1
|
Hurtado-Murillo J, Franco W, Contardo I. Impact of homolactic fermentation using Lactobacillus acidophilus on plant-based protein hydrolysis in quinoa and chickpea flour blended beverages. Food Chem 2025; 463:141110. [PMID: 39243613 DOI: 10.1016/j.foodchem.2024.141110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
In this study, three beverages formulated with quinoa and chickpea flour blends were fermented using Lactobacillus acidophilus LA-5 to assess the effect of lactic acid fermentation on the degree of hydrolysis of plant-based proteins. Additionally, the impact of quinoa and chickpea blends on the protein content and protein solubility in the beverages was evaluated. Fermentation was completed within 10 h, resulting in a decrease in the pH (<4.3) and an increase in titratable acidity and lactic acid (>0.37 % and > 1.7 g/L), respectively. SDS-PAGE and the O-phthalaldehyde method revealed hydrolysis of quinoa and chickpea proteins. A quinoa-to-chickpea ratio of 50 % exhibited the highest protein content (>2 %), solubility (43.6 %), and hydrolysis (35.9 %) after fermentation, indicating that an increase in chickpea improved these parameters in the prepared PBBs. Overall, fermentation using Lactobacillus acidophilus increased plant protein hydrolysis, and legume addition improved the protein content and the nutritional value of plant-based beverages.
Collapse
Affiliation(s)
- John Hurtado-Murillo
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Santiago 7820436, Chile.
| | - Wendy Franco
- Department of Chemical Engineering and Bioprocesses, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackena 4860, Santiago 7820436, Chile.
| | - Ingrid Contardo
- Biopolymer Research & Engineering Laboratory (BiopREL), School of Nutrition and Dietetics, Faculty of Medicine, Universidad de los Andes, Chile, Monseñor Álvaro del Portillo 12.455, Las Condes 7550000, Chile; Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Chile, Monseñor Álvaro del Portillo 12.455, Las Condes 7620086, Chile.
| |
Collapse
|
2
|
Liang H, Zhu Z, Fan Y, Hu J, Wu J, Mu Z, Li Y, Wei Q, Yang C, Tian J, Li S. Integrated microbiomic and metabolomic dynamics of Yi traditional fermented liquor. Food Chem X 2024; 24:102016. [PMID: 39659683 PMCID: PMC11629247 DOI: 10.1016/j.fochx.2024.102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
This study examines the microbial community composition, metabolite characteristics, and the relationship between the two during the fermentation process of Yi traditional fermented liquor. Yi traditional fermented foods have a profound historical and cultural background, with significant ethnic characteristics. As a case in point, Yi traditional fermented liquor is typically prepared using local plants or traditional Chinese herbs as fermentation substrates and undergoes a lengthy fermentation process, resulting in a fermented beverage that is reputed to have beneficial effects on human health. These foods are not only characterised by a distinctive flavor profile, but are also perceived to possess certain health benefits in the context of traditional ethnic medicine and wellness practices. The community composition of bacteria and fungi was analyzed using 16S rRNA and ITS1 sequencing technologies, which revealed that microbial diversity was higher in the early stages of fermentation but gradually decreased as fermentation progressed. A total of 130 major volatile flavor compounds and 26 key metabolites were identified at different stages of fermentation. These included acids, sugars, amino acids and flavonoids, which significantly influence the flavor and nutritional value of the fermented products. The study indicates a significant correlation between specific microbial populations (such as yeasts) and key metabolites (such as flavonoids and amino acids). These findings emphasise the significance of the interplay between microbial communities and metabolites in shaping the quality and efficacy of fermented products. They offer a scientific foundation for optimizing traditional fermented food production processes.
