1
|
Rinaldi M, Dhenge R, Rodolfi M, Littardi P, Lacey K, Cavazza A, Grimaldi M, Lolli V, Cirlini M, Chiancone B, Ganino T. The Effects of High-Pressure Processing Pre-Treatment on Apple Fruit for Juice Production. Foods 2024; 13:2182. [PMID: 39063266 PMCID: PMC11275511 DOI: 10.3390/foods13142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
One of the most difficult issues in the juice industry is to manufacture juices where processing processes minimise the impact on the native characteristics of the fruits. In this study, high-pressure technology was used on whole apple fruits in order to evaluate the effect on the juice production. Two varieties, cv. Limoncella and cv. Pink Lady, were considered. Preliminarily, the fruits were subjected to different pressures, and histological as well as pomological measurements were taken in order to identify the best treatment condition, which was established to be 600 MPa for 3 min. Juice samples were then characterised by measuring the colour, viscosity, total antioxidant capacity (TAC), and total phenolic content (TPC). The storage colour stability of the juices for both varieties showed not significant L* values between the untreated and pre-treated fruits. Juices obtained from pre-treated fruits had a viscosity significantly higher than that obtained from untreated ones. Interestingly, the TPC of high-pressure processing (HPP) pre-treated juice resulted in being significantly higher compared to the untreated ones. The HPP pre-treatment can be considered as a commercial application to modulate some quality standards for apple juice production.
Collapse
Affiliation(s)
- Massimiliano Rinaldi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Rohini Dhenge
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Margherita Rodolfi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Paola Littardi
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Karen Lacey
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Antonella Cavazza
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Maria Grimaldi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Veronica Lolli
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Martina Cirlini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Benedetta Chiancone
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; (M.R.); (T.G.)
- National Research Council, Institute of BioEconomy (IBE), Via Madonna del Piano, 10-50019 Sesto Fiorentino, FI, Italy
| |
Collapse
|
2
|
Ke Y, Chen J, Dai T, Liang R, Liu W, Liu C, Deng L. Developing industry-scale microfluidization for cell disruption, biomolecules release and bioaccessibility improvement of Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2023; 387:129649. [PMID: 37558104 DOI: 10.1016/j.biortech.2023.129649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
To facilitate biomolecules extraction and bioaccessibility of Chlorella pyrenoidosa, a novel industry-scale microfluidization (ISM) was used to disrupt cells effectively. Microscope images showed ISM damaged cell integrity, disorganized cell wall structure, pulverized cell membrane and promoted the release of intracellular components. The decrease of particle size and the increase of ζ-potential also confirmed the cell disruption. The cell breakage ratio of sample treated at 120 MPa was 98%. Compared with untreated samples, total soluble solid content and protein extraction rate of the sample treated at 120 MPa increased by 2 °Brix and 12%. Protein was degraded by ISM, the release of intracellular protein and the reduction of molecular weight increased protein digestibility by 20% in in vitro gastric phase. Lipid yield and chlorophyll b content were also increased by ISM. These results provided a new solution to cell disruption of microalgae and expanded the application field of ISM.
Collapse
Affiliation(s)
- Yingying Ke
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Jun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Ruihong Liang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Lizhen Deng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
3
|
Saavedra J, de Oliveira Gomes B, Augusto PED, Rojas ML, Miano AC. Structure–process interaction in mass transfer processes: Application of ethanol and ultrasound in a vascular structure. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan Saavedra
- Dirección de Investigación, Innovación y Responsabilidad Social Universidad Privada del Norte (UPN) Trujillo Peru
| | - Bruna de Oliveira Gomes
- Department of Agri‐food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Pedro E. D. Augusto
- Department of Agri‐food Industry, Food and Nutrition (LAN), Luiz de Queiroz College of Agriculture (ESALQ) University of São Paulo (USP) Piracicaba Brazil
| | - Meliza Lindsay Rojas
- Dirección de Investigación, Innovación y Responsabilidad Social Universidad Privada del Norte (UPN) Trujillo Peru
| | - Alberto Claudio Miano
- Dirección de Investigación, Innovación y Responsabilidad Social Universidad Privada del Norte (UPN) Trujillo Peru
| |
Collapse
|
4
|
Jafarpour D, Hashemi SMB. Ohmic heating application in food processing: recent achievements and perspectives. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2022-2-531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Food processing is an important operation in the food industry that converts fresh foods into final products with desirable characteristics for consumption and storage. Ohmic heating is an emerging technique for food processing that seems to be a suitable alternative to conventional heat treatment. Recently, there has been a lot of research into ohmic heating applications in processing various foods.
