1
|
Wang T, Hanashiro I, Yoshizaki Y, Kobashi Y, Noda S, Okutsu K, Futagami T, Tamaki H, Takamine K. Shochu Koji Microstructure and Starch Structure during Preparation. J Appl Glycosci (1999) 2023; 70:109-117. [PMID: 38239766 PMCID: PMC10792221 DOI: 10.5458/jag.jag.jag-2023_0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/31/2023] [Indexed: 01/22/2024] Open
Abstract
In this study, we investigated the changes in composition, microstructure, and starch molecular structure of shochu koji during preparation. We observed that the gelatinized and outer part of starch was decomposed in priority during the early and middle preparation stages. The gap between the starch granules increased with the delayed time. Finally, the koji microstructure became spongy. Shochu koji mold produced two α-amylases in different expression manners. Acid-labile α-amylase was produced in the early and middle preparation stages. Acid-stable α-amylase and saccharification power were produced in the middle and late stages. Throughout the koji preparation, reducing sugars content reached approximately 13-20 % of the total sugar content, with glucose representing over 70 % of the reducing sugars. α-Glucan fragments with C chains of degree of polymerization (DP) 4-73 were observed in the early and middle stages (<23 h), indicating the degradation of amylopectin at long B chains. In the latter stage, the amount of C chains of DP 6-30 decreased, while the longer C chains (DP 30<) did not change. These results showed that acid-labile α-amylase, acid-stable α-amylase, and saccharification enzymes including glucoamylase and α-glucosidase work preferentially on the amorphous regions of starch granules, and cooperative action of these enzymes during koji preparation contributes to the formation of the observed microstructure. Our study is the first report on the decomposition schemes of starch and the microstructure forming process in shochu koji.
Collapse
Affiliation(s)
- Tiantian Wang
- Education and Research Center for Fermentation studies, Faculty of Agriculture, Kagoshima University
| | - Isao Hanashiro
- The United Graduate School of Agricultural Sciences, Kagoshima University
- Research Field in Agriculture, Agriculture Fisheries and Veterinary Medicine Area, Kagoshima University
| | - Yumiko Yoshizaki
- Education and Research Center for Fermentation studies, Faculty of Agriculture, Kagoshima University
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Yuki Kobashi
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Suzuka Noda
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Kayu Okutsu
- Education and Research Center for Fermentation studies, Faculty of Agriculture, Kagoshima University
| | - Taiki Futagami
- Education and Research Center for Fermentation studies, Faculty of Agriculture, Kagoshima University
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Hisanori Tamaki
- Education and Research Center for Fermentation studies, Faculty of Agriculture, Kagoshima University
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Kazunori Takamine
- Education and Research Center for Fermentation studies, Faculty of Agriculture, Kagoshima University
- The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
2
|
Chen G, Li W, Yang Z, Liang Z, Chen S, Qiu Y, Lv X, Ai L, Ni L. Insights into microbial communities and metabolic profiles in the traditional production of the two representative Hongqu rice wines fermented with Gutian Qu and Wuyi Qu based on single-molecule real-time sequencing. Food Res Int 2023; 173:113488. [PMID: 37803808 DOI: 10.1016/j.foodres.2023.113488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/08/2023]
Abstract
Hongqu rice wine, a famous traditional fermented alcoholic beverage, is brewed with traditional Hongqu (mainly including Gutian Qu and Wuyi Qu). This study aimed to compare the microbial communities and metabolic profiles in the traditional brewing of Hongqu rice wines fermented with Gutian Qu and Wuyi Qu. Compared with Hongqu rice wine fermented with Wuyi Qu (WY), Hongqu rice wine fermented with Gutian Qu (GT) exhibited higher levels of biogenic amines. The composition of volatile flavor components of Hongqu rice wine brewed by different fermentation starters (Gutian Qu and Wuyi Qu) was obviously different. Among them, ethyl acetate, isobutanol, 3-methylbutan-1-ol, ethyl decanoate, ethyl palmitate, ethyl oleate, nonanoic acid, 4-ethylguaiacol, 5-pentyldihydro-2(3H)-furanone, ethyl acetate, n-decanoic acid etc. were identified as the characteristic aroma-active compounds between GT and WY. Microbiome analysis based on high-throughput sequencing of full-length 16S rDNA/ITS-5.8S rDNA amplicons revealed that Lactococcus, Leuconostoc, Pseudomonas, Serratia, Enterobacter, Weissella, Saccharomyces, Monascus and Candida were the predominant microbial genera during the traditional production of GT, while Lactococcus, Lactobacillus, Leuconostoc, Enterobacter, Kozakia, Weissella, Klebsiella, Cronobacter, Saccharomyces, Millerozyma, Monascus, Talaromyces and Meyerozyma were the predominant microbial genera in the traditional fermentation of WY. Correlation analysis revealed that Lactobacillus showed significant positive correlations with most of the characteristic volatile flavor components and biogenic amines. Furthermore, bioinformatical analysis based on PICRUSt revealed that microbial enzymes related to biogenic amines synthesis were more abundant in GT than those in WY, and the enzymes responsible for the degradation of biogenic amines were less abundant in GT than those in WY. Collectively, this study provides important scientific data for enhancing the flavor quality of Hongqu rice wine, and lays a solid foundation for the healthy and sustainable development of Hongqu rice wine industry.
