1
|
Liu J, Zhao W, Zhang A, Zhang X, Li P, Liu J. Effects of cereal flour types and sourdough on dough physicochemical properties and steamed bread quality. J Food Sci 2024; 89:5434-5448. [PMID: 39169539 DOI: 10.1111/1750-3841.17305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Coarse cereals have been promoted for their health benefits, and sourdough is used to improve their steamed bread sensory acceptance. However, grains vary in dough physiochemical properties and steamed bread-making performance. This study investigated the effects of yeast and sourdough fermentation on the biochemical, textural, and flavor properties of dough and steamed bread of eight grain types. Results indicated that sourdough dough had a lower pH and higher total titrable acidity compared with yeast group. The texture of sourdough-steamed bread was significantly improved with reduced hardness and enhanced springiness. Microstructure revealed that sourdough resulted in starch surface corrosion and less amylopectin recrystallization. Aldehydes, alcohols, and esters are more dominant in sourdough group than yeast group. Foxtail millet and sorghum steamed breads exhibited the highest performances in texture, flavor, and sensory evaluation. This could provide a theoretical basis for producing coarse cereal products with desirable quality.
Collapse
Affiliation(s)
- Junli Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Wei Zhao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Aixia Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Xiaodi Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Pengliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, P. R. China
| |
Collapse
|
2
|
Srikanlaya C, Therdthai N. Characterization of Plant-Based Meat Treated with Hot Air and Microwave Heating. Foods 2024; 13:2697. [PMID: 39272462 PMCID: PMC11394236 DOI: 10.3390/foods13172697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Plant-based meat is growing globally due to health, environmental, and animal welfare concerns, though there is a need for quality improvements. This study assessed how different ratios of wheat gluten (WG) to soy protein isolate (SPI) and various baking methods-hot air (HA), microwave (MW), and a combination of both (HA-MW)-affect the physicochemical properties of plant-based meat. Increasing the SPI from 0% to 40% significantly enhanced lightness, hardness, chewiness, water-holding capacity, moisture content, and lysine (an essential amino acid) (p ≤ 0.05). Hardness and chewiness ranged from 4.23 ± 1.19 N to 25.90 ± 2.90 N and 3.44 ± 0.94 N to 18.71 ± 1.85 N, respectively. Baking methods did not affect amino acid profiles. Compared to HA baking, MW and HA-MW baking increased lysine content (561.58-1132.50 mg/100 g and 544.85-1088.50 mg/100 g, respectively) while reducing fat and carbohydrates. These findings suggest that a 40% SPI and 60% WG ratio with microwave baking (360 W for 1 min) optimizes plant-based meat, offering benefits to both consumers and the food industry in terms of health and sustainability.
Collapse
Affiliation(s)
- Chonnikarn Srikanlaya
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Nantawan Therdthai
- Department of Product Development, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Mahmood N, Muhoza B, Kothakot A, Munir Z, Huang Y, Zhang Y, Pandiselvam R, Iqbal S, Zhang S, Li Y. Application of emerging thermal and nonthermal technologies for improving textural properties of food grains: A critical review. Compr Rev Food Sci Food Saf 2024; 23:e13286. [PMID: 38284581 DOI: 10.1111/1541-4337.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Emerging nonthermal and thermal food processing technologies are a better alternative to conventional thermal processing techniques because they offer high-quality, minimally processed food. Texture is important in the food industry because it encompasses several product attributes and plays a vital role in consumer acceptance. Therefore, it is imperative to analyze the extent to which these technologies influence the textural attributes of food grains. Physical forces produced by cavitation are attributed to ultrasound treatment-induced changes in the conformational and structural properties of food proteins. Pulsed electric field treatment causes polarization of starch granules, damaging the dense outer layer of starch granules and decreasing the mechanical strength of starch. Prolonged radio frequency heating results in the denaturation of proteins and gelatinization of starch, thus reducing binding tendency during cooking. Microwave energy induces rapid removal of water from the product surface, resulting in lower bulk density, low shrinkage, and a porous structure. However, evaluating the influence of these techniques on food grain texture is difficult owing to differences in their primary operation mode, operating conditions, and equipment design. To maximize the advantages of nonthermal and thermal technologies, in-depth research should be conducted on their effects on the textural properties of different food grains while ensuring the selection of appropriate operating conditions for each food grain type. This article summarizes all recent developments in these emerging processing technologies for food grains, discusses their potential applications and drawbacks, and presents prospects for future developments in food texture enhancement.