This review highlights the findings of studies conducted in 2018–2022 on the impact of ohmic heating on the physical, chemical, and sensory properties of foodstuffs during processing. We found that this technology provides more reliable process control compared to the traditional technique, namely conventional heating. Although ohmic heating has a positive effect on the quality of foods, its efficiency is limited by certain food components, including acid and fat, that markedly affect the electrochemical attributes of foods.
Therefore, to achieve optimal results, ohmic heating conditions should be set in accordance with the properties of food materials. There is a need for further in-depth studies on the performance of ohmic heating in food processing on a large, rather than a lab scale.
Collapse
|
5
|
Roobab U, Khan AW, Irfan M, Madni GM, Zeng X, Nawaz A, Walayat N, Manzoor MF, Aadil RM. Recent developments in ohmic technology for clean label fruit and vegetable processing: An overview. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Ume Roobab
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
| | - Abdul Waheed Khan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Muhammad Irfan
- School of Food Science and Engineering South China University of Technology Guangzhou China
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| | - Xin‐An Zeng
- School of Food Science and Engineering South China University of Technology Guangzhou China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center) Guangzhou China
- Guangdong Key Laboratory of Food Intelligent Manufacturing Foshan University Foshan Guangdong China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study Shenzhen University Shenzhen China
| | - Noman Walayat
- College of Food Science and Technology Zhejiang University of Technology Hangzhou China
| | - Muhammad Faisal Manzoor
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu Province China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology University of Agriculture Faisalabad Pakistan
| |
Collapse
|
6
|
Lou X, Jin Y, Tian H, Yu H, Chen C, Hanna M, Lin Y, Yuan L, Wang J, Xu H. High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chem 2022; 372:131313. [PMID: 34655827 DOI: 10.1016/j.foodchem.2021.131313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
The study aimed to evaluate the effect of high-pressure (HPP, 300/600 MPa for 2 and 6 min) and thermal processing (TP, 65 °C/30 min) on microbial shelf-life, enzyme-activity and quality-attributes of cloudy hawthorn berry juice (CHBJ) after processing and during storage (4 °C). The CHBJ shelf-life was at least 150 days when processed by HPP. No significant difference was observed in pH and titratable acidity (p > 0.05), while HPP significantly increased soluble sugar (p < 0.05) and simulated some fruity aroma compounds which improved the taste and flavor of CHBJ. However, HPP inhabited ineffectively enzyme-activity in comparison to TP, causing significant color changes (ΔE = 4.98 ± 0.03-5.10 ± 0.07) during 30-day storage (p < 0.05). Although particle size increased after HPP treatment, significant increases (68.76%-926.95%) were observed in viscosity (p < 0.05), due to enhanced extractability or modification of pectin induced by HPP, resulting in higher consistency of CHBJ. HPP is promising to extend shelf-life and improve quality-attributes of CHBJ.
