1
|
Yang B, Lan M, Zhong R, Shi F, Liang P. Insight into the effects of large yellow croaker roe (Larimichthys Crocea) phospholipids on the conformational and functional properties of pork myofibrillar protein. Food Chem 2024; 461:140813. [PMID: 39173261 DOI: 10.1016/j.foodchem.2024.140813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
The large yellow croaker roe phospholipids (LYPLs), rich in polyunsaturated fatty acids, is a potential phospholipid additive for meat products. In this work, the effects of LYPLs on the structural and functional properties of myofibrillar protein (MP) were determined, and compared with egg yolk phospholipids (EYPLs) and soybean phospholipids (SBPLs). The results revealed that LYPLs, similar to SBPLs and EYPLs, induced a transformation in the secondary structure of MP from α-helix to β-sheets and random coils, while also inhibited the formation of carbonyl and disulfide bonds within MP. All three phospholipids induced MP tertiary structure unfolding, with the greatest degree of unfolding observed in MP containing LYPLs. The MP with LYPLs had the highest surface hydrophobicity, emulsification properties and gel strength. In addition, MP with LYPLs added also demonstrated superior rheological properties and water-holding capacity compared with SBPLs and EYPLs. In conclusion, adding LYPLs endowed MP with improved functional properties.
Collapse
Affiliation(s)
- Boruo Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Mei Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, 350002 Fuzhou, China.
| |
Collapse
|
2
|
Wu X, Zhang Q, Wang Z, Wang Z, Yan H, Zhu L, Chang J. Nondestructive freshness prediction of large yellow croaker (Pseudosciaena crocea) using computer vision and machine learning techniques based on pupil color. J Food Sci 2024; 89:9392-9406. [PMID: 39475347 DOI: 10.1111/1750-3841.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 08/18/2024] [Accepted: 09/05/2024] [Indexed: 12/28/2024]
Abstract
Conventional methods for evaluating of fish freshness based on physiological and biochemical methods are often destructive, complicated, and costly. This study aimed to predict the freshness of large yellow croaker which was sampled every second day in 9 consecutive days at 4°C, using computer vision technology combined with pupil color parameters and different machine learning algorithms (back propagation neural network, BPNN; radial basis function neural network; support vector regression; and random forest regression, RFR). In the process of model building, the RFR model provided the most accurate prediction for the value of total volatile basic nitrogen (TVB-N), with the R-square of the test set (R p 2 $R^{2}_p $ ) of 0.993. The BPNN model exhibited the best fit for predicting the value of thiobarbituric acid (TBA), withR p 2 $R^{2}_p $ of 0.959. Additionally, the RFR model was the most effective in forecasting total viable count (TVC), withR p 2 $R^{2}_p $ of 0.935. After validation, the root mean square error values of the RFR model for predicting TVB-N value, TBA value, and TVC value were the lowest, which were 0.764, 0.067, and 0.219, respectively. It demonstrated the applicability and good predictive performance of the RFR model for predicting biochemical and microbiological indicators. These findings also demonstrated that monitoring the changes in pupil color could successfully predict the freshness of chilled fish. PRACTICAL APPLICATION: Quality inspectors detect changes in the freshness of large yellow croaker in real time from the beginning of distribution to the selling site.
Collapse
Affiliation(s)
- Xudong Wu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
- China Resources Shenghai Health Technology Co. