1
|
Malicka A, Rułka K, Latos-Brozio M, Masek A. Elastomeric Compositions of Ethylene-Norbornene Copolymer Containing Biofillers Based on Coffee and Tea Waste. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4160. [PMID: 39203338 PMCID: PMC11356043 DOI: 10.3390/ma17164160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024]
Abstract
The development of eco-friendly elastomeric materials has become an important issue in recent years. In this work, thermoplastic elastomer samples of an ethylene-norbornene copolymer (EN) with coffee and tea biofillers mixed with typical fillers such as montmorillonite (MMT), silica (SiO2), and cellulose were investigated. The aim of this research was to determine the effect of fillers on the properties of the materials and to assess their degradability after two ultraviolet (UV) aging cycles (200, 400 h). The scientific novelty of this work is the assessment of the anti-aging effect of simultaneous biofillers-stabilizers based on coffee and tea waste. The surfaces of the obtained polymer compositions were examined using infrared spectroscopy (FTIR-ATR). Contact angles were determined, and surface energy was calculated. The mechanical properties were tested, and the influence of plant fillers and aging on the color change in the materials was analyzed. The combination of coffee with silica, MMT, and cellulose fillers limited the migration of fatty acids and other compounds from the biofiller to the EN surface (FTIR analysis). Based on the aging coefficients K, it was shown that all coffee- and tea-based fillers stabilized the polymer compositions during UV aging (400 h). The results allowed the authors to determine the importance and impact of waste plant fillers on the degradability of the synthetic EN.
Collapse
Affiliation(s)
| | | | - Malgorzata Latos-Brozio
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.M.); (K.R.)
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland; (A.M.); (K.R.)
| |
Collapse
|
2
|
Gao Z, Zhou MC, Lin J, Lu Y, Liu SQ. Metabolomics analysis of okara probiotic beverages fermented with Lactobacillus gasseri and Limosilactobacillus fermentum by LC-QTOF-MS/MS. Food Chem X 2024; 21:101178. [PMID: 38357377 PMCID: PMC10865209 DOI: 10.1016/j.fochx.2024.101178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/29/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
In this study, okara was fermented with probiotic strains Lactobacillus gasseri LAC 343 and Limosilactobacillus fermentum PCC, respectively. Significant increases in cell count (by 2.22 log CFU/mL for LAC and 0.82 log CFU/mL for PCC) and significant decreases in pH (by 1.31 for LAC and 1.03 for PCC) were found in fermented okara slurry. In addition, strain LAC tended to produce amino acids, while strain PCC depleted most amino acids. An untargeted metabolomic-based approach using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used to further understand the compositional changes and potential health benefits by identifying bioactive metabolites in fermented okara slurry. We successfully identified various beneficial bioactive compounds including γ-aminobutyric acid, indolelactic acid, d-phenyllactic acid, and p-hydroxyphenyllactic acid which had differences in fold-changes in okara slurry fermented with different strains. Our study indicated the feasibility of using probiotics to ferment okara for novel functional food development.
Collapse
Affiliation(s)
- Zihan Gao
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Melody Chang Zhou
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Jing Lin
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| |
Collapse
|
3
|
Liu Y, Lu Y, Liu SQ. Transforming Spent Coffee Grounds’ Hydrolysates with Yeast Lachancea thermotolerans and Lactic Acid Bacterium Lactiplantibacillus plantarum to Develop Potential Novel Alcoholic Beverages. Foods 2023; 12:foods12061161. [PMID: 36981088 PMCID: PMC10048607 DOI: 10.3390/foods12061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In the present work, the modification of spent coffee grounds (SCG) hydrolysate composition by mixed cultures of a non-Saccharomyces yeast, Lachancea thermotolerans, and a lactic acid bacterium, Lactiplantibacillus plantarum, as well as their interactions, were evaluated. It was found that L. plantarum inhibited the growth and survival of L. thermotolerans as compared with that in the yeast alone. On the other hand, the growth and survival of L. plantarum was slowed in sequential fermentation, but not in co-culture. Compared with co-culture, higher ethanol content, less residual sugars, and less acetic and succinic acids were found in sequential fermentation. In addition, lower amounts of caffeine and phenolic acids (e.g., ferulic, caffeic, and p-coumaric acids) were obtained in mixed (co- and sequential) cultures with corresponding levels of volatile phenols relative to the yeast monoculture. Moreover, co-culturing resulted in the highest contents of total alcohols (ethanol excluded) and total esters. Therefore, mixed culturing of L. plantarum and L. thermotolerans presented positive effects on the chemical constituents of fermented SCG hydrolysates, which might be a new alternative approach to valorizing the SCG into novel alcoholic drinks with different ethanol and flavor constituents.
Collapse
Affiliation(s)
- Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
- Correspondence: (Y.L.); (S.-Q.L.)
| | - Shao-Quan Liu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China
- Correspondence: (Y.L.); (S.-Q.L.)
| |
Collapse
|
4
|
D D, Muliawati A, Bulan R. Performance of Mixed-Microbial Culture from Civet Fecal Suspensions on Physicochemical Composition of Wet Fermented Arabica Coffee. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2022. [DOI: 10.12944/crnfsj.10.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study aimed to evaluate the effects of mixed microbial culture from civet fecal suspension used as the inoculum for the fermentation of Arabica coffee. The type of Arabica coffee used for the research was the unpeeled coffee or the Arabica coffee cherries. Different proportion of inoculum introduced was thoroughly evaluated to assess the appropriate concentration of inoculum (0-40% inoculums represented in treatment 0-4 or T0 to T4) that would be applied to the fermentation of Arabica coffee cherries. Results revealed that treatment 4 (T4) containing 40% of the inoculum could degrade the sugar of the coffee beans faster than that of the other treatments in which within 24 hours of the incubation approximately 84% of the sugar was converted. T4 also reached the lowest caffeine content (1.8%) of the fermented coffee beans among other that of other treatments while the control had higher caffeine content (2.2%).This was substantially significant as the Arabica coffee cherries fermented with mixed microbial civet fecal suspensions can remarkably reduce the sugar and caffeine content of the Arabica coffee beans.
Collapse
Affiliation(s)
- Darwin D
- Department of Agricultural Engineering, Syiah Kuala University, Banda Aceh Indonesia
| | - Ami Muliawati
- Department of Agricultural Engineering, Syiah Kuala University, Banda Aceh Indonesia
| | - Ramayanty Bulan
- Department of Agricultural Engineering, Syiah Kuala University, Banda Aceh Indonesia
| |
Collapse
|
5
|
van Mullem JJ, de Sousa Bueno Filho JS, Dias DR, Schwan RF. Chemical and sensory characterization of coffee from Coffea arabica cv. Mundo Novo and cv. Catuai Vermelho obtained by four different post-harvest processing methods. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6687-6695. [PMID: 35620803 DOI: 10.1002/jsfa.12036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND After the harvest, green coffee beans are dried on the farm using several methods: the wet process, natural process, pulped natural process, or mechanical demucilaging. This study evaluated how the choice of a specific processing method influenced the volatile organic compounds of the coffee beans, before and after roasting, and the sensory characteristics of the beverage. Coffea arabica beans of two varieties (cv. Mundo Novo and cv. Catuai Vermelho) were subjected to these four processing methods on a single farm in the Cerrado area of Brazil. RESULTS Analysis by gas chromatography-mass spectrometry headspace solid-phase microextraction identified 40 volatile organic compounds in green coffee beans and 37 in roasted beans. The main difference between post-harvest treatments was that naturally processed green beans of both varieties contained a different profile of alcohols, acids, and lactones. In medium-roasted beans, those differences were not observed. The coffee beverages had similar taste attributes but distinct flavor profiles. Some of the treatments resulted in specialty-grade coffee, whereas others did not. CONCLUSION The choice of a specific post-harvest processing method influences the volatile compounds found in green beans, the final beverage's flavor profile, and the cupping score, which can have a significant impact on the profitability of coffee farms' operations. © 2022 Society of Chemical Industry.
Collapse
|
6
|
Sew SW, Lu Y, Taniasuri F, Liu SQ. Chemical analysis and flavour compound changes of vegetable blend slurry fermented with selected probiotic bacteria. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
de Bomfim ASC, de Oliveira DM, Voorwald HJC, Benini KCCDC, Dumont MJ, Rodrigue D. Valorization of Spent Coffee Grounds as Precursors for Biopolymers and Composite Production. Polymers (Basel) 2022; 14:437. [PMID: 35160428 PMCID: PMC8840223 DOI: 10.3390/polym14030437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Spent coffee grounds (SCG) are a current subject in many works since coffee is the second most consumed beverage worldwide; however, coffee generates a high amount of waste (SCG) and can cause environmental problems if not discarded properly. Therefore, several studies on SCG valorization have been published, highlighting its waste as a valuable resource for different applications, such as biofuel, energy, biopolymer precursors, and composite production. This review provides an overview of the works using SCG as biopolymer precursors and for polymer composite production. SCG are rich in carbohydrates, lipids, proteins, and minerals. In particular, carbohydrates (polysaccharides) can be extracted and fermented to synthesize lactic acid, succinic acid, or polyhydroxyalkanoate (PHA). On the other hand, it is possible to extract the coffee oil and to synthesize PHA from lipids. Moreover, SCG have been successfully used as a filler for composite production using different polymer matrices. The results show the reasonable mechanical, thermal, and rheological properties of SCG to support their applications, from food packaging to the automotive industry.