Collapse
Affiliation(s)
- Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Anjineyulu Kothakot
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Zeeshan Munir
- Department of Agricultural Engineering, University of Kassel, Witzenhausen, Germany
| | - Yuyang Huang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Yue Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Sohail Iqbal
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
4
|
Liu R, Yang Y, Cui X, Mwabulili F, Xie Y. Effects of Baking and Frying on the Protein Oxidation of Wheat Dough. Foods 2023; 12:4479. [PMID: 38137283 PMCID: PMC10742965 DOI: 10.3390/foods12244479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Protein oxidation caused by food processing is harmful to human health. A large number of studies have focused on the effects of hot processing on protein oxidation of meat products. As an important protein source for human beings, the effects of hot processing on protein oxidation in flour products are also worthy of further study. This study investigated the influences on the protein oxidation of wheat dough under baking (0-30 min, 200 °C or 20 min, 80-230 °C) and frying (0-18 min, 180 °C or 10 min, 140-200 °C). With the increase in baking and frying time and temperature, we found that the color of the dough deepened, the secondary structure of the protein changed from α-helix to β-sheet and β-turn, the content of carbonyl and advanced glycation end products (AGEs) increased, and the content of free sulfhydryl (SH) and free amino groups decreased. Furthermore, baking and frying resulted in a decrease in some special amino acid components in the dough, and an increase in the content of amino acid oxidation products, dityrosine, kynurenine, and N'-formylkynurenine. Moreover, the nutritional value evaluation results showed that excessive baking and frying reduced the free radical scavenging rate and digestibility of the dough. These results suggest that frying and baking can cause protein oxidation in the dough, resulting in the accumulation of protein oxidation products and decreased nutritional value. Therefore, it is necessary to reduce excessive processing or take reasonable intervention measures to reduce the effects of thermal processing on protein oxidation of flour products.
Collapse
Affiliation(s)
- Ru Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Xiaojie Cui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Fred Mwabulili
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (R.L.); (Y.Y.); (X.C.); (F.M.)
- Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
5
|
Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food Res Int 2023; 173:113425. [PMID: 37803764 DOI: 10.1016/j.foodres.2023.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Consumption of high FODMAP (Fermentable Oligo-, Di-, and Monosaccharides and Polyols) diet is the leading cause of alteration in the human gut microbiome, thereby, causing irritable bowel syndrome (IBS). Therefore, sourdough technology can be exploited for reduction of FODMAPs in various foods to alleviate the symptoms of IBS. Several microorganisms viz. Pichia fermentans, Lactobacillus fetmentum, Saccharomyces cerevisiae, Torulaspora delbrueckii, Kluyveromyces marxianus etc. have been identified for the production of low FODMAP type II sourdough fermented products. However, more research on regulation of end-product and volatilome profile is required for maximal exploitation of FODMAP-reducing microorganisms. Therefore, the present review is focused on utilisation of lactic acid bacteria and yeasts, alone and in synergy, for the production of low FODMAP sourdough foods. Moreover, the microbial bioprocessing of cereal and non-cereal based low FODMAP fermented sourdough products along with their nutritional and therapeutic benefits have been elaborated. The challenges and future prospects for the production of sourdough fermented low FODMAP foods, thereby, bringing out positive alterations in gut microbiome, have also been discussed.
