1
|
Ranjan A, Arora J, Chauhan A, Basniwal RK, Kumari A, Rajput VD, Prazdnova EV, Ghosh A, Mukerjee N, Mandzhieva SS, Sushkova S, Minkina T, Jindal T. Advances in characterization of probiotics and challenges in industrial application. Biotechnol Genet Eng Rev 2024; 40:3226-3269. [PMID: 36200338 DOI: 10.1080/02648725.2022.2122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/02/2022]
Abstract
An unbalanced diet and poor lifestyle are common reasons for numerous health complications in humans. Probiotics are known to provide substantial benefits to human health by producing several bioactive compounds, vitamins, short-chain fatty acids and short peptides. Diets that contain probiotics are limited to curd, yoghurt, kefir, kimchi, etc. However, exploring the identification of more potential probiotics and enhancing their commercial application to improve the nutritional quality would be a significant step to utilizing the maximum benefits. The complex evolution patterns among the probiotics are the hurdles in their characterization and adequate application in the industries and dairy products. This article has mainly discussed the molecular methods of characterization that are based on the analysis of ribosomal RNA, whole genome, and protein markers and profiles. It also has critically emphasized the emerging challenges in industrial applications of probiotics.
Collapse
Affiliation(s)
- Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Jayati Arora
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, India
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgeniya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
- Department of Health Sciences, Novel Global Community Educational Foundation, New South Wales, Australia
| | - Saglara S Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, India
| |
Collapse
|
2
|
Wang P, Liang L, Peng X, Qu T, Zhao X, Ji Q, Chen Y. Sodium Deoxycholate-Propidium Monoazide Droplet Digital PCR for Rapid and Quantitative Detection of Viable Lacticaseibacillus rhamnosus HN001 in Compound Probiotic Products. Microorganisms 2024; 12:1504. [PMID: 39203347 PMCID: PMC11356422 DOI: 10.3390/microorganisms12081504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
As a famous probiotic, Lacticaseibacillus rhamnosus HN001 is widely added to probiotic products. Different L. rhamnosus strains have different probiotic effects, and the active HN001 strain is the key to exerting probiotic effects, so it is of great practical significance for realising the detection of L. rhamnosus HN001 at the strain level in probiotic products. In this study, strain-specific primer pairs and probes were designed. A combined treatment of sodium deoxycholate (SD) and propidium monoazide (PMA) inhibited the amplification of dead bacterial DNA, establishing a SD-PMA-ddPCR system and conditions for detecting live L. rhamnosus HN001 in probiotic powders. Specificity was confirmed using type strains and commercial strains. Sensitivity tests with spiked samples showed a detection limit of 10⁵ CFU/g and a linear quantification range of 1.42 × 10⁵-1.42 × 10⁹ CFU/g. Actual sample testing demonstrated the method's efficiency in quantifying HN001 in compound probiotic products. This method offers a reliable tool for the rapid and precise quantification of viable L. rhamnosus HN001, crucial for the quality monitoring of probiotic products.
Collapse
Affiliation(s)
- Ping Wang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| | - Lijiao Liang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xinkai Peng
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tianming Qu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xiaomei Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| | - Qinglong Ji
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| | - Ying Chen
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China; (P.W.); (L.L.); (X.P.); (T.Q.); (X.Z.); (Q.J.)
| |
Collapse
|
3
|
Song Z, Ge Y, Yu X, Liu R, Liu C, Cheng K, Guo L, Yao S. Development of a single nucleotide polymorphism-based strain-identified method for Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047 using pan-genomics analysis. J Dairy Sci 2024; 107:4248-4258. [PMID: 38246550 DOI: 10.3168/jds.2023-23655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
The health benefits conferred by probiotics is specific to individual probiotic strains, highlighting the importance of identifying specific strains for research and production purposes. Streptococcus thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. bulgaricus CICC 6047 are exceedingly valuable for commercial use with an excellent mixed-culture fermentation. To differentiate these 2 strains from other S. thermophilus and L. delbrueckii ssp. bulgaricus, a specific, sensitive, accurate, rapid, convenient, and cost-effective method is required. In this study, we conducted a pan-genome analysis of S. thermophilus and L. delbrueckii ssp. bulgaricus to identify species-specific core genes, along with strain-specific SNPs. These genes were used to develop suitable PCR primers, and the conformity of sequence length and unique SNPs was confirmed by sequencing for qualitative identification at the strain level. The results demonstrated that SNPs analysis of PCR products derived from these primers could distinguish CICC 6038 and CICC 6047 accurately and reproducibly from the other strains of S. thermophilus and L. delbrueckii ssp. bulgaricus, respectively. The strain-specific PCR method based on SNPs herein is universally applicable for probiotics identification. It offers valuable insights into identifying probiotics at the strain level that is fit-for-purpose in quality control and compliance assessment of commercial dairy products.
