1
|
Qiao H, Li Y, Cui F, Zhang W, Zhang Z, Li H. Nutrition, Flavor, and Microbial Communities of Two Traditional Bacterial Douchi from Gansu, China. Foods 2024; 13:3519. [PMID: 39517303 PMCID: PMC11545533 DOI: 10.3390/foods13213519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Douchi has attracted attention for its unique taste and rich health functions. This study investigated the nutrition, flavor and correlation between the flavor and microorganisms of two traditional bacterial douchi from the province of Gansu in northwest China. The findings reveal significant variations in nutrition, flavor compounds, and the microbiota between Longnan and Qingyang douchi. Three dominant bacterial genera (Carnobacterium, Ignatzschineria, and Bacillus) and one dominant bacterial genus (Pichia) were found in the QY douchi, while four bacterial genera (Bacillus, Ignatzschineria, Proteus, and Providencia) and three fungal genera (Pichia, Candida, and Rhodosporidium) were dominant in samples of the LN douchi. For flavor substances, a total of 48 volatile components were detected in Longnan douchi and 41 in Qingyang douchi. Using the relative odor activity value (ROAV), we identified five key flavor compounds in Longnan douchi and four key flavor compounds in Qingyang douchi. The correlation analysis showed that there were certain positive or negative correlations between the key microorganisms and the flavor of the two traditional bacterial douchi. The results of this study can serve as a theoretical reference for improving the quality and flavor of traditional douchi.
Collapse
Affiliation(s)
- Haijun Qiao
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Yaping Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Fengyun Cui
- Science and Technology Research Center of China Customs, Beijing 100026, China;
| | - Weibing Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zhongming Zhang
- College of Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Huifeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
2
|
Li A, Feng X, Yang G, Peng X, Du M, Song J, Kan J. Impact of aroma-enhancing microorganisms on aroma attributes of industrial Douchi: An integrated analysis using E-nose, GC-IMS, GC-MS, and descriptive sensory evaluation. Food Res Int 2024; 182:114181. [PMID: 38519190 DOI: 10.1016/j.foodres.2024.114181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
In order to enhance the aromatic profile of industrial Douchi, a comprehensive investigation was undertaken to assess the impact of aroma-enhancing microorganisms on the sensory attributes of Douchi. This evaluation utilized a combination of analytical techniques, including electronic nose analysis, gas chromatography-ion mobility spectrometry (GC-IMS), gas chromatography-mass spectrometry (GC-MS), and descriptive sensory analysis (DA). Both GC-IMS and GC-MS revealed significant changes in the volatile composition of Douchi following the addition of aroma-enhancing microorganisms (p < 0.05). Partial least squares-discriminant analysis (PLS-DA) identified benzaldehyde, benzene acetaldehyde, 3-octanone, and ethyl 2-methylbutyrate as significant differentiating volatile compounds. Additionally, compared to the control group, the sensory attributes of sourness in Douchi were significantly reduced (p < 0.001), while the attributes of wine-like and sweetness were notably enhanced (p < 0.05) when the ratio of G. candidum to C. versatilis was 1:1 (GCC group). By calculating the odor-activity values (OAVs) of key volatiles, it can be hypothesized that this aroma improvement of Douchi may be attributed to an increase in the typical volatiles (3-methyl-1-butanol, 1-octen-3-ol, 3-octanol, and 3-octanone) and ethyl 2-methylbutanoate with high OAVs (2340849.64 ∼ 16695327.86), as well as to decreases in the musty acetophenone. In conclusion, the aroma profile of Douchi was significantly enhanced when G. candidum and C. versatilis were added at a ratio of 1:1. This study provides valuable insights into the development of aroma enhancers for improving the sensory profile of Douchi.
Collapse
Affiliation(s)
- Aijun Li
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xiya Feng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Gang Yang
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Xiaowei Peng
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China
| | - Muying Du
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China
| | - Jun Song
- Shu Xiang Douchi Food Research Institute Limited Company, Chongqing 402160, PR China
| | - Jianquan Kan
- College of Food Science, Southwest University, 2 Tiansheng Road, Beibei, Chongqing 400715, PR China; Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, PR China; Laboratory of Quality & Safety Risk Assessment for Agri-products on Storage and Preservation (Chongqing), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Wu Z, Chao J, Tang H, Liu T, Jiang L, Liu Y. Characterization of key aroma-active compounds in different types of Douchi based on molecular sensory science approaches. Food Chem X 2024; 21:101170. [PMID: 38357375 PMCID: PMC10865218 DOI: 10.1016/j.fochx.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
To attain the differences in the flavor profile of Douchi, the key aroma-active compounds of three types of Douchi were investigated. The "Sauce-like", "Smoky", "Nutty", "Roast", "Caramel", and "Flower" of Douchi were favored by customers. Further, a total of 179 volatile compounds were identified using HS-SPME-GC-MS, and 29 aroma compounds were detected using GC-O-MS. Based on the quantification, 9, 13, and 10 compounds were regarded as aroma-active compounds in Yangjiang Douchi (YJ), Pingjiang Douchi (PJ), and Liuyang Douchi (LY), respectively. Moreover, the mixture of these aroma-active compounds successfully simulated the main aromas of PJ, LY, and YJ. And omission experiments confirmed that guaiacol was the key aroma compound for LY, benzene acetaldehyde, dimethyl trisulfide, and 2-acetyl pyrrole were important for YJ, benzene acetaldehyde and 3,5-diethyl-2-methyl pyrazine notably contributed to key aroma of PJ.
Collapse
Affiliation(s)
- Ziqian Wu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Jin Chao
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Hunan Tea Group Corporation Limited, Changsha 410128, China
| | - Hui Tang
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong 512005, China
| | - Tengxia Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
- Provincial Key Laboratory for Utilization and Conservation of Food and Medicinal Resources in Northern Guangdong, Shaoguan, Guangdong 512005, China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, China
| |
Collapse
|
4
|
Xie J, Gänzle M. Microbiology of fermented soy foods in Asia: Can we learn lessons for production of plant cheese analogues? Int J Food Microbiol 2023; 407:110399. [PMID: 37716309 DOI: 10.1016/j.ijfoodmicro.2023.110399] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The food industry is facing the challenge of creating innovative, nutritious, and flavored plant-based products, due to consumer's increasing demand for the health and environmental sustainability. Fermentation as a unique and effective tool plays an important role in the innovation of food products. Traditional fermented soy foods are popular in many Asian and African countries as nutritious, digestible and flavorful daily staples or condiments. They are produced by specific microorganisms with the unique fermentation process in which microorganisms convert the ingredients of whole soybean or soybean curd to flavorful and functional molecules. This review provides an overview on traditional fermented food produced from soy, including douchi, natto, tempeh, and sufu as well as stinky tofu, including the background of these products, the manufacturing process, and the microbial diversity involved in fermentation procedures as well as flavor volatiles that were identified in the final products. The contribution of microbes to the quality of these five fermented soy foods is discussed, with the comparison to the role of cheese ripening microorganisms in cheese flavor formation. This communication aims to summarize the microbiology of fermented soy foods in Asia, evoking innovative ideas for the development of new plant-based fermented foods especially plant-based cheese analogues.
Collapse
Affiliation(s)
- Jin Xie
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael Gänzle
- University of Alberta, Dept. of Agricultural, Food and Nutritional Science, Edmonton, Canada; Hubei University of Technology, College of Bioengineering and Food Science, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
5
|
An F, Wu J, Feng Y, Pan G, Ma Y, Jiang J, Yang X, Xue R, Wu R, Zhao M. A systematic review on the flavor of soy-based fermented foods: Core fermentation microbiome, multisensory flavor substances, key enzymes, and metabolic pathways. Compr Rev Food Sci Food Saf 2023; 22:2773-2801. [PMID: 37082778 DOI: 10.1111/1541-4337.13162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023]
Abstract
The characteristic flavor of fermented foods has an important impact on the purchasing decisions of consumers, and its production mechanisms are a concern for scientists worldwide. The perception of food flavor is a complex process involving olfaction, taste, vision, and oral touch, with various senses contributing to specific properties of the flavor. Soy-based fermented products are popular because of their unique flavors, especially in Asian countries, where they occupy an important place in the dietary structure. Microorganisms, known as the souls of fermented foods, can influence the sensory properties of soy-based fermented foods through various metabolic pathways, and are closely related to the formation of multisensory properties. Therefore, this review systematically summarizes the core microbiome and its interactions that play an active role in representative soy-based fermented foods, such as fermented soymilk, soy sauce, soybean paste, sufu, and douchi. The mechanism of action of the core microbial community on multisensory flavor quality is revealed here. Revealing the fermentation core microbiome and related enzymes provides important guidance for the development of flavor-enhancement strategies and related genetically engineered bacteria.