Collapse
Affiliation(s)
- Guimei Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China
| | - Wenlong Li
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Ziyi Yang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Zihua Liang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Shiyun Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Yijian Qiu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China.
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, PR China; Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang, Fujian 362200, PR China.
| |
Collapse
|
3
|
Yang Z, Li W, Yuan Y, Liang Z, Yan Y, Chen Y, Ni L, Lv X. Metagenomic Insights into the Regulatory Effects of Microbial Community on the Formation of Biogenic Amines and Volatile Flavor Components during the Brewing of Hongqu Rice Wine. Foods 2023; 12:3075. [PMID: 37628073 PMCID: PMC10453061 DOI: 10.3390/foods12163075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
As one of the typical representatives of Chinese rice wine (Huangjiu), Hongqu rice wine is produced with glutinous rice as the main raw material and Hongqu as the fermentation starter. The complex microbial flora in the brewing process may have a great influence on the formation of the flavor quality and drinking safety of Hongqu rice wine. Previous studies have shown that high biogenic amine (BA) content in rice wine has potential physiological toxicity and has become a bottleneck problem restricting the development of the rice wine industry. This study aimed to evaluate the regulatory effects of the microbial community on the formation of BAs and volatile flavor components during the brewing of Hongqu rice wine. The results demonstrated that histamine, putrescine, cadaverine, tyramine, tryptamine, spermine, and spermidine were the main BAs in Hongqu rice wine. The contents of putrescine, cadaverine, histamine, tyramine, and spermidine in Hongqu rice wine of HBAs (with higher BAs content) were significantly higher than those in LBAs (with lower BAs content). GC-MS testing results showed that there were significant differences in the composition of volatile organic compounds (VOCs) between HBAs and LBAs. Among them, VOCs such as 2-methoxy-4-vinylphenol, ethyl caprate, phenethyl acetate, ethyl lactate, ethyl myristate, ethyl palmitate, ethyl n-octadecanoate, ethyl oleate, and ethyl linoleate were identified as the characteristic volatile components with significant differences between HBAs and LBAs. Microbiome analysis based on metagenomic sequencing revealed that unclassified_g_Pantoea, Klebsiella pneumoniae, Panobacter disperse, unclassified_f_Enterobacteriaceae, Leuconostoc mesenteroides, and Saccharomyces cerevisiae were the dominant microbial species in the HBA brewing process, while Weissella confuse, Pediococcus acidilactici, Saccharomyces cerevisiae, and Aspergillus niger were the dominant microbial species in the LBA brewing process. Furthermore, correlation heatmap analysis demonstrated that BAs were positively related to Lactobacillus curvatus, Lactococcus lactis, and Leuconostoc mesenteroides. Bioinformatical analysis based on the KEGG database revealed that the microbial genes encoding enzymes involved in BAs' synthesis were more abundant in HBAs, and the abundances of microbial genes encoding enzymes related to BAs' degradation and the metabolism of characteristic volatile components were higher in LBAs. Overall, this work provides important scientific data for enhancing the flavor quality of Hongqu rice wine and lays a solid foundation for the healthy development of the Hongqu rice wine industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Z.Y.); (W.L.); (Y.Y.); (Z.L.); (Y.Y.); (Y.C.); (L.N.)
