1
|
Hernández-Ojeda SL, Espinosa-Aguirre JJ, Camacho-Carranza R, Amacosta-Castillo J, Cárdenas-Ávila R. Piper auritum ethanol extract is a potent antimutagen against food-borne aromatic amines: mechanisms of action and chemical composition. Mutagenesis 2024; 39:301-309. [PMID: 38520343 PMCID: PMC11529617 DOI: 10.1093/mutage/geae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/21/2024] [Indexed: 03/25/2024] Open
Abstract
An ethanol extract of Piper auritum leaves (PAEE) inhibits the mutagenic effect of three food-borne aromatic amines (2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP); 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx)) in the TA98 Salmonella typhimurium strain. Preincubation with MeIQx demonstrated in mutagenesis experiments that inhibition of Cytochrome P450 (CYP), as well as direct interaction between component(s) of the plant extract with mutagens, might account for the antimutagenic observed effect. Gas chromatography/mass spectrometry analysis revealed that safrole (50.7%), α-copaene (7.7%), caryophyllene (7.2%), β-pinene (4.2%), γ-terpinene (4.1%), and pentadecane (4.1%) as the main components (PAEE). Piper extract and safrole were able to inhibit the rat liver microsomal CYP1A1 activity that participates in the amines metabolism, leading to the formation of the ultimate mutagenic/ molecules. According to this, safrole and PAEE-inhibited MeIQx mutagenicity but not that of the direct mutagen 2-nitrofluorene. No mutagenicity of plant extract or safrole was detected. This study shows that PAEE and its main component safrole are associated with the inhibition of heterocyclic amines activation due in part to the inhibition of CYP1A subfamily activity.
Collapse
Affiliation(s)
- Sandra L Hernández-Ojeda
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Javier Jesús Espinosa-Aguirre
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tercer Circuito Exterior sin Número, Ciudad Universitaria, Ciudad de México 04510, Mexico
| | - Jessica Amacosta-Castillo
- Unidad de Servicio de Apoyo a la Investigación y a la Industria (USAII), Facultad de Química, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| | - Ricardo Cárdenas-Ávila
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Ivane NMA, Haruna SA, Wang W, Ma Q, Wang J, Liu Y, Sun J. Characterization, antioxidant activity and potential application fractionalized Szechuan pepper on fresh beef meat as natural preservative. Meat Sci 2024; 208:109383. [PMID: 37948957 DOI: 10.1016/j.meatsci.2023.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The pericarp of Szechuan pepper is rich in phenols and alkylamides, making it a potential source of antioxidant compounds. Despite being recognized as the primary antioxidants in Szechuan pepper, there is still limited knowledge about their application in real food systems. This study aims to identify, separate, and apply polyphenol and alkylamide fractions derived from Szechuan extracts to beef meat. Using HPLC-MS2, we identified 5 phenols and 11 alkylamides in Szechuan extracts. The quality of the minced meat was evaluated based on color, thiobarbituric acid reactive substances (TBARS), conjugated dienes, carbonyl content, Sulfhydryl content, microbiological content, and total volatile basic nitrogen content (TVB-N). Compared to the polyphenol fraction (1.25 mg/mL), alkylamide fraction (25 mg/mL), and control samples, beef samples incorporated with the polyphenol fraction (6.25 mg/mL) significantly reduced carbonyl content, TBARS, and TVB-N values at the end of storage. Furthermore, they exhibited a significant slowdown in microbial development, improved meat color stability, and preserved pH. Therefore, the use of Szechuan pepper fractions as natural preservatives in meat and meat products is an important area of research and has the potential to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Ngouana Moffo A Ivane
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Center of Potato Processing, Hebei 076576, China
| | - Suleiman A Haruna
- Department of Food Science and Technology, Kano University of Science and Technology, Wudil, P.M.B 3244, Kano, Kano State, Nigeria
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Qianyun Ma
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jie Wang
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Yaqiong Liu
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China; Hebei Technology Innovation Centre of Agricultural Products Processing, Baoding 071000, China
| | - Jianfeng Sun
- College of Food Science and Technology, Hebei Agricultural University, No.2596 Lekai South Street, Lianchi, Baoding 071000, China.