Collapse
Affiliation(s)
- Hanqiao Liang
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Zidong Zhu
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Yong Fan
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Jinghong Hu
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Jiaqi Wu
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Ziying Mu
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Yang Li
- The Eighth Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Qin Wei
- College of life sciences & food engineering, Key lab of aromatic Plant resources exploitation and utilization in sichuan higher education, Yibin university, Yibin 644000, china
| | - Chunmei Yang
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Jing Tian
- Department of Biomedicine, Beijing city university, Beijing 100083, china
| | - Shouqian Li
- Guizhou Jinqianguo Biotechnology Co., Ltd., Next to Gongjia Bridge, Zhuchang Town, Guizhou Province Building B, Returning Migrant Workers Entrepreneurship Park, 551700, China
| |
Collapse
|
3
|
Rastogi M, Singh V, Shaida B, Siddiqui S, Bangar SP, Phimolsiripol Y. Biofortification, metabolomic profiling and quantitative analysis of vitamin B 12 enrichment in guava juice via lactic acid fermentation using Levilactobacillus brevis strain KU15152. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9191-9201. [PMID: 39011860 DOI: 10.1002/jsfa.13741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Chemical fortification and dose supplementation of vitamin B12 are widely implemented to combat deficiency symptoms. However, in situ, fortification of vitamin B12 in food matrixes can be a promising alternative to chemical fortification. The present study aimed to produce vitamin B12-rich, probiotic guava juice fermented with Levilactobacillus brevis strain KU15152. Pasteurized fresh guava juice was inoculated with 7.2 log CFU mL-1 L. brevis strain KU15152 and incubated for 72 h at 37 °C anaerobically. The antioxidants, total phenolic compounds, vitamin B12 production, sugars, organic acids, pH and viable count were analyzed at 24, 48 and 72 h of incubation. The fermented juice was stored at 4 °C, and the changes in its functional properties were analyzed at 7-day intervals up to 28 days of storage. RESULTS During fermentation, the bacteria cell count was increased from 7.01 ± 0.06 to 9.76 ± 0.42 log CFU mL-1 after 72 h of fermentation and was decreased to 6.94 ± 0.34 CFU mL-1 during storage at 4 °C after 28 days. The pH, total soluble solids, crude fiber, citric acid and total sugars decreased, while titratable acidity, total protein, antioxidants, phenolic compounds and lactic acid contents increased during fermentation. The fermented guava juice exhibited higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS)) radical scavenging activities (85.97% and 75.97%, respectively) at 48 h of fermentation. The concentration of active vitamin B12 in the sample reached 109.5 μg L-1 at 72 h of fermentation. However, this concentration gradually decreased to 70.2 μg L-1 during the storage period. During storage for 28 days at 4 °C, both the fermented and control guava juices exhibited a decline in antioxidant and phenolic compound concentrations. Furthermore, the addition of 20% honey and guava flavor enhanced the organoleptic properties and acceptability of fermented guava juice. CONCLUSION The value-added fermented guava juice could be a novel functional food product to combat vitamin B12 deficiency. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayuri Rastogi
- Nutrition and Dietetics Department, Sharda Schools of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Vandana Singh
- Department of Microbiology, Sharda Schools of Allied Health Sciences, Sharda University, Greater Noida, India
| | - Bushra Shaida
- Department of Nutrition, Jamia Hamdard University, New Delhi, India
| | - Saleem Siddiqui
- Department of Food Science and Technology, Sharda School of Basic Sciences, Sharda University, Greater Noida, India
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
4
|
Reale A, Puppo MC, Boscaino F, Garzon AG, Drago SR, Marulo S, Di Renzo T. Development and Evaluation of a Fermented Pistachio-Based Beverage Obtained by Colloidal Mill. Foods 2024; 13:2342. [PMID: 39123534 PMCID: PMC11312421 DOI: 10.3390/foods13152342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The aim of the present study was to develop a fermented pistachio beverage as a plant-based alternative to milk-based drinks. For this purpose, a colloidal mill was used to finely grind and homogenize the pistachios to obtain a homogeneous consistency and prevent sedimentation. In addition, lactic acid bacteria fermentation was used to develop unique flavours and characteristics in the final product and to achieve microbiological stability for up to 30 days of storage a 4 °C. The formulated beverages were evaluated for chemical-physical characteristics (pH, organic acid production, and fructose, sucrose, and glucose content), nutritional profile (proximate composition, amino acid and GABA content), and volatile organic composition by HS-SPME-GC/MS analysis. The pistachio-based beverages were characterized by a good source of protein, fat, fiber, and minerals (mainly K and P). The colloidal mill contributed to creating a homogeneous texture and to making the nutrients readily available to the starter microorganisms, which reached concentrations above 108 ufc/mL in the final products. The beverages were characterized by pronounced acidity and some by the presence of acetoin and 2,3-butanedione, volatile components associated with a yogurt- or kefir-like aroma. This innovative approach provides an alternative to traditional milk-based beverages and highlights the role of LAB in the development of nutritious and attractive plant-based beverages.