| |
Collapse
|
4
|
Xia Y, Zhou W, Du Y, Wang Y, Zhu M, Zhao Y, Wu Z, Zhang W. Difference of microbial community and gene composition with saccharification function between Chinese nongxiangxing daqu and jiangxiangxing daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:637-647. [PMID: 36053854 DOI: 10.1002/jsfa.12175] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The saccharification function of daqu is usually characterized by two indicators: saccharification power and liquefaction power. Daqu provides diverse microbial saccharifying enzymes for hydrolyzing carbohydrate in Baijiu fermenting grain. Obviously, the composition of microbial communities and enzymatic genes in different types of daqu cultured at varied temperatures is different. However, these differences in saccharification function are not fully understood. RESULTS The findings suggested that the saccharification power and liquefaction power of jiangxiangxing daqu were lower than those of nongxiangxing daqu throughout the production process. We employed metagenomics to find evidence that a mode of multiple saccharifying enzymes involving amylase, cellulase and hemicellulase originating from various microbes exists in daqu. Moreover, a totality of 541 related differential genes were obtained, some of which, annotated to genera of Aspergillus, Lactobacillus and Weissella, were significantly enriched (P < 0.05) in nongxiangxing daqu, while others, annotated to thermophilic genera of Virgibacillus, Bacillus, Kroppenstedtia and Saccharopolyspora, showed a higher relative abundance in jiangxiangxing daqu (P < 0.05). CONCLUSION Various microbial communities of daqu showed diverse saccharification capacity during cultivation of different parameters. These findings are helpful in comprehending the saccharification functional genes of daqu. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wen Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yake Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yan Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Min Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yajiao Zhao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Zhengyun Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Wenxue Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- School of Liquor-Making Engineering, Sichuan University Jinjiang College, Meishan, China
| |
Collapse
|
5
|
Xia Y, Luo H, Wu Z, Zhang W. Microbial diversity in jiuqu and its fermentation features: saccharification, alcohol fermentation and flavors generation. Appl Microbiol Biotechnol 2022; 107:25-41. [DOI: 10.1007/s00253-022-12291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
|
6
|
Xia Y, Zhu M, Du Y, Wu Z, Gomi K, Zhang W. Metaproteomics reveals protein composition of multiple saccharifying enzymes in nongxiangxing daqu and jiangxiangxing daqu under different thermophilic temperatures. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15818] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Xia
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Min Zhu
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Yake Du
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Zhengyun Wu
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
| | - Katsuya Gomi
- Laboratory of Fermentation Microbiology Graduate School of Agricultural Science Tohoku University Sendai Miyagi 981‐8555 Japan
| | - Wenxue Zhang
- College of Biomass Science and Engineering Sichuan University 24 South Section, First Ring Road Chengdu Sichuan 610065 China
- School of Liquor‐Making Engineering Sichuan University Jinjiang College 1 Jinjiang Road Meishan Sichuan 620860 China
| |
Collapse
|
7
|
Futagami T. The white koji fungus Aspergillus luchuensis mut. kawachii. Biosci Biotechnol Biochem 2022; 86:574-584. [PMID: 35238900 DOI: 10.1093/bbb/zbac033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
The white koji fungus, Aspergillus luchuensis mut. kawachii, is used in the production of shochu, a traditional Japanese distilled spirit. White koji fungus plays an important role in the shochu production process by supplying amylolytic enzymes such as α-amylase and glucoamylase. These enzymes convert starch contained in primary ingredients such as rice, barley, buckwheat, and sweet potato into glucose, which is subsequently utilized by the yeast Saccharomyces cerevisiae to produce ethanol. White koji fungus also secretes large amounts of citric acid, which lowers the pH of the shochu mash, thereby preventing the growth of undesired microbes and enabling stable production of shochu in relatively warm regions of Japan. This review describes the historical background, research tools, and recent advances in studies of the mechanism of citric acid production by white koji fungus.
Collapse
Affiliation(s)
- Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan.,United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
8
|
Zhao Z, Sugimachi M, Yoshizaki Y, Yin X, Han XL, Okutsu K, Futagami T, Tamaki H, Takamine K. Correlation between key aroma and manufacturing processes of rice-flavor baijiu and awamori, Chinese and Japanese traditional liquors. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hayashi K, Kajiwara Y, Futagami T, Goto M, Takashita H. Making Traditional Japanese Distilled Liquor, Shochu and Awamori, and the Contribution of White and Black Koji Fungi. J Fungi (Basel) 2021; 7:517. [PMID: 34203379 PMCID: PMC8306306 DOI: 10.3390/jof7070517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022] Open
Abstract
The traditional Japanese single distilled liquor, which uses koji and yeast with designated ingredients, is called "honkaku shochu." It is made using local agricultural products and has several types, including barley shochu, sweet potato shochu, rice shochu, and buckwheat shochu. In the case of honkaku shochu, black koji fungus (Aspergillus luchuensis) or white koji fungus (Aspergillus luchuensis mut. kawachii) is used to (1) saccharify the starch contained in the ingredients, (2) produce citric acid to prevent microbial spoilage, and (3) give the liquor its unique flavor. In order to make delicious shochu, when cultivating koji fungus during the shochu production process, we use a unique temperature control method to ensure that these three important elements, which greatly affect the taste of the produced liquor, are balanced without any excess or deficiency. This review describes in detail the production method of honkaku shochu, a distilled spirit unique to Japan and whose market is expected to expand worldwide, with special attention paid to the koji fungi cultivation step. Furthermore, we describe the history of the koji fungi used today in the production of shochu, and we provide a thorough explanation of the characteristics of each koji fungi. We also report the latest research progress on this topic.
Collapse
Affiliation(s)
- Kei Hayashi
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| | - Yasuhiro Kajiwara
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Masatoshi Goto
- United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Hideharu Takashita
- Sanwa Research Institute, Sanwa Shurui Co., Ltd., Usa 879-0495, Japan; (Y.K.); (H.T.)
| |
Collapse
|