| |
Collapse
|
3
|
Paula MMDO, de Moura APR, Buchili AFM, Zitha EZM, Cassimiro DMDJ, Ramos ADLS, Ramos EM. Technological and sensory characteristics of hamburgers made with polyunsaturated gelled emulsions. FOOD SCI TECHNOL INT 2023:10820132231205621. [PMID: 37832137 DOI: 10.1177/10820132231205621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
The quest for healthiness has driven the meat industry to seek solutions to reduce or replace saturated animal fat. The replacement (partial or total) of animal fat by polyunsaturated vegetable oils rich in omega fatty acids has gained prominence in terms of making a product healthier. However, an obstacle to this strategy is the effects on the sensory characteristics of the products, which may be unfavorable to consumers. The objective of this study was to evaluate the lipid reformulation of hamburgers through the total replacement of pork fat with canola, sunflower, and corn oil emulsions. The physical-chemical, technological, and sensory properties analyses were performed. There were no significant changes (P > 0.05) in moisture content, protein content, ash content, pH, weight loss (%), moisture retention (%), or shrinkage (%). However, the lipid content was reduced (P < 0.05) and there was a significant improvement in the fatty acid profile with the application of gelled emulsions. The lipid peroxidation and oxidation also increased (P < 0.05) for the samples with the addition of gelled emulsions, and we observed the same behavior for lipid retention (%). In the sensory evaluation, the samples showed good overall acceptance, with hedonic scores ranging from "like slightly" to "like very much." In addition, through check-all-that-apply questions, we observed that the most positive scores given applied to the treatments were applied to the emulsions. The total replacement of animal fat by gelled emulsions is a promising strategy for producing healthier hamburgers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eduardo Mendes Ramos
- Department of Food Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
4
|
Pamuk A, Gedikoğlu A, Sökmen M. The Use of a Natural Antioxidant,
Cistus Creticus
Extract, on Lipid Oxidation and Shelf Life of
Ready‐to‐Eat
Beef Cocktail Sausages. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ayşenur Pamuk
- Konya Food and Agriculture University Faculty of Engineering and Architecture, Department of Food Engineering, Melikşah Mah. Beyşehir Cd. No: 9 Meram / Konya / Turkey
| | - Ayça Gedikoğlu
- Konya Food and Agriculture University Faculty of Engineering and Architecture, Department of Food Engineering, Melikşah Mah. Beyşehir Cd. No: 9 Meram / Konya / Turkey
| | - Münevver Sökmen
- Konya Food and Agriculture University Faculty of Engineering and Architecture, Department of Bioengineering, Meliksah Mah. Beysehir Cd. No: 9 Konya Turkey
| |
Collapse
|
5
|
Oxidative and storage stability in beef burgers from the use of bioactive compounds from the agro-industrial residues of passion fruit (Passiflora edulis). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Effects of Faba Bean Hull Nanoparticles on Physical Properties, Protein and Lipid Oxidation, Colour Degradation, and Microbiological Stability of Burgers under Refrigerated Storage. Antioxidants (Basel) 2022; 11:antiox11050938. [PMID: 35624803 PMCID: PMC9137514 DOI: 10.3390/antiox11050938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
The processing of faba beans generates great quantities of hulls, which are high in bioactive compounds with demonstrated radical-inhibiting properties. There is no research on the impact of using faba bean hull nanoparticles (FBH-NPs) to improve the quality and extend the shelf-life of beef products. Hence, the target of this investigation was to assess the inhibiting influence of adding FBH-NPs at two different concentrations (1 and 1.5%) on the physical attributes, lipid and protein oxidation, colour degradation, and microbiological safety of burgers during refrigerated storage (4 ± 1 °C/12 days). The FBH-NPs presented great phenolic content (103.14 ± 0.98 mg GAE/g dw) and antioxidant potential. The water holding capacity and cooking properties in burgers including FBH-NPs were improved during storage. The FBH-NPs significantly (p < 0.05) decreased the reduction rate of redness and lightness during the burger refrigerated storage and the FBH-NPs were more beneficial in preventing cold burger discolouration. In the FBH-NPs-treated burgers, peroxide values, TBARS, and protein carbonyl content were lower than in the control (up to 12 days). The microbiological load of burgers including FBH-NPs was lower than the load of the control during refrigerated storage. The findings revealed that FBH-NPs were more efficient in enhancing the cooking characteristics, retarding lipid or protein oxidation, preventing colour detrition and improving the microbial safety of burgers.
Collapse
|
7
|
Li X, Wang J, Gao X, Xie B, Sun Z. Inhibitory effects of lotus seedpod procyanidins against lipid and protein oxidation and spoilage organisms in chilled-storage beef. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|