exploring bioactive compounds from different food sources. Among them, bioactive peptides have garnered huge scientific interest because of their multifunctional biological activities such as antioxidative, antimicrobial, antihypertensive, anticancer, antidiabetic, immunomodulatory effect. They can be used as food and pharmaceutical ingredients with a great potential against disease targets. This review covers methods of production in general for several peptides obtained from various food sources including seed, milk and meat, and described their biological activities. Particular focus was given to bioinformatic tools to advance quantification, detection and characterize each peptide sequence obtained from different protein sources with predicted biological activity. Besides, various in vivo studies have been discussed to provide a better understanding of their physiological functions, which altogether could provide valuable information for their commercialization in future foods.
Collapse
|
26
|
Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomater Sci Eng 2021; 8:109-118. [PMID: 34936344 DOI: 10.1021/acsbiomaterials.1c01267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotic-resistant pathogens are a serious threat to global public health. The emergence of drug-resistant pathogens is due to the improper use of antibiotics, making the treatment of bacterial infections very challenging. Here, we reported an efficient antibiotic delivery nanoparticle to minimize antibiotic resistance. The nanoparticle was designed to target the bacterial membrane using mesoporous silica nanoparticles (MSNs) modified with an ovotransferrin-derived antimicrobial peptide (OVTp12), enabling the antibiotic to be delivered to the vicinity of the pathogenic bacteria. Moreover, we observed that OVTp12-modified nanoparticles effectively inhibited the growth of Escherichia coli in vitro and in vivo. The nanoparticle with high biosafety could significantly downregulate the expression of inflammation-related cytokines in infected tissues. Thus, this novel bacterial targeted nanoparticle provides advantages in minimizing bacterial drug resistance and treating bacterial infection.
Collapse
Affiliation(s)
- Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Deog Hwan Oh
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Science, Kangwon National University, Chunchon 24341, South Korea
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
27
|
Okella H, Ikiriza H, Ochwo S, Ajayi CO, Ndekezi C, Nkamwesiga J, Kaggwa B, Aber J, Mtewa AG, Koffi TK, Odongo S, Vertommen D, Kato CD, Ogwang PE. Identification of Antimicrobial Peptides Isolated From the Skin Mucus of African Catfish, Clarias gariepinus (Burchell, 1822). Front Microbiol 2021; 12:794631. [PMID: 34987491 PMCID: PMC8721588 DOI: 10.3389/fmicb.2021.794631] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) constitute a broad range of bioactive compounds in diverse organisms, including fish. They are effector molecules for the innate immune response, against pathogens, tissue damage and infections. Still, AMPs from African Catfish, Clarias gariepinus, skin mucus are largely unexplored despite their possible therapeutic role in combating antimicrobial resistance. In this study, African Catfish Antimicrobial peptides (ACAPs) were identified from the skin mucus of African Catfish, C. gariepinus. Native peptides were extracted from fish mucus scrapings in 10% acetic acid (v/v) and ultra-filtered using 5 kDa molecular weight cut-off membrane. The extract was purified using C18 Solid-Phase Extraction. The antibacterial activity was determined using the Agar Well Diffusion method and broth-dilution method utilizing Staphylococcus aureus (ATCC 25923) and Escherichia coli (ATCC 25922). Thereafter, Sephadex G-25 gel filtration was further utilized in bio-guided isolation of the most active fractions prior to peptide identification using Orbitrap Fusion Lumos Tribrid Mass Spectrometry. The skin mucus extracted from African Catfish from all the three major lakes of Uganda exhibited antimicrobial activity on E. coli and S. aureus. Lake Albert's C. gariepinus demonstrated the best activity with the lowest MIC of 2.84 and 0.71 μg/ml on S. aureus and E. coli, respectively. Sephadex G-25 peak I mass spectrometry analysis (Data are available via ProteomeXchange with identifier PXD029193) alongside in silico analysis revealed seven short peptides (11-16 amino acid residues) of high antimicrobial scores (0.561-0.905 units). In addition, these peptides had a low molecular weight (1005.57-1622.05 Da) and had percentage hydrophobicity above 54%. Up to four of these AMPs demonstrated α-helix structure conformation, rendering them amphipathic. The findings of this study indicate that novel AMPs can be sourced from the skin mucus of C. gariepinus. Such AMPs are potential alternatives to the traditional antibiotics and can be of great application to food and pharmaceutical industries; however, further studies are still needed to establish their drug-likeness and safety profiles.