Collapse
Affiliation(s)
- Feiyu An
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guoyang Pan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Ma
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jinhui Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuemeng Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Ruixia Xue
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
- Liaoning Provincial Engineering Research Center of Food Fermentation Technology, Shenyang, China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Xie S, Wang C, Zeng T, Wang H, Suo H. Whole-genome and comparative genome analysis of Mucor racemosus C isolated from Yongchuan Douchi. Int J Biol Macromol 2023; 234:123397. [PMID: 36739051 DOI: 10.1016/j.ijbiomac.2023.123397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
Mucor racemosus is the predominant fungal in the zhiqu stage of the fermentation of Yongchuan Douchi (Mucor-type), which plays an important role in the fermentation process of Yongchuan Douchi. However, there is a lack of information on the genetic analysis of M. racemosus. In this study, we isolated and identified M. racemosus C (accession no JAPEHQ000000000) from Yongchuan Douchi and analyzed the physiological indicators, then genomic information of the strain to perform a comprehensive analysis of its fermentation capacity and safety. M. racemosus C had neutral protease activity up to 68.051 U/mL at 30 °C and alkaline protease activity up to 57.367 U/mL at 25 °C. In addition, comparing the genomic data with the COGs database (NCBI), it was predicted that M. racemosus C undergoes extensive amino acid metabolism, making C suitable for the production of fermented foods (e.g., Douchi, Syoyu, and sufu). Finally, we performed virulence genes and resistance genes analysis, hemolysis experiment, aflatoxins assay, antibiotic resistance assay to evaluate the safety of M. racemosus C, and the results showed that M. racemosus C was safe, non-toxin-producing and non-hemolytic.
Collapse
Affiliation(s)
- Shicai Xie
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Tao Zeng
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Food Industry Innovation Research Institute of Modern Sichuan Cuisine & Chongqing Flavor, Chongqing 400715, China.
| |
Collapse
|
7
|
Hou H, Zhou W, Guo L, Jia S, Zhang X, Wang L. Effects of characteristics of douchi during rapid fermentation and antioxidant activity using different starter cultures. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2459-2472. [PMID: 36588174 DOI: 10.1002/jsfa.12419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/14/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND As a traditional Chinese condiment, douchi has attracted attention in Asian and European countries because of its high nutrient content and unique flavors. Douchi is currently produced mostly by natural fermentation. The quality of douchi produced in this way is affected by microbial species, temperature, humidity, and season, so the physical and chemical properties of the product, the content of flavor substances, and its safety vary. In this study, four safe strains with high protease activity, screened previously, namely Bacillus velezensis, Bacillus amyloliquefaciens, Lichtheimia ramosa, and Lichtheimia corymbifera, were used as starter cultures for douchi fermentation. RESULTS After 35 days, the results showed that the pH, titratable acids, free amino-type nitrogen, amino acids, the total number of colonies, and neutral protease activity of all samples had reached an average level. Through gas chromatography-mass spectrometry (GC-MS), the content of key aroma substances aldehydes and esters was higher than in commercial douchi and the free amino acid content of douchi fermented by the four strains was three to five times that of commercial douchi. Douchi fermented by Bacillus amyloliquefaciens had more flavor substances and the highest 2, 2-diphenyl-1-(2, 4, 6-trinitrophenyl) hydrazyl (DPPH) free radical scavenging rates of 92.4%. Four samples yielded total phenolic content and soy isoflavones in the range of 0.98-1.93 g kg-1 and 0.58-0.89 g kg-1 , respectively. CONCLUSION These findings indicate that the use of a high-protease activity starter to produce douchi can improve the quality of douchi to a certain extent. The douchi obtained using Bacillus amyloliquefaciens not only has a good flavor but also has a high level of antioxidant activity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongwei Hou
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Wanting Zhou
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Lidan Guo
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Shuang Jia
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Zhang
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
| | - Liping Wang
- College of Food Science And Engineering, Shanghai Ocean University, Shanghai, China
- Engineering Research Center of Food Thermal-processing Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai, China