Collapse
Affiliation(s)
- Anna Reale
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (F.B.); (S.M.); (T.D.R.)
| | | | - Floriana Boscaino
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (F.B.); (S.M.); (T.D.R.)
| | - Antonela Guadalupe Garzon
- Instituto de Tecnología de Alimentos, CONICET, Facultad de Ingeniería Química—Universidad Nacional del Litoral, 1° de Mayo 3250, Santa Fe 3000, Argentina; (A.G.G.); (S.R.D.)
| | - Silvina Rosa Drago
- Instituto de Tecnología de Alimentos, CONICET, Facultad de Ingeniería Química—Universidad Nacional del Litoral, 1° de Mayo 3250, Santa Fe 3000, Argentina; (A.G.G.); (S.R.D.)
| | - Serena Marulo
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (F.B.); (S.M.); (T.D.R.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council (ISA-CNR), Via Roma 64, 83100 Avellino, Italy; (F.B.); (S.M.); (T.D.R.)
| |
Collapse
|
5
|
Erem E, Kilic-Akyilmaz M. The role of fermentation with lactic acid bacteria in quality and health effects of plant-based dairy analogues. Compr Rev Food Sci Food Saf 2024; 23:e13402. [PMID: 39030804 DOI: 10.1111/1541-4337.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 07/22/2024]
Abstract
The modern food industry is undergoing a rapid change with the trend of production of plant-based food products that are more sustainable and have less impact on nature. Plant-based dairy analogues have been increasingly popular due to their suitability for individuals with milk protein allergy or lactose intolerance and those preferring a plant-based diet. Nevertheless, plant-based products still have insufficient nutritional quality, undesirable structure, and earthy, green, and bean-like flavor compared to dairy products. In addition, most plant-based foods contain lesser amounts of essential nutrients, antinutrients limiting the bioavailability of some nutrients, and allergenic proteins. Novel processing technologies can be applied to have a homogeneous and stable structure. On the other hand, fermentation of plant-based matrix with lactic acid bacteria can provide a solution to most of these problems. Additional nutrients can be produced and antinutrients can be degraded by bacterial metabolism, thereby increasing nutritional value. Allergenic proteins can be hydrolyzed reducing their immunoreactivity. In addition, fermentation has been found to reduce undesired flavors and to enhance various bioactivities of plant foods. However, the main challenge in the production of fermented plant-based dairy analogues is to mimic familiar dairy-like flavors by producing the major flavor compounds other than organic acids, yielding a flavor profile similar to those of fermented dairy products. Further studies are required for the improvement of the flavor of fermented plant-based dairy analogues through the selection of special microbial cultures and formulations.