Collapse
Affiliation(s)
- Zhiquan Song
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China
| | - Yuanyuan Ge
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China; Beijing Forestry University, College of Biological Sciences and Biotechnology, Beijing, 100083, China
| | - Xuejian Yu
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China
| | - Rui Liu
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China
| | - Chong Liu
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China
| | - Kun Cheng
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China
| | - Lizheng Guo
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China
| | - Su Yao
- China National Research Institute of Food and Fermentation Industries Co. Ltd., China Center of Industrial Culture Collection, Beijing, 100015, China.
| |
Collapse
|
4
|
Rosić I, Nikolić I, Ranković T, Anteljević M, Medić O, Berić T, Stanković S. Genotyping-driven diversity assessment of biocontrol potent Bacillus spp. strain collection as a potential method for the development of strain-specific biomarkers. Arch Microbiol 2023; 205:114. [PMID: 36907935 DOI: 10.1007/s00203-023-03460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/01/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023]
Abstract
Bacillus species are among the most researched and frequently applied biocontrol agents. To estimate their potential as environmentally friendly microbial-based products, reliable and rapid plant colonization monitoring methods are essential. We evaluated repetitive element-based (rep) and Random Amplified Polymorphic DNA (RAPD) PCR (Polymerase Chain Reaction) genotyping in a diversity assessment of 251 strains from bulk soil, straw, and manure samples across Serbia, highlighting their discriminative force and the presence of unique bands. RAPD 272, OPG 5, and (GTG)5 primers were most potent in revealing the high diversity of a sizable environmental Bacillus spp. collection. RAPD 272 also amplified a unique band for a proven biocontrol strain, opening the possibility of Sequence Characterized Amplified Region (SCAR) marker design. That will enable colonization studies using the SCAR marker for its specific detection. This study provides a guide for primer selection for diversity and monitoring studies of environmental Bacillus spp. isolates.
Collapse
Affiliation(s)
- Iva Rosić
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Ivan Nikolić
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Tamara Ranković
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Marina Anteljević
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Olja Medić
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Tanja Berić
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| | - Slaviša Stanković
- University of Belgrade - Faculty of Biology, Center for Biological Control and Plant Growth Promotion, University of Belgrade, Studentski Trg 16, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
Shehata HR, Hassane B, Newmaster SG. Real-time polymerase chain reaction methods for strain specific identification and enumeration of strain Lacticaseibacillus paracasei 8700:2. Front Microbiol 2023; 13:1076631. [PMID: 36741903 PMCID: PMC9889646 DOI: 10.3389/fmicb.2022.1076631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Reliable and accurate methods for probiotic identification and enumeration, at the strain level plays a major role in confirming product efficacy since probiotic health benefits are strain-specific and dose-dependent. In this study, real-time PCR methods were developed for strain specific identification and enumeration of L. paracasei 8700:2, a probiotic strain that plays a role in fighting the common cold. Methods The assay was designed to target a unique region in L. paracasei 8700:2 genome sequence to achieve strain level specificity. The identification assay was evaluated for specificity and sensitivity. The enumeration viability real-time PCR (v-qPCR) method was first optimized for the viability treatment, then the method was evaluated for efficiency, limit of quantification, precision, and its performance was compared to plate count (PC) and viability droplet digital PCR (v-ddPCR) methods. Results The identification method proved to be strain specific and highly sensitive with a limit of detection of 0.5 pg of DNA. The optimal viability dye (PMAxx) concentration was 50 μM. The method was efficient (> 90% with R 2 values > 0.99), with a linear dynamic range between 6*102 and 6*105 copies. The method was highly precise with a relative standard deviation below 5%. The Pearson correlation coefficient (r) was 0.707 for PC and v-qPCR methods, and 0.922 for v-qPCR and v-ddPCR. Bland-Altman method comparison showed that v-qPCR always gave higher values compared to PC method (relative difference ranging from 119% to 184%) and showed no consistent trend (relative difference ranging from -20% to 22%) when comparing v-qPCR and v-ddPCR methods. Discussion The difference between PC and v-PCR methods can potentially be attributed to the proportion of cells that exist in a viable but non culturable (VBNC) state, which can be count by v-PCR but not with PC. The developed v-qPCR method was confirmed to be strain specific, sensitive, efficient, with low variance, able to count VBNC cells, and has shorter time to results compared to plate count methods. Thus, the identification and enumeration methods developed for L. paracasei 8700:2 will be of great importance to achieve high quality and efficacious probiotic products.