| |
Collapse
|
8
|
Contribution of microbial communities to flavors of Pixian Douban fermented in the closed system of multi-scale temperature and flow fields. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Chen Z, Song J, Ren L, Wang H, Zhang Y, Suo H. Effect of the succession of the microbial community on physicochemical properties and flavor compounds of Mucor wutungkiao-fermented sufu. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Co-Fermentation of Edible Mushroom By-Products with Soybeans Enhances Nutritional Values, Isoflavone Aglycones, and Antioxidant Capacity of Douchi Koji. Foods 2022; 11:foods11192943. [PMID: 36230019 PMCID: PMC9563291 DOI: 10.3390/foods11192943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Douchi is a traditional salt-fermented soybean food with various bioactivities, such as anti-oxidation, anti-diabetes, and anti-hypertension, which are greatly affected by the activities of protease and β-glucosidase during koji production. Edible mushroom by-products are ideal ingredients for enhancing food flavor and nutritional quality due to their unique nutritional characteristics of high protein, rich amino acids, and low calories. However, there is no research on the preparation of Douchi by the mixed fermentation of edible mushroom by-products and soybeans. In this study, response surface methodology (RSM) was used to optimize the fermentation conditions of edible mushroom by-product Douchi koji (EMDK) with protease and β-glucosidase activities as indicators, and the changes in the main bioactive compounds and antioxidant activities of unfermented raw samples (URS), Douchi koji without edible mushroom by-product (DKWE), and EMDK were compared. The results of single-factor tests and RSM showed that the optimal fermentation conditions of EMDK were the Aspergillus oryzae to Mucor racemosus ratio of 1:1, inoculation amount of 6%, edible mushroom amount of 21%, and fermentation time of 63 h, and the activities of protease and β-glucosidase under these conditions were 796.03 ± 15.01 U/g and 1175.40 ± 36.98 U/g, respectively. Additionally, compared with URS and DKWE, the contents of total isoflavones and β-glucoside isoflavones in EMDK were notably decreased, while the contents of amino nitrogen, total phenolics, total flavonoids, and aglycone isoflavone, as well as the antioxidant capacity were significantly increased. Furthermore, significant correlations were found between the above components and antioxidant capacity. These results showed that edible mushroom by-product could be incorporated into soybeans for co-fermentation, conferring higher nutritional value to and antioxidant capacity of Douchi koji.
Collapse
|
11
|
Chen Y, Qin F, Dong M. Dynamic Changes in Microbial Communities and Physicochemical Characteristics During Fermentation of Non-post Fermented Shuidouchi. Front Nutr 2022; 9:926637. [PMID: 35769377 PMCID: PMC9235352 DOI: 10.3389/fnut.2022.926637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Non-post fermented Shuidouchi is a Chinese spontaneously fermented soybean food with multifunctionality in human health. The functionality and safety of this plant-based food will be affected by the microorganisms during fermentation. In this study, microbial diversity was investigated using culture-dependent and culture-independent methods. The functional metabolites such as polyamines and alkylpyrazines were also determined at different time points during fermentation. We found that Bacillus was the most dominant microbe throughout the fermentation process, while the temperature was the most important influencing factor. During fermentation, the microbial diversity increased at a moderate temperature and decreased at a high temperature (52°C). High temperature caused the prosperity of the spore-producing bacteria such as Bacillus (more than 90% relative abundance in bacteria) and Aneurinibacillus (2% or so relative abundance in bacteria), and the inhibition of fungi. Furthermore, it was found by correlation analysis that the relative abundances of Bacillus and Aneurinibacillus were positively correlated with the relative content of amino acid metabolism pathway and the content of most alkylpyrazines and biogenic amines. Meanwhile, the relative abundances of many non-dominant bacteria were negatively correlated with the content of biogenic amines and positively correlated with the relative content of carbohydrate metabolism pathway. These effects were helpful to control the biogenic amine contents under the safety limits, increasing the alkylpyrazine type and product functionality. A two-stage temperature control strategy—a moderate temperature (35–42°C) first, then a high temperature (52°C)—was concluded from the spontaneous fermentation of non-post fermented Shuidouchi. This strategy could improve the safety of product by inhibiting or sterilizing the thermolabile microbes. The non-post fermented Shuidouchi product is rich in functional compounds such as polyamines and alkylpyrazines.