Collapse
Affiliation(s)
- Hedmon Okella
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Hilda Ikiriza
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Sylvester Ochwo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Clement Olusoji Ajayi
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Joseph Nkamwesiga
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
- International Livestock Research Institute, Kampala, Uganda
| | - Bruhan Kaggwa
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Jacqueline Aber
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Pharmacy, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Andrew Glory Mtewa
- Chemistry Section, Malawi Institute of Technology, Malawi University of Science and Technology, Limbe, Malawi
| | - Tindo Kevin Koffi
- Department of Food Science and Technology, Chungnam National University, Daejeon, South Korea
| | - Steven Odongo
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Didier Vertommen
- de Duve Institute and MASSPROT Platform, UCLouvain, Brussels, Belgium
| | - Charles Drago Kato
- Department of Biotechnical and Diagnostic Sciences, College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Biotechnology and Traditional Medicine Centre, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
28
|
Yu HH, Chin YW, Paik HD. Application of Natural Preservatives for Meat and Meat Products against Food-Borne Pathogens and Spoilage Bacteria: A Review. Foods 2021; 10:2418. [PMID: 34681466 PMCID: PMC8535775 DOI: 10.3390/foods10102418] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/21/2022] Open
Abstract
Meat and meat products are excellent sources of nutrients for humans; however, they also provide a favorable environment for microbial growth. To prevent the microbiological contamination of livestock foods, synthetic preservatives, including nitrites, nitrates, and sorbates, have been widely used in the food industry due to their low cost and strong antibacterial activity. Use of synthetic chemical preservatives is recently being considered by customers due to concerns related to negative health issues. Therefore, the demand for natural substances as food preservatives has increased with the use of plant-derived and animal-derived products, and microbial metabolites. These natural preservatives inhibit the growth of spoilage microorganisms or food-borne pathogens by increasing the permeability of microbial cell membranes, interruption of protein synthesis, and cell metabolism. Natural preservatives can extend the shelf-life and inhibit the growth of microorganisms. However, they can also influence food sensory properties, including the flavor, taste, color, texture, and acceptability of food. To increase the applicability of natural preservatives, a number of strategies, including combinations of different preservatives or food preservation methods, such as active packaging systems and encapsulation, have been explored. This review summarizes the current applications of natural preservatives for meat and meat products.
Collapse
Affiliation(s)
- Hwan Hee Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Young-Wook Chin
- Research Group of Traditional Food, Korea Food Research Institute, Iseo-myeon, Wanju-gun 55365, Korea;
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
29
|
Wang X, Wei Z, Xue C. The past and future of ovotransferrin: Physicochemical properties, assembly and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Rathnapala ECN, Ahn DU, Abeyrathne EDNS. Enzymatic Hydrolysis of Ovotransferrin and the Functional Properties of Its Hydrolysates. Food Sci Anim Resour 2021; 41:608-622. [PMID: 34291210 PMCID: PMC8277180 DOI: 10.5851/kosfa.2021.e19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022] Open
Abstract
Bioactive peptides have great potentials as nutraceutical and pharmaceutical
agents that can improve human health. The objectives of this research were to
produce functional peptides from ovotransferrin, a major egg white protein,
using single enzyme treatments, and to analyze the properties of the
hydrolysates produced. Lyophilized ovotransferrin was dissolved in distilled
water at 20 mg/mL, treated with protease, elastase, papain, trypsin, or
α-chymotrypsin at 1% (w/v) level of substrate, and incubated for
0–24 h at the optimal temperature of each enzyme (protease 55°C,
papain 37°C, elastase 25°C, trypsin 37°C,
α-chymotrypsin 37°C). The hydrolysates were tested for
antioxidant, metal-chelating, and antimicrobial activities. Protease, papain,
trypsin, and α-chymotrypsin hydrolyzed ovotransferrin relatively well
after 3 h of incubation, but it took 24 h with elastase to reach a similar
degree of hydrolysis. The hydrolysates obtained after 3 h of incubation with
protease, papain, trypsin, α-chymotrypsin, and after 24 h with elastase
were selected as the best products to analyze their functional properties. None
of the hydrolysates exhibited antioxidant properties in the oil emulsion nor
antimicrobial property at 20 mg/mL concentration. However, ovotransferrin with
α-chymotrypsin and with elastase had higher
Fe3+-chelating activities (1.06±0.88%,
1.25±0.24%) than the native ovotransferrin
(0.46±0.60%). Overall, the results indicated that the
single-enzyme treatments of ovotransferrin were not effective to produce
peptides with antioxidant, antimicrobial, or Fe3+-chelating
activity. Further research on the effects of enzyme combinations may be
needed.