Collapse
Affiliation(s)
- Erenay Erem
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Meral Kilic-Akyilmaz
- Department of Food Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
6
|
Diez-Ozaeta I, Vázquez-Araújo L, Estrada O, Puente T, Regefalk J. Exploring the Role of Lactic Acid Bacteria Blends in Shaping the Volatile Composition of Fermented Dairy and Rice-Based Beverages: A Step towards Innovative Plant-Based Alternatives. Foods 2024; 13:664. [PMID: 38472776 DOI: 10.3390/foods13050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Plant-based products are currently gaining consumers' attention due mainly to the interest in reducing the consumption of foods of animal origin. A comparison of two fermentative processes utilizing dairy milk and a rice beverage was conducted in the present study, using a commercial lactic acid bacteria strain combination (CH) and a selected mixture of lactic acid bacteria from yogurt (LLV). Cell viability and physicochemical characteristics (total soluble solids, pH, total acidity) were determined to describe the samples before and after fermentation, as well as the volatile composition (gas chromatography-mass spectrometry) and the sensory profile (Rate-All-That-Apply test). Results of the analyses showed significant differences among samples, with a clear effect of the raw material on the volatile profile and the sensory characterization, as well as a significant effect of the microbial combination used to ferment the matrices. In general, the selected LLV strains showed a greater effect on both matrices than the commercial combination. Dairy samples were characterized by a volatile profile represented by different chemical families (ketones, lactones, acids, etc.), which contributed to the common descriptive attributes of milk and yogurt (e.g., dairy, cheese). In contrast, rice beverages were mainly characterized by the presence of aldehydes and alcohols (cereal, legume, nutty).
Collapse
Affiliation(s)
- Iñaki Diez-Ozaeta
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - Laura Vázquez-Araújo
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, 20009 Donostia-San Sebastián, Spain
| | - Olaia Estrada
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - Telmo Puente
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
| | - John Regefalk
- BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, 20009 Donostia-San Sebastián, Spain
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, 20009 Donostia-San Sebastián, Spain
| |
Collapse
|
7
|
Xu C, Yang Y, He L, Li C, Wang X, Zeng X. Flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage produced by A. aegerita. Food Chem 2024; 434:137428. [PMID: 37716144 DOI: 10.1016/j.foodchem.2023.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Pueraria lobata and coix seeds have complementary nutritional profiles, and their nutritional value can be enhanced through biotransformation. Agrocybe aegerita (A. aegerita) is a highly nutritious mushroom with a rich enzyme content. This study investigated the flavor, physicochemical properties, and storage stability of P. lobata-coix seed fermented beverage (PCFB) by A. aegerita. Sixty volatile compounds were detected by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Compared to unfermented PCFB, fermentation with A. aegerita enhanced its physicochemical properties, with the contents of essential amino acids, γ-Aminobutyric acid, and soluble proteins increasing from 16.81%, 2.64 mg/100 mL, and 49.40% to 21.06%, 4.20 mg/100 mL, and 53.08%, respectively. Two efficient shelf-life prediction models of PCFB were established with the Arrhenius model using pH and sensory evaluation as indexes. These findings demonstrate that PCFB is a novel, high-quality beverage and provide a foundation for potential industrial production of PCFB using A. aegerita.
Collapse
Affiliation(s)
- Changli Xu
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Yun Yang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China; School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Xiao Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Xuefeng Zeng
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store & Processing of Guizhou Province, Guiyang 550025, PR China
| |
Collapse
|
8
|
Andressa I, Kelly Silva do Nascimento G, Monteiro Dos Santos T, Rodrigues RDS, de Oliveira Teotônio D, Paucar-Menacho LM, Machado Benassi V, Schmiele M. Technological and health properties and main challenges in the production of vegetable beverages and dairy analogs. Food Funct 2024; 15:460-480. [PMID: 38170850 DOI: 10.1039/d3fo04199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lactose intolerance affects about 68-70% of the world population and bovine whey protein is associated with allergic reactions, especially in children. Furthermore, many people do not consume dairy-based foods due to the presence of cholesterol and ethical, philosophical and environmental factors, lifestyle choices, and social and religious beliefs. In this context, the market for beverages based on pulses, oilseeds, cereals, pseudocereals and seeds and products that mimic dairy foods showed a significant increase over the years. However, there are still many sensory, nutritional, and technological limitations regarding producing and consuming these products. Thus, to overcome these negative aspects, relatively simple technologies such as germination and fermentation, the addition of ingredients/nutrients and emerging technologies such as ultra-high pressure, pulsed electric field, microwave and ultrasound can be used to improve the product quality. Moreover, consuming plant-based beverages is linked to health benefits, including antioxidant properties and support in the prevention and treatment of disorders and common diseases like hypertension, diabetes, anxiety, and depression. Thus, vegetable-based beverages and their derivatives are viable alternatives and low-cost for replacing dairy foods in most cases.