Collapse
Affiliation(s)
- Anne Shayene Campos de Bomfim
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Daniel Magalhães de Oliveira
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Herman Jacobus Cornelis Voorwald
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Kelly Cristina Coelho de Carvalho Benini
- Fatigue and Aeronautical Materials Research Group, Department of Materials and Technology, UNESP-São Paulo State University, Guaratinguetá 12516-410, São Paulo, Brazil; (A.S.C.d.B.); (D.M.d.O.); (H.J.C.V.); (K.C.C.d.C.B.)
| | - Marie-Josée Dumont
- Bioresource Engineering Department, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada;
| | - Denis Rodrigue
- Department of Chemical Engineering and CERMA, Université Laval, Quebec, QC G1V0A6, Canada
| |
Collapse
|
8
|
Nguyen TL, Toh M, Lu Y, Ku S, Liu SQ. Biovalorization of Market Surplus Bread for Development of Probiotic-Fermented Potential Functional Beverages. Foods 2022; 11:foods11030250. [PMID: 35159401 PMCID: PMC8834041 DOI: 10.3390/foods11030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Bread wastage is a growing concern in many developed countries. This research aimed to explore the biovalorization of market surplus bread for the development of probiotic-fermented beverages in a zero-waste approach. Bread slurries with different initial total solid contents were inoculated with probiotics Lacticaseibacillus rhamnosus GG (LGG) and Saccharomyces cerevisiae CNCM I-3856, alone and in combination. Our results showed that, of all percentages tested, 5% (w/w, dry weight) initial total solid content resulted in better growth of the probiotics and higher cell counts, while the texture of bread slurries with concentrations higher than 5.0% was too thick and viscous for bread beverage developments. In addition, the development of probiotic-fermented bread beverages was feasible on various types of bread. Furthermore, food additives (sweetener and stabilizer) did not affect the growth of LGG and S. cerevisiae CNCM I-3856 in both mono- and co-culture fermentation. During shelf life measurement, co-inoculation of LGG with S. cerevisiae CNCM I-3856 significantly improved the survival of LGG compared to the mono-culture at 5 and 30 °C, demonstrating the protective effects provided by the yeast. Our study suggests the potential of using market surplus bread as raw materials to deliver live probiotics with sufficient cell counts.
Collapse
Affiliation(s)
- Thuy-Linh Nguyen
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; (T.-L.N.); (M.T.)
| | - Mingzhan Toh
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; (T.-L.N.); (M.T.)
| | - Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; (T.-L.N.); (M.T.)
- Correspondence: (Y.L.); (S.-Q.L.)
| | - Sebastian Ku
- Lesaffre Singapore Pte. Ltd., 23A Serangoon North Ave 5, #04-09, Singapore 554369, Singapore;
| | - Shao-Quan Liu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China
- Correspondence: (Y.L.); (S.-Q.L.)
| |
Collapse
|
9
|
Sensory Characteristics of Two Kinds of Alcoholic Beverages Produced with Spent Coffee Grounds Extract Based on Electronic Senses and HS-SPME-GC-MS Analyses. FERMENTATION 2021. [DOI: 10.3390/fermentation7040254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, the hydrothermal extract of spent coffee grounds (SCG) was used to make alcoholic beverages with commercial S. cerevisiae strain D254. The sensory characteristics of the SCG alcoholic beverages were analyzed using sensory description, electronic nose, electronic tongue, and gas chromatography-mass spectrometry (GC-MS). The results suggested that the supplement of 0.20% (NH4)2HPO4 was effective at improving growth and alcohol fermentation of Saccharomyces cerevisiae D254 in SCG extract. SCG fermented beverages (SFB) and SCG distilled spirits (SDS) produced at the optimized fermentation conditions had appropriate physicochemical properties and different sensory characteristics. Fermentation aromas, especially esters, were produced in SFB, increasing the complexity of aroma and lowing the irritating aroma. The combination of original and fermentation components might balance the outstanding sourness, astringency, and saltiness tastes of SFB. The fermentation aroma was partially lost and the sourness, bitterness, astringency, and saltiness tastes were relieved in distillation, leading to the relatively more prominent aroma typicality of coffee and a soft taste. These findings lay a foundation for producing new high-quality coffee-flavored alcoholic beverages or flavoring liquors.
Collapse
|
10
|
Liu Y, Seah RH, Abdul Rahaman MS, Lu Y, Liu SQ. Concurrent inoculations of Oenococcus oeni and Lachancea thermotolerans: Impacts on non-volatile and volatile components of spent coffee grounds hydrolysates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|