Collapse
Affiliation(s)
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames IA 50011, USA
| | | |
Collapse
|
32
|
Legros J, Jan S, Bonnassie S, Gautier M, Croguennec T, Pezennec S, Cochet MF, Nau F, Andrews SC, Baron F. The Role of Ovotransferrin in Egg-White Antimicrobial Activity: A Review. Foods 2021; 10:823. [PMID: 33920211 PMCID: PMC8070150 DOI: 10.3390/foods10040823] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
Eggs are a whole food which affordably support human nutritional requirements worldwide. Eggs strongly resist bacterial infection due to an arsenal of defensive systems, many of which reside in the egg white. However, despite improved control of egg production and distribution, eggs remain a vehicle for foodborne transmission of Salmonella enterica serovar Enteritidis, which continues to represent a major public health challenge. It is generally accepted that iron deficiency, mediated by the iron-chelating properties of the egg-white protein ovotransferrin, has a key role in inhibiting infection of eggs by Salmonella. Ovotransferrin has an additional antibacterial activity beyond iron-chelation, which appears to depend on direct interaction with the bacterial cell surface, resulting in membrane perturbation. Current understanding of the antibacterial role of ovotransferrin is limited by a failure to fully consider its activity within the natural context of the egg white, where a series relevant environmental factors (such as alkalinity, high viscosity, ionic composition, and egg white protein interactions) may exert significant influence on ovotransferrin activity. This review provides an overview of what is known and what remains to be determined regarding the antimicrobial activity of ovotransferrin in egg white, and thus enhances understanding of egg safety through improved insight of this key antimicrobial component of eggs.
Collapse
Affiliation(s)
- Julie Legros
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6AX, UK;
| | - Sophie Jan
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Sylvie Bonnassie
- UFR Sciences de la vie et de L’environnement, Université de Rennes 1, 35000 Rennes, France;
| | - Michel Gautier
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Thomas Croguennec
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Stéphane Pezennec
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Marie-Françoise Cochet
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Françoise Nau
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| | - Simon C. Andrews
- School of Biological Sciences, Health and Life Sciences Building, University of Reading, Reading RG6 6AX, UK;
| | - Florence Baron
- STLO, INRAE, Institut Agro, 35042 Rennes, France; (J.L.); (S.J.); (M.G.); (T.C.); (S.P.); (M.-F.C.); (F.N.)
| |
Collapse
|
33
|
Rathnapala ECN, Ahn DU, Abeyrathne S. Functional properties of ovotransferrin from chicken egg white and its derived peptides: a review. Food Sci Biotechnol 2021; 30:619-630. [PMID: 33814941 PMCID: PMC8006106 DOI: 10.1007/s10068-021-00901-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/17/2023] Open
Abstract
With emerging trends in the food and pharmaceutical industries, potential applications of egg-derived bioactive compounds were recognized. Ovotransferrin is a major egg white functional protein responsible for multiple bioactivities. The objectives of this review are to provide scientific evidence of the functional properties of chicken ovotransferrin and its derived peptides and to identify future research approaches and applications. Various easy, economical, and non-toxic methods have been reported to produce ovotransferrin with high yield and purity, and chemical and enzymatic approaches have been employed to release bioactive peptides. The native ovotransferrin is known to have antimicrobial, antioxidant, anticancer, and immunomodulatory activities. The peptides produced from ovotransferrin also are reported to have antioxidant, antimicrobial, antihypertensive, and anticancer properties. However, little or no application of these compounds in the food and pharmaceutical areas is available yet. Therefore, the practical application of OTF in nutraceutical and pharmaceutical areas are among the emerging areas of research.
Collapse
|
34
|
Purification and antimicrobial mechanism of a novel bacteriocin produced by Lactobacillus rhamnosus 1.0320. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Zhang X, Yue X, Ma B, Fu X, Ren H, Ma M. Ultrasonic pretreatment enhanced the glycation of ovotransferrin and improved its antibacterial activity. Food Chem 2020; 346:128905. [PMID: 33401085 DOI: 10.1016/j.foodchem.2020.128905] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
This study aims to evaluate the effect of ultrasonic pretreatment combined with glycation on the structural characteristics and antibacterial activity of ovotransferrin (OVT). Firstly, OVT (purity >90%) was isolated from egg white with a simple and efficient method. After the treatment of ultrasound and glycation, the browning degree of OVT increased with the rising power of ultrasound, while the number of free amino groups obviously decreased to 25.4%. Various spectrum detection showed that the structures of OVT have changed significantly, indicating the tertiary structure became more flexible and looser. The minimal inhibitory concentration of ultrasound glycated OVT were 25.0 and 32.1 μmol/L for E. coli and S. aureus, respectively. In summary, ultrasound-assisted glycation is an effective technique to improve the biological activity of OVT.
Collapse
Affiliation(s)
- Xianli Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaojie Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Bin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, PR China.
| | - Heling Ren
- Collage of Public Administration, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|