Collapse
Affiliation(s)
- Richa Arora
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo, Lorena SP 12.602-810, Brazil.
| |
Collapse
|
6
|
Kutlu N, Pandiselvam R, Saka I, Kamiloglu A, Sahni P, Kothakota A. Impact of different microwave treatments on food texture. J Texture Stud 2022; 53:709-736. [PMID: 34580867 DOI: 10.1111/jtxs.12635] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Electromagnetic waves are frequently used for food processing with commercial or domestic type microwave ovens at present. Microwaves cause molecular movement by the migration of ionic particles or rotation of dipolar particles. Considering the potential applications of microwave technique in food industry, it is seen that microwaves have many advantages such as saving time, better final product quality (more taste, color, and nutritional value), and rapid heat generation. Although microwave treatment used for food processing with developing technologies have a positive effect in terms of time, energy, or nutrient value, it is also very important to what extent they affect the textural properties of the food that they apply to. For this purpose, in this study, it has been investigated that the effects of commonly used microwave treatments such as drying, heating, baking, cooking, thawing, toasting, blanching, frying, and sterilization on the textural properties of food. In addition, this study has also covered the challenges of microwave treatments and future work. In conclusion, microwave treatments cause energy saving due to a short processing time. Therefore, it can be said that it affects the textural properties positively. However, it is important that the microwave processing conditions used are chosen appropriately for each food material.
Collapse
Affiliation(s)
- Naciye Kutlu
- Department of Food Processing, Bayburt University, Aydintepe, Turkey
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, Kerala, India
| | - Irem Saka
- Department of Food Engineering, Ankara University, Ankara, Turkey
| | - Aybike Kamiloglu
- Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Prashant Sahni
- Department of Food Science and Technology, IK Gujral Punjab Technical University, Jalandhar, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, India
| |
Collapse
|
7
|
Maravić N, Škrobot D, Dapčević-Hadnađev T, Pajin B, Tomić J, Hadnađev M. Effect of Sourdough and Whey Protein Addition on the Technological and Nutritive Characteristics of Sponge Cake. Foods 2022; 11:foods11141992. [PMID: 35885235 PMCID: PMC9323716 DOI: 10.3390/foods11141992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Whey protein and sourdough ferment were used in different combinations to prepare functional sponge cakes, and their mutual influence on batter rheological behaviour as well as product physico–chemical, textural, colour and sensory properties were evaluated. All samples containing whey protein concentrate could bear the nutrition claim ‘a source of protein’. The substitution of wheat flour with whey protein significantly influenced batter viscoelastic behaviour, lowered cake-specific volume, increased product hardness, chewiness, gumminess, and browning index and modified its sensory characteristics. The incorporation of sourdough in protein-enriched sponge cakes improved product-specific volume and appearance compared to a protein-containing sample without sourdough. Although sourdough addition has less of a deteriorating effect on sponge cake rheological and textural properties, when combined with whey protein, it led to a significant reduction in batter elasticity and an increase in product hardness. It was also shown that spontaneously fermented sourdough cannot act as the only leavening agent in sponge cake production. In general, the results of this study have shown that sourdough addition can contribute to improvement in protein-enriched sponge cake quality and that further investigations are necessary in terms of different sourdough and flour type incorporation to minimize the negative effects of protein addition.
Collapse
Affiliation(s)
- Nikola Maravić
- Faculty of Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia;
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia; (D.Š.); (T.D.-H.); (J.T.); (M.H.)
- Correspondence:
| | - Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia; (D.Š.); (T.D.-H.); (J.T.); (M.H.)
| | - Tamara Dapčević-Hadnađev
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia; (D.Š.); (T.D.-H.); (J.T.); (M.H.)
| | - Biljana Pajin
- Faculty of Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia;
| | - Jelena Tomić
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia; (D.Š.); (T.D.-H.); (J.T.); (M.H.)
| | - Miroslav Hadnađev
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia; (D.Š.); (T.D.-H.); (J.T.); (M.H.)
| |
Collapse
|
8
|
Editorial overview: "emerging processing technologies to improve the safety and quality of foods". Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|