1
|
Peng J, Xie X, Fan T, Ma H, Li Y, Luo S, Yu M, Ding Y, Ma Y. Optimization of culture conditions for endophytic bacteria in mangrove plants and isolation and identification of bacteriocin. Front Pharmacol 2024; 15:1429423. [PMID: 39156104 PMCID: PMC11327053 DOI: 10.3389/fphar.2024.1429423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction: The antibacterial protein PAG14 was extracted from a metabolite of Bacillus G14 isolated from mangrove plants. Methods: In this study, Pseudomonas aeruginosa, Pasteurell multocide, Enterobacter aerogenes, and Enterococcus faecalis were used as indicator bacteria to screen endophytes that exhibited antibacterial activity. The endophyte culture conditions were optimized to enhance productivity. Subsequently, the culture supernatant was salted using ammonium sulfate, followed by purification using dextran gel chromatography and ion exchange column techniques. Finally, the structures of antibacterial proteins were identified using mass spectrometry. Results and Discussion: The optimal culture conditions for Bacillus G14 were 2% mannitol, 0.5% fish peptone, 0.05% KH2PO4 + 0.05% K2HPO4 + 0.025% MnSO4·H2O. The antibacterial substances exhibited stability within the temperature range of 30-40°C and pH range of 5.0-7.0, while displaying sensitivity toward enzymes. The antibacterial activity decreased as the duration of UV irradiation increased. The antibacterial protein PAG14, isolated from the culture broth of Bacillus G14 through purification using dextran gel and ion-exchange columns, was identified as a class III bacteriocin using LC-MS/MS, similar to Lysozyme C. These findings serve as a theoretical foundation for the investigation and application of bacteriocins in food products.
Collapse
Affiliation(s)
- Jinju Peng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xingpeng Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Tingli Fan
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou, China
| | - Haotian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yang Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shuaishuai Luo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Mengbo Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yuexia Ding
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yi Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
2
|
Qin Y, Fan X, Gao Y, Wang P, Chang J, Liu C, Wang L, Yin Q. Effects of Physicochemical and Biological Treatment on Structure, Functional and Prebiotic Properties of Dietary Fiber from Corn Straw. Foods 2024; 13:1976. [PMID: 38998482 PMCID: PMC11241159 DOI: 10.3390/foods13131976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Corn straw is one kind of agricultural by-product containing 70-80% insoluble dietary fiber (IDF). In order to develop corn straw dietary fiber, this study was conducted to increase soluble dietary fiber (SDF) yield and improve the structure, functional and prebiotic properties of IDF and SDF from corn straw treated by alkali oxidation treatment, enzymatic hydrolysis, microbial fermentation and the combination of these methods. The results demonstrated that the yield of SDF was significantly increased from 2.64% to 17.15% after corn straw was treated by alkali oxidation treatment + Aspergillus niger fermentation + cellulase hydrolysis, compared with untreated corn straw. The SDF extracted from corn straw treated by alkali oxidation treatment + Aspergillus niger fermentation + cellulase hydrolysis (F-SDF) exhibited a honeycomb structure, low crystallinity (11.97%), good antioxidant capacity and high capacities of water holding, water solubility and cholesterol absorption and promoted short-chain fatty acids production by chicken cecal microbial fermentation in vitro. F-SDF enhanced the antibacterial activity against Escherichia coli and Staphylococcus aureus proliferations of Lactobacillus plantarum when it was used as a substrate for Lactobacillus plantarum fermentation. It could be concluded that the combined treatments could increase SDF yield from corn straw and improve its functional and prebiotic properties.
Collapse
Affiliation(s)
| | | | | | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Q.); (X.F.); (Y.G.); (J.C.); (C.L.); (L.W.); (Q.Y.)
| | | | | | | | | |
Collapse
|
3
|
Smaoui S, Echegaray N, Kumar M, Chaari M, D'Amore T, Shariati MA, Rebezov M, Lorenzo JM. Beyond Conventional Meat Preservation: Saddling the Control of Bacteriocin and Lactic Acid Bacteria for Clean Label and Functional Meat Products. Appl Biochem Biotechnol 2024; 196:3604-3635. [PMID: 37615854 DOI: 10.1007/s12010-023-04680-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Advancements in food science and technology have paved the way for the development of natural antimicrobial compounds to ensure the safety and quality of meat and meat products. Among these compounds, bacteriocin produced by lactic acid bacteria has gained considerable scientific attention for its ability to preserve the healthy properties of meat while preventing spoilage. This natural preservative is seen as a pioneering tool and a potent alternative to chemical preservatives and heat treatment, which can have harmful effects on the nutritional and sensory qualities of meat. Bacteriocin produced by lactic acid bacteria can be used in various forms, including as starter/protective cultures for fermented meats, purified or partially purified forms, loaded in active films/coatings, or established in encapsulate systems. This review delves into the downstream purification schemes of LAB bacteriocin, the elucidation of their characteristics, and their modes of action. Additionally, the application of LAB bacteriocins in meat and meat products is examined in detail. Overall, the use of LAB bacteriocins holds immense potential to inspire innovation in the meat industry, reducing the dependence on harmful chemical additives and minimizing the adverse effects of heat treatment on nutritional and sensory qualities. This review provides a comprehensive understanding of the potential of bacteriocin produced by lactic acid bacteria as a natural and effective meat preservative.
Collapse
Affiliation(s)
- Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia.
| | - Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Moufida Chaari
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax, 3018, Tunisia
| | - Teresa D'Amore
- Deparment of Chemistry, Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Via Manfredonia, 20, 71121, Foggia, Italy
| | - Mohammad Ali Shariati
- Semey Branch of the Institute, Kazakh Research Institute of Processing and Food Industry, 238«G» Gagarin Ave, Almaty, 050060, Republic of Kazakhstan.
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, 109316, Russian Federation
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia nº 4, Parque Tecnológico de Galicia, Ourense, San Cibrao das Viñas, 32900, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, 32004, Spain
| |
Collapse
|
4
|
Xin WG, Li XD, Zhou HY, Li X, Liu WX, Lin LB, Wang F. Isolation, antibacterial characterization, and alternating tangential flow-based preparation of viable cells of Lacticaseibacillus paracasei XLK 401: Potential application in milk preservation. J Dairy Sci 2024; 107:1355-1369. [PMID: 37776999 DOI: 10.3168/jds.2023-23622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
It is desirable to obtain high levels of viable Lacticaseibacillus paracasei, a widely used food probiotic whose antibacterial activity and potential application in milk remain largely uninvestigated. Here, we isolated and purified the L. paracasei strain XLK 401 from food-grade blueberry ferments and found that it exhibited strong antibacterial activity against both gram-positive and gram-negative foodborne pathogens, including Staphylococcus aureus, Salmonella paratyphi B, Escherichia coli O157, and Shigella flexneri. Then, we applied alternating tangential flow (ATF) technology to produce viable L. paracasei XLK 401 cells and its cell-free supernatant (CFS). Compared with the conventional fed-batch method, 22 h of ATF-based processing markedly increased the number of viable cells of L. paracasei XLK 401 to 12.14 ± 0.13 log cfu/mL. Additionally, the CFS exhibited good thermal stability and pH tolerance, inhibiting biofilm formation in the abovementioned foodborne pathogens. According to liquid chromatography-mass spectrometry analysis, organic acids were the main antibacterial components of XLK 401 CFS, accounting for its inhibition activity. Moreover, the CFS of L. paracasei XLK 401 effectively inhibited the growth of multidrug-resistant gram-positive Staph. aureus and gram-negative E. coli O157 pathogens in milk, and caused a reduction in the pathogenic cell counts by 6 to 7 log cfu/mL compared with untreated control, thus considerably maintaining the safety of milk samples. For the first time to our knowledge, ATF-based technology was employed to obtain viable L. paracasei on a large scale, and its CFS could serve as a broad-spectrum biopreservative for potential application against foodborne pathogens in milk products.
Collapse
Affiliation(s)
- Wei-Gang Xin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin-Dong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Huan-Yu Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Xin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Wei-Xin Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| | - Feng Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming, 650500, China; Engineering Research Center for Replacement Technology of Feed Antibiotics of Yunnan College, Yunnan, Kunming, 650500, China.
| |
Collapse
|
5
|
Lin M, Yanjun C. Research progress on the mechanism of probiotics regulating cow milk allergy in early childhood and its application in hypoallergenic infant formula. Front Nutr 2024; 11:1254979. [PMID: 38419849 PMCID: PMC10900986 DOI: 10.3389/fnut.2024.1254979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Some infants and young children suffer from cow's milk allergy (CMA), and have always mainly used hypoallergenic infant formula as a substitute for breast milk, but some of these formulas can still cause allergic reactions. In recent years, it has been found that probiotic nutritional interventions can regulate CMA in children. Scientific and reasonable application of probiotics to hypoallergenic infant formula is the key research direction in the future. This paper discusses the mechanism and clinical symptoms of CMA in children. This review critically ex- amines the issue of how probiotics use intestinal flora as the main vector to combine with the immune system to exert physiological functions to intervene CMA in children, with a particular focus on four mechanisms: promoting the early establishment of intestinal microecological balance, regulating the body's immunity and alleviating allergic response, enhancing the intestinal mucosal barrier function, and destroying allergen epitopes. Additionally, it overviews the development process of hypoallergenic infant formula and the research progress of probiotics in hypoallergenic infant formula. The article also offers suggestions and outlines potential future research directions and ideas in this field.
Collapse
Affiliation(s)
| | - Cong Yanjun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, College of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
6
|
Kim JH, Lee ES, Kim BM, Ham JS, Oh MH. Simple Purification and Antimicrobial Properties of Bacteriocin-like Inhibitory Substance from Bacillus Species for the Biopreservation of Cheese. Foods 2023; 13:10. [PMID: 38201038 PMCID: PMC10778428 DOI: 10.3390/foods13010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Bacteriocins may be used as natural preservatives and antibiotic substitutes in various foods. However, the multistep purification process of bacteriocins results in high production costs, which is an obstacle to their commercial use and consumer accessibility. In this study, a bacteriocin-like inhibitory substance (BLIS) from Bacillus spp. isolated from Korean fermented foods was partially purified using the aqueous two-phase system (ATPS). The maximum activity of the BLIS was achieved for ATPS composed of PEG 1000 (15% [w/w])/ammonium sulfate (20% [w/w])/sodium chloride (2% [w/w]), which caused BLIS activity to increase by 3 times with a 99% recovery rate. In particular, B. amyloliquefaciens Y138-6 BLIS exhibited broad antibacterial activity, high resistance to acid-base stress, and excellent thermal stability. This antibacterial substance inhibited the growth of aerobic bacteria and fungi on the walls of cheese and ripening rooms. These antibacterial properties have been shown to increase food safety and have the potential for use as biopreservatives. Moreover, considering that the execution of the ATPS requires only salts and PEG, it is a simple, environmentally friendly, and cost-effective process and may have industrial applications in the recovery of BLIS from fermentation broth.
Collapse
Affiliation(s)
| | | | | | | | - Mi-Hwa Oh
- Animal Products Utilization Division, National Institute of Animal Science, RDA, Wanju 55365, Republic of Korea; (J.-H.K.); (E.-S.L.); (B.-M.K.); (J.-S.H.)
| |
Collapse
|
7
|
Wu D, Fu L, Cao Y, Dong N, Li D. Genomic insights into antimicrobial potential and optimization of fermentation conditions of pig-derived Bacillus subtilis BS21. Front Microbiol 2023; 14:1239837. [PMID: 37840708 PMCID: PMC10570807 DOI: 10.3389/fmicb.2023.1239837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacillus spp. have been widely used as probiotic supplements in animal feed as alternatives to antibiotics. In the present study, we screened a Bacillus subtilis strain named BS21 from pig feces. Antimicrobial activities, whole genome mining and UHPLC-MS/MS analysis were used to explore its antimicrobial mechanism. Strain BS21 showed Significant growth inhibition against a variety of animal pathogens, including Escherichia coli, Salmonella enterica Pullorum, Salmonella enterica Typhimurium, Citrobacter rodentium, Shigella flexneri and Staphylococcus aureus. Seven gene clusters involved in antimicrobial biosynthesis of secondary metabolites were encoded by strain BS21 genome, including four non-ribosomal peptides (bacillibactin, fengycin, surfactin and zwittermicin A), one ribosomal peptide (subtilosin A), one dipeptide (bacilysin) and one polyketide (bacillaene). Among them, production of surfactin, fengycin, bacillibactin, bacilysin and bacillaene was detected in the supernatant of B. subtilis strain BS21. To develop the potential application of BS21 in animal production, medium components and fermentation parameters optimization was carried out using response surface methodology (RSM). Production of antimicrobial secondary metabolites of strain BS21 was increased by 43.4%, and the best medium formula after optimization was corn flour 2%, soybean meal 1.7% and NaCl 0.5% with optimum culture parameters of initial pH 7.0, temperature 30°C, rotating speed at 220 rpm for 26 h. Our results suggested that strain BS21 has the potential for large-scale production and application as a potential source of probiotics and alternative to antibiotics for animal production.
Collapse
Affiliation(s)
| | | | | | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Park YJ, Kim YJ, Yu HH, Lee NK, Paik HD. Cell-free supernatants of Bacillus subtilis and Bacillus polyfermenticus inhibit Listeria monocytogenes biofilm formation. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Fan Y, Liu K, Lu R, Gao J, Song W, Zhu H, Tang X, Liu Y, Miao M. Cell-Free Supernatant of Bacillus subtilis Reduces Kiwifruit Rot Caused by Botryosphaeria dothidea through Inducing Oxidative Stress in the Pathogen. J Fungi (Basel) 2023; 9:jof9010127. [PMID: 36675948 PMCID: PMC9862322 DOI: 10.3390/jof9010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Biological control of postharvest diseases has been proven to be an effective alternative to chemical control. As an environmentally friendly biocontrol agent, Bacillus subtilis has been widely applied. This study explores its application in kiwifruit soft rot and reveals the corresponding mechanisms. Treatment with cell-free supernatant (CFS) of Bacillus subtilis BS-1 significantly inhibits the mycelial growth of the pathogen Botryosphaeria dothidea and attenuates the pathogenicity on kiwifruit in a concentration-dependent manner. In particular, mycelial growth diameter was only 21% of the control after 3 days of treatment with 5% CFS. CFS caused swelling and breakage of the hyphae of B. dothidea observed by scanning electron microscopy, resulting in the leakage of nucleic acid and soluble protein and the loss of ergosterol content. Further analysis demonstrated that CFS significantly induces the expression of Nox genes associated with reactive oxygen species (ROS) production by 1.9-2.7-fold, leading to a considerable accumulation of ROS in cells and causing mycelial cell death. Our findings demonstrate that the biocontrol effect of B. subtilis BS-1 CFS on B. dothidea is realized by inducing oxidative damage to the mycelia cell.
Collapse
Affiliation(s)
- Yezhen Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Kui Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
- Institute of Botany, The Chinese Academy of Sciences, Beijing 230094, China
| | - Ruoxi Lu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Jieyu Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Wu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Hongyan Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
| | - Yongsheng Liu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu 610064, China
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230036, China
- Correspondence:
| |
Collapse
|
10
|
Han X, Zhang M, Peng J, Wu J, Zhong Q. Purification and characterization of a novel bacteriocin from Lactiplantibacillus plantarum Z057, and its antibacterial and antibiofilm activities against Vibrio parahaemolyticus. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Bacteriocin Production by Bacillus Species: Isolation, Characterization, and Application. Probiotics Antimicrob Proteins 2022; 14:1151-1169. [PMID: 35881232 DOI: 10.1007/s12602-022-09966-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 12/25/2022]
Abstract
Antibiotic resistance is a problem that has been increasing lately; therefore, it is important to find new alternatives to treat infections induced by pathogens that cannot be eliminated with available products. Small antimicrobial peptides (AMPs) known as bacteriocin could be an alternative to antibiotics because they have shown to be effective against a great number of multidrug-resistant microbes. In addition to its high specificity against microbial pathogens and its low cytotoxicity against human cells, most bacteriocin present tolerance to enzyme degradation and stability to temperature and pH alterations. Bacteriocins are small peptides with a great diversity of structures and functions; however, their mechanisms of action are still not well understood. In this review, bacteriocin produced by Bacillus species will be described, especially its mechanisms of action, culture conditions used to improve its production and state-of-the-art methodologies applied to identify them. Bacteriocin utilization as food preservatives and as new molecules to treat cancer also will be discussed.
Collapse
|
12
|
Harirchi S, Sar T, Ramezani M, Aliyu H, Etemadifar Z, Nojoumi SA, Yazdian F, Awasthi MK, Taherzadeh MJ. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms 2022; 10:2355. [PMID: 36557608 PMCID: PMC9781867 DOI: 10.3390/microorganisms10122355] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
For a long time, the genus Bacillus has been known and considered among the most applicable genera in several fields. Recent taxonomical developments resulted in the identification of more species in Bacillus-related genera, particularly in the order Bacillales (earlier heterotypic synonym: Caryophanales), with potential application for biotechnological and industrial purposes such as biofuels, bioactive agents, biopolymers, and enzymes. Therefore, a thorough understanding of the taxonomy, growth requirements and physiology, genomics, and metabolic pathways in the highly diverse bacterial order, Bacillales, will facilitate a more robust designing and sustainable production of strain lines relevant to a circular economy. This paper is focused principally on less-known genera and their potential in the order Bacillales for promising applications in the industry and addresses the taxonomical complexities of this order. Moreover, it emphasizes the biotechnological usage of some engineered strains of the order Bacillales. The elucidation of novel taxa, their metabolic pathways, and growth conditions would make it possible to drive industrial processes toward an upgraded functionality based on the microbial nature.
Collapse
Affiliation(s)
- Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Taner Sar
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden
| | - Mohaddaseh Ramezani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science II: Technical Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Zahra Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran
| | - Seyed Ali Nojoumi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1439957131, Iran
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Xianyang 712100, China
| | | |
Collapse
|
13
|
Xin WG, Wu G, Ying JP, Xiang YZ, Jiang YH, Deng XY, Lin LB, Zhang QL. Antibacterial activity and mechanism of bacteriocin LFX01 against Staphylococcus aureus and Escherichia coli and its application on pork model. Meat Sci 2022; 196:109045. [DOI: 10.1016/j.meatsci.2022.109045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/23/2022] [Accepted: 11/14/2022] [Indexed: 11/20/2022]
|
14
|
Lactococcus lactis' Effect on the Intestinal Microbiota of Streptococcus agalactiae-Infected Zebrafish (Danio rerio). Microbiol Spectr 2022; 10:e0112822. [PMID: 36214699 PMCID: PMC9604069 DOI: 10.1128/spectrum.01128-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus agalactiae is a common pathogen in aquaculture that disrupts the balance of the intestinal microbiota and threatens fish health, causing enormous losses to the aquaculture industry. In this study, we isolated and screened a Lactococcus lactis KUST48 (LLK48) strain with antibacterial effect against S. agalactiae in vitro and used it as a potential probiotic to explore its therapeutic effect on zebrafish (Danio rerio) infected with S. agalactiae. This study divided zebrafish into 3 groups: control group, injected with phosphate-buffered saline; infection group, injected with S. agalactiae; and treatment group, treated with LLK48 after S. agalactiae injection. Then, the 16S rRNA gene sequences of the intestinal microbiota of these 3 groups were sequenced using Illumina high-throughput sequencing technology. The results showed that the relative abundance of intestinal bacteria was significantly decreased in the infection group, and a high relative abundance of S. agalactiae was observed. The relative abundance of the intestinal microbiota was increased in the treatment group, with a decrease in the relative abundance of S. agalactiae compared to that in the control group. In the Cluster of Orthologous Groups of proteins function classification, the relative abundance of each biological function in the infection group was significantly lower than that of the control and treatment groups, showing that LLK48 has a positive therapeutic effect on zebrafish infected with S. agalactiae. This study provides a foundation for exploring the pathogenic mechanism of S. agalactiae on fish and their intestinal symbionts, and also presents a new approach for the treatment of S. agalactiae infections in fish aquaculture systems. IMPORTANCE L. lactis KUST48 (LLK48) with a bacteriostatic effect against S. agalactiae was isolated from tilapia intestinal tracts. S. agalactiae infection significantly reduced the relative abundance of intestinal bacteria and various physiological functions in zebrafish intestines. LLK48 demonstrated infection and subsequent therapeutic effects on the S. agalactiae infection in the zebrafish intestine. Therefore, the potential probiotic LLK48 can be considered as a therapeutic treatment for S. agalactiae infections in aquaculture, which can reduce the use of antibiotics and help maintain fish health.
Collapse
|
15
|
Sharma P, Kaur J, Sharma G, Kashyap P. Plant derived antimicrobial peptides: Mechanism of target, isolation techniques, sources and pharmaceutical applications. J Food Biochem 2022; 46:e14348. [PMID: 35945701 DOI: 10.1111/jfbc.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Abstract
Antimicrobial resistance is a global health and development threat which is caused by the excess and prolonged usage of antimicrobial compounds in agriculture and pharmaceutical industries. Resistance of pathogenic microorganisms to the already existing drugs represent a serious risk to public health. Plant sources such as cereals, legumes, fruits and vegetables are potential substrates for the isolation of antimicrobial peptides (AMP) with broad spectrum antimicrobial activity against bacteria, fungi and viruses with novel immunomodulatory activities. Thus, in the quest of new antimicrobial agents, AMPs have recently gained interest. Therefore, AMP can be used in agriculture, pharmaceutical and food industries. This review focuses on various explored and unexplored plant based food sources of AMPs, their isolation techniques and antimicrobial mechanism of peptides. Therefore, the literature discussed in this review paper will prove beneficial the research purposes for agriculture, pharmaceutical and food industries. PRACTICAL APPLICATIONS: Isolation of antimicrobial peptides (AMPs) can be done on industrial scale. AMP isolated from food sources can be used in pharmaceutical and agriculture industries. AMP from natural sources mitigate the problem of antimicrobial resistance. AMP isolated from food products can be used as nutraceutical.
Collapse
Affiliation(s)
- Poorva Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Jasleen Kaur
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Geetika Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, India
| |
Collapse
|
16
|
Isolation and Mechanistic Characterization of a Novel Zearalenone-Degrading Enzyme. Foods 2022; 11:foods11182908. [PMID: 36141036 PMCID: PMC9498698 DOI: 10.3390/foods11182908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zearalenone (ZEN) and its derivatives pose a serious threat to global food quality and animal health. The use of enzymes to degrade mycotoxins has become a popular method to counter this threat. In this study, Aspergillus niger ZEN-S-FS10 extracellular enzyme solution with ZEN-degrading effect was separated and purified to prepare the biological enzyme, FSZ, that can degrade ZEN. The degradation rate of FSZ to ZEN was 75−80% (pH = 7.0, 28 °C). FSZ can function in a temperature range of 28−38 °C and pH range of 2.0−7.0 and can also degrade ZEN derivatives (α-ZAL, β-ZOL, and ZAN). According to the enzyme kinetics fitting, ZEN has a high degradation rate. FSZ can degrade ZEN in real samples of corn flour. FSZ can be obtained stably and repeatedly from the original strain. One ZEN degradation product was isolated: FSZ−P(C18H26O4), with a relative molecular weight of 306.18 g/mol. Amino-acid-sequencing analysis revealed that FSZ is a novel enzyme (homology < 10%). According to the results of molecular docking, ZEN and ZAN can utilize their end-terminal carbonyl groups to bind FSZ residues PHE307, THR55, and GLU129 for a high-degradation rate. However, α-ZAL and β-ZOL instead contain hydroxyl groups that would prevent binding to GLU129; thus, the degradation rate is low for these derivatives.
Collapse
|
17
|
Xiang YZ, Wu G, Yang LY, Yang XJ, Zhang YM, Lin LB, Deng XY, Zhang QL. Antibacterial effect of bacteriocin XJS01 and its application as antibiofilm agents to treat multidrug-resistant Staphylococcus aureus infection. Int J Biol Macromol 2022; 196:13-22. [PMID: 34838856 DOI: 10.1016/j.ijbiomac.2021.11.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/09/2021] [Accepted: 11/20/2021] [Indexed: 12/31/2022]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus biofilms have emerged as a serious threat to human health. Recently, the development of antibiotic replacement therapy has gained much attention due to the potential application of bacteriocin. The present study sought to evaluate the antibacterial effect of bacteriocin XJS01 against MDR S. aureus, a previously reported bacteriocin against S. aureus strain 2612:1606BL1486 (S. aureus_26, an MDR strain demonstrated here), and its potential application as an antibiofilm agent. The minimum bactericide concentration of XJS01 against MDR S. aureus_26 was 33.18 μg/mL. XJS01 exhibited excellent storage stability and resistance against acid and reduced the density of established MDR S. aureus_26 biofilm. The hemolytic and HEK293T cytotoxicity activities of XJS01 and the histological analyses in mice confirmed its safety. Moreover, XJS01 effectively disrupted the MDR S. aureus_26 biofilm established on the skin wound surface and reduced the biofilm-isolated bacteria, thereby decreasing the release of pro-inflammatory cytokines and the proliferation of alternatively activated macrophages. Compared to mupirocin, XJS01 exhibited an excellent therapeutic effect on mice skin wounds, confirming it to be a potential alternative to antibiotics.
Collapse
Affiliation(s)
- Yi-Zhou Xiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Gang Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Department of Neurology, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Lin-Yu Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xiao-Jie Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lian-Bing Lin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Xian-Yu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|
18
|
Zhao D, Wang Q, Lu F, Bie X, Zhao H, Lu Z, Lu Y. A novel plantaricin 827 effectively inhibits Staphylococcus aureus and extends shelf life of skim milk. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Editorial overview: "emerging processing technologies to improve the safety and quality of foods". Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Kirtonia K, Salauddin M, Bharadwaj KK, Pati S, Dey A, Shariati MA, Tilak VK, Kuznetsova E, Sarkar T. Bacteriocin: A new strategic antibiofilm agent in food industries. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|