Collapse
Affiliation(s)
- Hanan R. Shehata
- Natural Health Product Research Alliance, Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
- Department of Microbiology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Purity-IQ Inc., Guelph, ON, Canada
| | | | - Steven G. Newmaster
- Natural Health Product Research Alliance, Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
6
|
Assessing the Safety and Probiotic Characteristics of Lacticaseibacillus rhamnosus X253 via Complete Genome and Phenotype Analysis. Microorganisms 2023; 11:microorganisms11010140. [PMID: 36677432 PMCID: PMC9867440 DOI: 10.3390/microorganisms11010140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Lacticaseibacillus rhamnosus is a generalist that can adapt to different ecological niches, serving as a valuable source of probiotics. The genome of L. rhamnosus X253 contains one chromosome and no plasmids, with a size of 2.99 Mb. Both single-copy orthologous gene-based phylogenetic analysis and average nucleotide identity indicated that dairy-derived L. rhamnosus X253 was most closely related to the human-intestine-derived strain L. rhamnosus LOCK908, rather than other dairy strains. The adaptation of L. rhamnosus X253 and the human-intestine-derived strain L. rhamnosus GG to different ecological niches was explained by structural variation analysis and COG annotation. Hemolytic assays, API ZYM assays, and antimicrobial susceptibility tests were performed to validate risk-related sequences such as virulence factors, toxin-encoding genes, and antibiotic-resistance genes in the genomes of L. rhamnosus X253 and GG. The results showed that L. rhamnosus GG was able to use L-fucose, had a higher tolerance to bile salt, and adhered better to CaCo-2 cells. In contrast, L. rhamnosus X253 was capable of utilizing D-lactose, withstood larger quantities of hydrogen peroxide, and possessed excellent antioxidant properties. This study confirmed the safety and probiotic properties of L. rhamnosus X253 via complete genome and phenotype analysis, suggesting its potential as a probiotic.
Collapse
|
7
|
Zhang C, Han Y, Gui Y, Wa Y, Chen D, Huang Y, Yin B, Gu R. Influence of nitrogen sources on the tolerance of Lacticaseibacillus rhamnosus to heat stress and oxidative stress. J Ind Microbiol Biotechnol 2022; 49:6693999. [PMID: 36073749 PMCID: PMC9559300 DOI: 10.1093/jimb/kuac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022]
Abstract
It has been found that 32 genes related to nitrogen source metabolism in Lacticaseibacillus rhamnosus are downregulated under both heat stress and oxidative stress. In this study, the influence of different nitrogen sources within the growth medium on the tolerance of L. rhamnosus to heat stress and oxidative stress was investigated. Tryptone-free MRS was found to enhance the tolerance of L. rhamnosus hsryfm 1301 to heat stress and oxidative stress during the whole growth period, and this result was universal for all L. rhamnosus species analyzed. The strongest strengthening effect occurred when the OD600 value reached 2.0, at which the survival rates under heat stress and oxidative stress increased 130-fold and 40-fold, respectively. After supplementing phenylalanine, isoleucine, glutamate, valine, histidine, or tryptophan into the tryptone-free MRS, the tolerance of L. rhamnosus to heat stress and oxidative stress exhibited a sharp drop. The spray drying survival rate of L. rhamnosus hsryfm 1301 cultured in the tryptone-free MRS rose to 75% (from 30%), and the spray dried powder also performed better in the experimentally simulated gastrointestinal digestion. These results showed that decreasing the intake of amino acids is an important mechanism for L. rhamnosus to tolerate heat stress and oxidative stress. When L. rhamnosus is cultured for spray drying, the concentration of the nitrogen source's components should be an important consideration.