Collapse
Affiliation(s)
- Yuyong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Feng Qin
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Mingsheng Dong,
| |
Collapse
|
12
|
Exploring major variable factors influencing flavor and microbial characteristics of Pixian Doubanjiang. Food Res Int 2022; 152:110920. [DOI: 10.1016/j.foodres.2021.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022]
|
13
|
Liu H, Luo S, Liu J, Yan Q, Yang S, Jiang Z. Novel green soybean shuidouchi fermented by Bacillus velezensis with multibioactivities. Food Sci Nutr 2021; 9:6538-6547. [PMID: 34925783 PMCID: PMC8645744 DOI: 10.1002/fsn3.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Soybeans are usually fermented by Bacillus subtilis to produce shuidouchi, which is a traditional fermentation soybean product in China. In the study, green soybeans were fermented by Bacillus velezensis to make a novel green soybean shuidouchi with multibioactivities. The processing conditions were optimized as follows: initial moisture content 75%, inoculum concentration 7 log CFU/g, and incubation time 24 h for prefermentation; water addition 50%, salt addition 6%, temperature 45°C, 3 days for postfermentation. The fermented green soybean shuidouchi (FGSS) showed 234.8 FU/g dry weight (DW) for the fibrinolytic activity and IC50 of 0.33 mg/ml for the anticoagulant activity. FGSS had higher contents of chemical components including 3.6 mg rutin (RE)/g DW of total flavonoids, 8.2 mg gallic acid (GAE)/g DW of total phenolics, 63.7 mg/g DW of reducing sugars, and 163.8 mg/g DW of peptides than the unfermented green soybean shuidouchi (UGSS). Moreover, it exhibited high antioxidant activities of 29.8, 85.1 μmol trolox equivalent (TE)/g DW, and 12.8 μmol Fe2+/g DW through 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) experiments. Thus, a novel green soybean shuidouchi fermented by B. velezensis owing to multibioactivities can provide a theoretical basis for the further development of functional shuidouchi.
Collapse
Affiliation(s)
- Hong Liu
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shen Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Qiaojuan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry)College of EngineeringChina Agricultural UniversityBeijingChina
| | - Shaoqing Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zhengqiang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
14
|
Wang S, Chang Y, Liu B, Chen H, Sun B, Zhang N. Characterization of the Key Aroma-Active Compounds in Yongchuan Douchi (Fermented Soybean) by Application of the Sensomics Approach. Molecules 2021; 26:3048. [PMID: 34065280 PMCID: PMC8161213 DOI: 10.3390/molecules26103048] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/04/2022] Open
Abstract
Yongchuan douchi is a traditional fermented soya bean product which is popular in Chinese dishes due to its unique flavor. In this study, the key aroma-active compounds of Yongchuan douchi were characterized by the combined gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS) with sensory evaluation. In total, 49 aroma compounds were sniffed and identified, and 20 of them with high flavor dilution factors (FD) and odor activity values (OAVs) greater than one were screened by applied aroma extract dilution analysis (AEDA) and quantitated analysis. Finally, aroma recombination and omission experiments were performed and 10 aroma-active compounds were thought to have contributed significantly including 2,3-butanedione (butter, cheese), dimethyl trisulfide (garlic-like), acetic acid (pungent sour), acetylpyrazine (popcorn-like), 3-methylvaleric acid (sweaty), 4-methylvaleric acid (sweaty), 2-mehoxyphenol (smoky), maltol (caramel), γ-nonanolactone (coconut-like), eugenol (woody) and phenylacetic acid (flora). In addition, sensory evaluation showed that the flavor profile of Yongchuan douchi mainly consisted of sauce-like, sour, nutty, smoky, caramel and fruity notes.
Collapse
Affiliation(s)
| | | | | | - Haitao Chen
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China; (S.W.); (Y.C.); (B.L.); (B.S.); (N.Z.)
| | | | | |
Collapse
|