1
|
Zhuang Y, Liu S, Gao D, Xu Y, Jiang W, Chen T, Xiao J, Wang J, Hou G, Li S, Zhao X, Huang Y, Li S, Zhang S, Li M, Wang W, Li S, Cao Z. The Bifidobacterium-dominated fecal microbiome in dairy calves shapes the characteristic growth phenotype of host. NPJ Biofilms Microbiomes 2024; 10:59. [PMID: 39034349 PMCID: PMC11271470 DOI: 10.1038/s41522-024-00534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
The dominant bacteria in the hindgut of calves play an important role in their growth and health, which could even lead to lifelong consequences. However, the identification of core probiotics in the hindgut and its mechanism regulating host growth remain unclear. Here, a total of 1045 fecal samples were analyzed by 16S rRNA gene sequencing from the 408 Holstein dairy calves at the age of 0, 14, 28, 42, 56, and 70 days to characterize the dynamic changes of core taxa. Moreover, the mechanisms of nutrient metabolism of calf growth regulated by core bacteria were investigated using multi-omics analyses. Finally, fecal microbiota transplantation (FMT) in mice were conducted to illustrate the potential beneficial effects of core bacteria. Four calf enterotypes were identified and enterotypes dominated by Bifidobacterium and Oscillospiraceae_UCG-005 were representative. The frequency of enterotype conversion shifted from variable to stable. The close relationship observed between phenotype and enterotype, revealing a potential pro-growth effect of Bifidobacterium, might be implemented by promoting the use of carbohydrate, activating the synthesis of volatile fatty acids, amino acids and vitamin B6, and inhibiting methane production in the hindgut. The FMT results indicated the beneficial effect of Bifidobacterium on host growth and hindgut development. These results support the notion that the Bifidobacterium-dominated fecal microbiome would be an important driving force for promoting the host growth in the early life. Our findings provide new insights into the potential probiotic mining and application strategies to promote the growth of young animals or improve their growth retardation.
Collapse
Affiliation(s)
- Yimin Zhuang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yiming Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wen Jiang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Tianyu Chen
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingjun Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guobin Hou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Sumin Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinjie Zhao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanting Huang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shangru Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Siyuan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Mengmeng Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
3
|
Nasrollahzadeh A, Mollaei Tavani S, Arjeh E, Jafari SM. Production of conjugated linoleic acid by lactic acid bacteria; important factors and optimum conditions. Food Chem X 2023; 20:100942. [PMID: 38144824 PMCID: PMC10740029 DOI: 10.1016/j.fochx.2023.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 12/26/2023] Open
Abstract
Conjugated linoleic acid (CLA) has recently attracted significant attention as a health-promoting compound. CLA is a group of positional isomers of linoleic acid (LA) with a conjugated double bond naturally occurring in dairy and ruminant meat products. Microbial biosynthesis of CLA is a practical approach for commercial production due to its high safety and purity. There are some factors for the microbial CLA production such as strain type, microbial growth phase, pH, temperature and incubation time, based on which the amount and type of CLA can be controlled. Understanding the interplay of these factors is essential in optimizing the quantity and composition of microbial CLA, as discussed in the current study. Further exploration of CLA and its influences on human health remains a dynamic and evolving area of study.
Collapse
Affiliation(s)
- Ahmad Nasrollahzadeh
- Department of Food Science and Technology, Urmia University, Urmia, Iran
- Nobonyad Nasr Food Industry Specialists Company, Tehran, Iran
| | - Samaneh Mollaei Tavani
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Edris Arjeh
- Department of Food Science and Technology, Urmia University, Urmia, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| |
Collapse
|
4
|
Mei Y, Chen H, Yang B, Zhao J, Zhang H, Chen W. Linoleic Acid Triggered a Metabolomic Stress Condition in Three Species of Bifidobacteria Characterized by Different Conjugated Linoleic Acid-Producing Abilities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11311-11321. [PMID: 34523917 DOI: 10.1021/acs.jafc.1c03752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abundant conjugated linoleic acid (CLA) producers exist among Bifidobacterium species. This CLA production is related to the mitigation of LA toxicity. However, there is still a lack of information on the metabolic response underlying this detoxification strategy. In this study, six bifidobacteria strains belonging to three different species were used to characterize growth and CLA accumulation in the presence of LA. A combination of non-targeted metabolomics techniques and biochemical indicators were used to explore metabolic profile changes in response to LA and the expression of important factors driving CLA production in Bifidobacterium species. The results suggested that free LA had growth inhibitory effects on bifidobacteria, resulting in a global metabolic stress response that caused metabolic reprogramming on all tested strains and promoted malondialdehyde production, inducing a redox imbalance. In particular, a strong decrease in reduced glutathione level was observed in Bifidobacterium breve CCFM683 [log2(FC) = -3.29]. Furthermore, LA-induced oxidative stress is an important factor driving high CLA production in certain strains.
Collapse
Affiliation(s)
- Yongchao Mei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
5
|
Yang B, Gao H, Qi H, Chen Y, Ross RP, Stanton C, Zhao J, Zhang H, Chen H, Chen W. Linoleate Isomerase Complex Contributes to Metabolism and Remission of DSS-Induced Colitis in Mice of Lactobacillus plantarum ZS2058. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8160-8171. [PMID: 34281339 DOI: 10.1021/acs.jafc.1c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A linoleate isomerase complex including myosin-cross-reactive antigen, short-chain dehydrogenase/oxidoreductase, and acetoacetate decarboxylase has been confirmed as the pivotal factor for conjugated linoleic acid (CLA) production in Lactobacillus plantarum. However, its role in the metabolism and health-associated benefits of Lactobacillus remain unclear. In the current study, the mild type, knockout, and complemented mutants of the linoleate isomerase complex of L. plantarum ZS2058 were used to investigate those putative effects. The metabonomic results showed that a linoleate isomerase complex could significantly influence the glycol-metabolism, lipid metabolism, and antioxidant compounds. Especially, with the stress of linoleic acid, linoleate isomerase complex knockout mutants induced the increase of several antioxidant compounds, such as glutamic acid, glycine, l-cysteine, glycerol, and l-sorbosone. Moreover, the linoleate isomerase complex played a pivotal role in ameliorating DSS-induced colitis. The knockout mutants showed effects similar to those in the DSS group, whereas complementation of the corresponding gene in the knockout mutants could restore the anti-inflammatory activity, wherein the integrity of a mucus layer was repaired, the level of pro-inflammatory cytokines decreased, and the amount of anti-inflammatory cytokines increased significantly. All the results indicated that the linoleate isomerase complex plays a key role in CLA production and metabolism as well as the health-associated benefits of L. plantarum ZS2058. These results are conducive to promote clinical trials and product development of probiotics for colitis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|