Collapse
Affiliation(s)
- Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China.,Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. Ltd., Yangzhou University, Yangzhou, P.R. China.,College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, P.R. China
| | - Yuemei Han
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Ya Gui
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Yujun Huang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| | - Boxing Yin
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China.,Jiangsu Dairy Biotechnology Engineering Research Center, Kang Yuan Dairy Co. Ltd., Yangzhou University, Yangzhou, P.R. China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, P.R. China.,Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, P.R. China
| |
Collapse
|
8
|
Zhao L, Zhang D, Liu Y, Zhang YN, Meng DQ, Xu Q, Zhong J, Jiang QY, Zhao Y, Wang SJ. Quantitative PCR Assays for the Strain-Specific Identification and Enumeration of Probiotic Strain Lacticaseibacillus rhamnosus X253. Foods 2022; 11:foods11152282. [PMID: 35954048 PMCID: PMC9367767 DOI: 10.3390/foods11152282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/20/2022] Open
Abstract
Probiotics are universally recognized for their health benefits, despite the fact that their effects depend on the strain. Identification and enumeration of probiotic strains are required prior to evaluating their effectiveness. Lacticaseibacillus rhamnosus X253 is a potential probiotic strain with antioxidant capacity. Comparative genomics and single nucleotide polymorphisms (SNPs) were used to identify a strain-specific locus within the holA gene for strain X253 that was distinct in 30 different L. rhamnosus strains. Using quantitative PCR, the primers and probe designed for the locus were able to distinguish L. rhamnosus X253 from the other 20 probiotic strains. The chosen locus remained stable over 19 generations. The sensitivity of the assay was 0.2 pg genomic DNA of L. rhamnosus X253, or 103 cfu/mL bacteria of this strain. In terms of repeatability and reproducibility, relative standard deviations (RSD) were less than 1% and 3%, respectively. Additionally, this assay achieved accurate enumerations of L. rhamnosus X253 in spiked milk and complex powder samples. The strain-specific assay could be used for quality control and compliance assessment of dairy products.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China; (L.Z.); (Y.-N.Z.); (Q.X.)
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.Z.); (Q.-Y.J.)
| | - Dong Zhang
- Junlebao Dairy Group, Shijiazhuang 050221, China;
| | - Yang Liu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China; (L.Z.); (Y.-N.Z.); (Q.X.)
- Correspondence: (Y.L.); (S.-J.W.); Tel.: +86-021-54263408 (Y.L.); +86-0311-86266225 (S.-J.W.)
| | - Yi-Nan Zhang
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China; (L.Z.); (Y.-N.Z.); (Q.X.)
| | - Dong-Qing Meng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (D.-Q.M.); (Y.Z.)
| | - Qiong Xu
- Key Laboratory of Milk and Dairy Products Detection and Monitoring Technology for State Market Regulation, Shanghai Institute of Quality Inspection and Technical Research, Shanghai 200233, China; (L.Z.); (Y.-N.Z.); (Q.X.)
| | - Jiang Zhong
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.Z.); (Q.-Y.J.)
| | - Qiu-Yue Jiang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.Z.); (Q.-Y.J.)
| | - Yu Zhao
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (D.-Q.M.); (Y.Z.)
| | - Shi-Jie Wang
- Junlebao Dairy Group, Shijiazhuang 050221, China;
- Correspondence: (Y.L.); (S.-J.W.); Tel.: +86-021-54263408 (Y.L.); +86-0311-86266225 (S.-J.W.)