Collapse
Affiliation(s)
- Irene Andressa
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Glauce Kelly Silva do Nascimento
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Tatiane Monteiro Dos Santos
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Rosane da Silva Rodrigues
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Campus Capão do Leão, PO Box 354, Zip Code: 96.160-000, Pelotas, RS, Brazil
| | - Daniela de Oliveira Teotônio
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Luz María Paucar-Menacho
- Departamento Académico de Agroindustria y Agronomía, Facultad de Ingeniería, Universidad Nacional del Santa, Nuevo Chimbote 02712, Perú
| | - Vivian Machado Benassi
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| | - Marcio Schmiele
- Institute of Science and Technology, Federal University of Jequitinhonha and Mucuri Valleys, MGT-367 Highway - Km 583, no. 5000, Alto do Jacuba, Zip Code: 39.100-000, Diamantina, MG, Brazil.
| |
Collapse
|
9
|
Deziderio MA, de Souza HF, Kamimura ES, Petrus RR. Plant-Based Fermented Beverages: Development and Characterization. Foods 2023; 12:4128. [PMID: 38002186 PMCID: PMC10670915 DOI: 10.3390/foods12224128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
The production of plant-based fermented beverages has been currently focused on providing a functional alternative to vegan and/or vegetarian consumers. This study primarily targeted the development and characterization of fermented beverages made up of hydrosoluble extracts of oats, almonds, soybeans, Brazil nuts, and rice. The fermentation was carried out by lactic cultures of Bifidobacterium BB-12, Lactobacillus acidophilus LA-5, and Streptococcus thermophilus. Plant extracts were fermented at 37 °C for 12 h, with and without sucrose supplementation. The physicochemical and microbiological stability of the extracts was monitored for 28 days at 5 ± 1 °C. The composition of the fermented beverages was subsequently determined. The pH values measured at the beginning and the end of the extracts' fermentation ranged between 6.45 and 7.09, and 4.10 to 4.97, respectively. Acidity indices, expressed as a percentage of lactic acid, ranged from 0.01 to 0.06 g/100 mL at the beginning of the fermentation, and from 0.02 to 0.33 g/100 mL upon fermentation being concluded. Most fermented extracts achieved viable lactic acid bacteria counts exceeding 106 CFU/mL during storage. Sucrose supplementation did not alter the rate of bacterial growth. The findings showed that the complete replacement of dairy ingredients with water-soluble plant extracts is a potential alternative for developing a functional fermented plant-based beverage.
Collapse
Affiliation(s)
| | | | | | - Rodrigo Rodrigues Petrus
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Pirassununga 13635-900, SP, Brazil; (M.A.D.); (H.F.d.S.); (E.S.K.)