Collapse
Affiliation(s)
- Xinman Lou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Milford Hanna
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE 68588-6205, USA
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Long Yuan
- Big Green (USA) Inc. and Bgreen Food Company, P.O. Box 8112, Rowland Heights, CA 91748, USA
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Dey G, Ghosh A, Tangirala RK. “Technological convergence” of preventive nutrition with non‐thermal processing. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gargi Dey
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
- GUT LEBEN INC. San Diego California USA
| | - Annesha Ghosh
- School of Biotechnology Kalinga Institute of Industrial Technology Patia, Bhubaneswar, Odisha India
| | - Rajendra K Tangirala
- GUT LEBEN INC. San Diego California USA
- Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| |
Collapse
|
8
|
Rodolfi M, Rinaldi M, Caligiani A, Paciulli M, Lolli V, Chiancone B, Ganino T. Hop green sprouts preservation and valorisation as semi-finished and finished products: impact of different treatments on microstructural, physical and chemical traits. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-021-03956-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Shao L, Zhao Y, Zou B, Li X, Dai R. Ohmic heating in fruit and vegetable processing: Quality characteristics, enzyme inactivation, challenges and prospective. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Alexandre EMC, Coelho MC, Ozcan K, Pinto CA, Teixeira JA, Saraiva JA, Pintado M. Emergent Technologies for the Extraction of Antioxidants from Prickly Pear Peel and Their Antimicrobial Activity. Foods 2021; 10:foods10030570. [PMID: 33803279 PMCID: PMC7999070 DOI: 10.3390/foods10030570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are important bioactive compounds identified in prickly pear peel that have important antioxidant and antimicrobial properties. However, conventional thermal extraction methods may reduce their bioactivity, and technologies such as high pressure (HP) and ohmic heating (OH) may help preserve them. In this study, both technologies were analyzed, individually and combined (250/500 MPa; 40/70 °C; ethanol concentration 30/70%), and compared with Soxhlet with regard to total phenolics, flavonoids, and carotenoids as well as antioxidant (ABTS, DPPH, ORAC), DNA pro-oxidant, and antimicrobial (inhibition halos, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), growth curves, and viable cells) activities of prickly pear peel extracts. Total phenolics extracted by each technology increased 103% (OH) and 98% (HP) with regard to Soxhlet, but the contents of total flavonoids and carotenoids were similar. Antioxidant activity increased with HP and OH (between 35% and 63%), and OH (70 °C) did not induce DNA degradation. The phenolic compound present in higher amounts was piscidic acid, followed by eucomic acid and citrate. In general, their extraction was significantly favored by HP and OH. Antimicrobial activity against 7 types of bacteria showed effective results only against S. aureus, S. enteritidis, and B. cereus. No synergetic or additive effect was observed for HP/OH.
Collapse
Affiliation(s)
- Elisabete M. C. Alexandre
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (J.A.S.)
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (M.C.C.); (K.O.); (M.P.)
- Correspondence: ; Tel.: +351-938557800
| | - Marta C. Coelho
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (M.C.C.); (K.O.); (M.P.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Kardelen Ozcan
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (M.C.C.); (K.O.); (M.P.)
| | - Carlos A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (J.A.S.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Jorge A. Saraiva
- LAQV-REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.A.P.); (J.A.S.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal; (M.C.C.); (K.O.); (M.P.)
| |
Collapse
|
11
|
Zhong L, Wang X, Fan L, Ye X, Li Z, Cui Z, Huang Y. Characterization of an acidic pectin methylesterase from Paenibacillus xylanexedens and its application in fruit processing. Protein Expr Purif 2020; 179:105798. [PMID: 33232801 DOI: 10.1016/j.pep.2020.105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022]
Abstract
A pectinase-producing bacterial isolate, identified as Paenibacillus xylanexedens SZ 29, was screened by using the soil dilution plate with citrus pectin and congo red. A pectin methylesterase gene (Pxpme) was cloned and expressed in Escherichia coli. The gene coded for a protein with 334 amino acids and a calculated molecular mass of 36.76 kDa. PxPME showed the highest identity of 32.4% with the characterized carbohydrate esterase family 8 pectin methylesterase from Daucus carota. The recombined PxPME showed a specific activity with 39.38 U/mg against citrus pectin with >65% methylesterification. The optimal pH and temperature for PxPME activity were 5.0 and 45 °C. Its Km and Vmax value were determined to be 1.43 mg/mL and 71.5 μmol/mg·min, respectively. Moreover, PxPME could increase the firmness of pineapple cubes by 114% when combined with CaCl2. The acidic and mesophilic properties make PxPME a potential candidate for application in the fruit processing.
Collapse
Affiliation(s)
- Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Fan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Microbial Resource Collection and Preservation, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|