| |
Collapse
|
9
|
Multiplex PCR Identification of Aspergillus cristatus and Aspergillus chevalieri in Liupao Tea Based on Orphan Genes. Foods 2022; 11:foods11152217. [PMID: 35892804 PMCID: PMC9332452 DOI: 10.3390/foods11152217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
“Golden flower” fungi in dark tea are beneficial to human health. The rapid identification method of “golden flower” fungi can verify the quality of dark tea products and ensure food safety. In this study, 6 strains were isolated from Liupao tea. They were respectively identified as A. cristatus, A. chevalieri, and A. pseudoglaucus. A. pseudoglaucus was reported as Liupao tea “golden flower” fungus for the first time. It was found that the ITS and BenA sequences of A. cristatus and A. chevalieri were highly conserved. It is difficult to clearly distinguish these closely related species by ITS sequencing. To rapidly identify species, multiplex PCR species-specific primers were designed based on orphan genes screened by comparative genomics analysis. Multiplex PCR results showed that orphan genes were specific and effective for the identification of A. cristatus and A. chevalieri isolated from Liupao tea and Fu brick tea. We confirmed that orphan genes can be used for identification of closely related Aspergillus species. Validation showed that the method is convenient, rapid, robust, sequencing-free, and economical. This promising method will be greatly beneficial to the dark tea processing industry and consumers.
Collapse
|
10
|
Chung KS, Choi JW, Shin JS, Kim SY, Han HS, Kim SY, Lee KY, Kang JY, Cho CW, Hong HD, Rhee YK, Lee KT. Strain-Specific Identification and In Vivo Immunomodulatory Activity of Heat-Killed Latilactobacillus sakei K040706. Foods 2021; 10:foods10123034. [PMID: 34945585 PMCID: PMC8701173 DOI: 10.3390/foods10123034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
We previously reported that the immunostimulatory activity of heat-killed Latilactobacillus sakei K040706 in macrophages and cyclophosphamide (CTX)-treated mice. However, identification of heat-killed L. sakei K040706 (heat-killed LS06) using a validated method is not yet reported. Further, the underlying molecular mechanisms for its immunostimulatory effects in CTX-induced immunosuppressed mice remain unknown. In this study, we developed strain-specific genetic markers to detect heat-killed L. sakei LS06. The lower detection limit of the validated primer set was 2.1 × 105 colony forming units (CFU)/mL for the heat-killed LS06 assay. Moreover, oral administration of heat-killed LS06 (108 or 109 CFU/day, p.o.) effectively improved the body loss, thymus index, natural killer cell activity, granzyme B production, and T and B cell proliferation in CTX-treated mice. In addition, heat-killed LS06 enhanced CTX-reduced immune-related cytokine (interferon-γ, interleukin (IL)-2, and IL-12) production and mRNA expression. Heat-killed LS06 also recovered CTX-altered microbiota composition, including the phylum levels of Bacteroidetes, Firmicutes, and Proteobacteria and the family levels of Muribaculaceae, Prevotellaceae, Tannerellaceae, Christensenellaceae, Gracilibacteraceae, and Hungateiclostridiaceae. In conclusion, since heat-killed L. sakei K040706 ameliorated CTX-induced immunosuppression and modulated gut microbiota composition, they have the potential to be used in functional foods for immune regulation.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
| | - Jae Woong Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
| | - Seo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Su-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kwang-Young Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
| | - Joo-Yeon Kang
- NOVAREX Co., Ltd., 94, Gangni 1-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 363-885, Chungcheongbuk-do, Korea;
| | - Chang-Won Cho
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Hee-Do Hong
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
| | - Young Kyoung Rhee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea; (J.W.C.); (C.-W.C.); (H.-D.H.)
- Correspondence: (Y.K.R.); (K.-T.L.); Tel.: +82-63-219-9319 (Y.K.R.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (K.-S.C.); (J.-S.S.); (S.-Y.K.); (H.-S.H.); (S.-Y.K.); (K.-Y.L.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (Y.K.R.); (K.-T.L.); Tel.: +82-63-219-9319 (Y.K.R.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|