| |
Collapse
|
10
|
Moreno-León GR, Avila-Reyes SV, Villalobos-Espinosa JC, Camacho-Díaz BH, Tapia-Maruri D, Jiménez-Aparicio AR, Arenas-Ocampo ML, Solorza-Feria J. Effect of Agave Fructans on Changes in Chemistry, Morphology and Composition in the Biomass Growth of Milk Kefir Grains. Microorganisms 2023; 11:1570. [PMID: 37375072 DOI: 10.3390/microorganisms11061570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Prebiotic effects have been attributed to agave fructans through bacterial and yeast fermentations, but there are few reports on their use as raw materials of a carbon source. Kefir milk is a fermented drink with lactic acid bacteria and yeast that coexist in a symbiotic association. During fermentation, these microorganisms mainly consume lactose and produce a polymeric matrix called kefiran, which is an exopolysaccharide composed mainly of water-soluble glucogalactan, suitable for the development of bio-degradable films. Using the biomass of microorganisms and proteins together can be a sustainable and innovative source of biopolymers. In this investigation, the effects of lactose-free milk as a culture medium and the addition of other carbon sources (dextrose, fructose, galactose, lactose, inulin and fructans) in concentrations of 2, 4 and 6% w/w, coupled with initial parameters such as temperature (20, 25 and 30 °C), % of starter inoculum (2, 5 and 10% w/w) was evaluated. The method of response surface analysis was performed to determine the optimum biomass production conditions at the start of the experiment. The response surface method showed that a 2% inoculum and a temperature of 25 °C were the best parameters for fermentation. The addition of 6% w/w agave fructans in the culture medium favored the growth of biomass (75.94%) with respect to the lactose-free culture medium. An increase in fat (3.76%), ash (5.57%) and protein (7.12%) content was observed when adding agave fructans. There was an important change in the diversity of microorganisms with an absence of lactose. These compounds have the potential to be used as a carbon source in a medium culture to increase kefir granule biomass. There was an important change in the diversity of microorganisms with an absence of lactose, where the applied image digital analysis led to the identification of the morphological changes in the kefir granules through modification of the profile of such microorganisms.
Collapse
Affiliation(s)
- Germán R Moreno-León
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Sandra V Avila-Reyes
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
- CONAHCyT- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Julieta C Villalobos-Espinosa
- Tecnológico Nacional de México/Campus ITS Teziutlán, Ingeniería en Industrias Alimentarias, Fracción I y II Aire Libre S/N, Teziutlán C.P. 73960, Puebla, Mexico
| | - Brenda H Camacho-Díaz
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Daniel Tapia-Maruri
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Antonio R Jiménez-Aparicio
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Martha L Arenas-Ocampo
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| | - Javier Solorza-Feria
- CEPROBI-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6 calle CEPROBI No. 8, Colonia San Isidro, Yautepec C.P. 62730, Morelos, Mexico
| |
Collapse
|
11
|
Huo C, Yang X, Li L. Non-beany flavor soymilk fermented by lactic acid bacteria: Characterization, stability, antioxidant capacity and in vitro digestion. Food Chem X 2023; 17:100578. [PMID: 36845480 PMCID: PMC9944549 DOI: 10.1016/j.fochx.2023.100578] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/01/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
LAB fermentation could reduce the beany flavor, the sensitization of soymilk and improve the digestibility of soymilk, easy to be accepted by consumers. This study evaluated the characterization, stability, in vitro digestion and antioxidant capacity of soymilk fermented by different Lactic acid bacteria (LAB). The results showed that fat content of L.plantarum-S (0.77 g/100 mL) was the lowest, which proved that L.plantarum had a significant effect on lipid degradation, the protein content of L.delbrueckii-S (23.01 mg/mL) was higher. L.delbrueckii-S and L.paracasei-S were more acceptable to people, as well as high overall ratings. L.paracasei fermented soymilk has better suspension stability and smaller particle size. The fermented soymilk showed higher free amino acids (FAA) content, peptide content and stronger antioxidant activity than soymilk after digestion. The soymilk fermented by L. plantarum contained higher FAA content and L.delbrueckii contained the highest peptide content compared with other strains. L.acidophilus-S and L.rhamnosus-S showed stronger DPPH scavenging rate and FARP, which were 57.03 % and 52.78 % stronger than unfermented soymilk, respectively. These results may be provided a theoretical basis for the strain screening of fermented soymilk.
Collapse
|
12
|
Duarte C, Nunes M, Gojard P, Dias C, Ferreira J, Prista C, Noronha P, Sousa I. Use of European pulses to produce functional beverages – From chickpea and lupin as dairy alternatives. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Mariscal M, Espinosa‐Ramírez J, Pérez‐Carrillo E, Santacruz A, Cervantes‐Astorga E, Serna‐Saldívar SO. Comparative lactic acid fermentation with five
Lactobacillus
strains of supernatants made of extruded and saccharified chickpea flour. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mireya Mariscal
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Johanan Espinosa‐Ramírez
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Esther Pérez‐Carrillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Arlette Santacruz
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Enrique Cervantes‐Astorga
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| | - Sergio O. Serna‐Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon Mexico 64849
| |
Collapse
|
14
|
Properties of Rice-Based Beverages Fermented with Lactic Acid Bacteria and Propionibacterium. Molecules 2022; 27:molecules27082558. [PMID: 35458754 PMCID: PMC9032279 DOI: 10.3390/molecules27082558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023] Open
Abstract
In recent times, consumers have shown increasing interest in plant substitutes for fermented dairy products. This study aimed to investigate the properties of yogurt-type rice-based beverages fermented with lactic acid bacteria and Propionibacterium. The changes in pH, viable population of bacteria, physical properties, and carbohydrate content of these beverages were tested. Fermentation using only Propionibacterium was insufficient to obtain a product with an acidity level similar to that of milk-based yogurt (pH < 4.5). After fermentation, the tested beverages had a high number of Lactobacillus sp. (7.42−8.23 log10 CFU/mL), Streptococcus thermophilus (8.01−8.65 log10 CFU/mL), and Bifidobacterium animalis subsp. lactis (8.28−8.50 log10 CFU/mL). The hardness (2.90−10.40 N) and adhesiveness (13.79−42.16 mJ) of the samples after 14 days of storage at 6 °C varied depending on the starter culture used. The syneresis of all samples ranged between 29% and 31%, which was lower or close to that of milk-based yogurts. The content of individual sugars in the samples also varied depending on the starter culture used for fermentation. The results suggest that the combination of lactic and propionic fermentation helps in the production of rice-based yogurt-type milk substitutes.
Collapse
|
15
|
Pachekrepapol U, Kokhuenkhan Y, Ongsawat J. Formulation of yogurt-like product from coconut milk and evaluation of physicochemical, rheological, and sensory properties. Int J Gastron Food Sci 2021. [DOI: 10.1016/j.ijgfs.2021.100393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Survival of Lactobacillus paracasei subsp. paracasei LBC 81 in Fermented Beverage from Chickpeas and Coconut in a Static In Vitro Digestion Model. FERMENTATION 2021. [DOI: 10.3390/fermentation7030135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to evaluate in a static in vitro digestion model the survival of Lactobacillus paracasei subsp. paracasei LBC 81 in fermented chickpea and coconut beverage. The fermented beverage was stored for 1 and 8 days at 4 °C and then submitted to gastric juice, pancreatic juice, or sequential exposure to gastric and pancreatic juice. The experiment controls were (i) control 1—suspension of cells in 0.85% saline solution; (ii) control 2—cell suspension in chickpea and coconut beverage. The survival of L. paracasei was determined in log CFU/mL and expressed as a survival percentage. The survival of L. paracasei in the fermented beverage after exposure to gastric juice and sequential exposure to gastric and pancreatic juice was 99.47 + 2.05% and 93.21 + 0.43%, respectively. These values were higher than those found for controls 1 and 2. The storage condition of the fermented beverage for 1 or 8 days at 4 °C did not affect the survival after exposure to gastric juice, pancreatic juice, or sequential exposure. The results obtained in this study conclude that the fermented beverage of chickpeas and coconut is an excellent carrier for L. paracasei LBC 81, capable of enhancing survival to gastrointestinal conditions and ensuring a greater number of viable cells reaching the intestinal epithelium.
Collapse
|
17
|
Development of coconut water-based exopolysaccharide rich functional beverage by fermentation with probiotic Lactobacillus plantarum SVP2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Statistical Approach to Potentially Enhance the Postbiotication of Gluten-Free Sourdough. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fermented products are permanently under the attention of scientists and consumers, both due to nutritional importance and health promoting effects. The fermented functional foods contribute to a more balanced diet and increase the immune responses (among many other health effects) with positive implications for quality of life. In this sense, improving the sourdough’s fermentation to boost the biotic (postbiotic and paraprobiotic) properties of the sourdough-based products has positive impacts on the nutritional and functional properties of the final baked products. These enhanced sourdoughs can be obtained in controlled fermentation conditions and used as sourdough bread improvers or novel bioingredients. In this context, our work aimed to optimize, using statistical tools, a gluten-free sourdough based on chickpea, quinoa, and buckwheat fermentation with selected lactic acid bacteria (LAB) to enhance its postbiotic properties. The most important biotechnological parameters were selected by Plackett–Burman Design (PBD) and then Response Surface Methodology (RSM) was applied to evaluate the interactions between the selected factors to maximize the gluten-free sourdough’s properties. As a result, the optimized fermented sourdough had antimicrobial activity with inhibition ratios between 71 and 100% against the Aspergillus niger, Aspergillus flavus, Penicillium spp. molds and against the Bacillus spp endospore-forming Gram-positive rods. The optimized variant showed a total titratable acidity (TTA) of 40.2 mL NaOH 0.1N. Finally, the high-performance liquid chromatography (HPLC) analysis highlighted a heterofermentative profile for the organic acids from the optimized sourdough. Among flavonoids and polyphenols, the level of caffeic and vanillic acids increased after lactic acid fermentation. The comparison between the optimized sourdough and the control evidenced significant differences in the metabolite profiles, thus highlighting its potential postbiotication effect.
Collapse
|
19
|
Development of fermented beverage with water kefir in water-soluble coconut extract (Cocos nucifera L.) with inulin addition. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111364] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Rasika DMD, Vidanarachchi JK, Rocha RS, Balthazar CF, Cruz AG, Sant’Ana AS, Ranadheera CS. Plant-based milk substitutes as emerging probiotic carriers. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Aparicio-García N, Martínez-Villaluenga C, Frias J, Peñas E. Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. Foods 2021; 10:139. [PMID: 33440811 PMCID: PMC7828039 DOI: 10.3390/foods10010139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/27/2022] Open
Abstract
This study investigates the use of sprouted oat flour as a substrate to develop a novel gluten-free beverage by fermentation with a probiotic (Lactobacillus plantarum WCFS1) starter culture. Physicochemical, microbiological, nutritional and sensory properties of sprouted oat fermented beverage (SOFB) were characterized. After fermentation for 4 h, SOFB exhibited an acidity of 0.42 g lactic acid/100 mL, contents of lactic and acetic acids of 1.6 and 0.09 g/L, respectively, and high viable counts of probiotic starter culture (8.9 Log CFU/mL). Furthermore, SOFB was a good source of protein (1.7 g/100 mL), β-glucan (79 mg/100 mL), thiamine (676 μg/100 mL), riboflavin (28.1 μg/100 mL) and phenolic compounds (61.4 mg GAE/100 mL), and had a high antioxidant potential (164.3 mg TE/100 mL). Spoilage and pathogenic microorganisms were not detected in SOFB. The sensory attributes evaluated received scores higher than 6 in a 9-point hedonic scale, indicating that SOFB was well accepted by panelists. Storage of SOFB at 4 °C for 20 days maintained L. plantarum viability and a good microbial quality and did not substantially affect β-glucan content. SOFB fulfils current consumer demands regarding natural and wholesome plant-based foods.
Collapse
Affiliation(s)
| | | | | | - Elena Peñas
- Department of Food Characterization, Quality and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), 28006 Madrid, Spain; (N.A.-G.); (C.M.-V.); (J.F.)
| |
Collapse
|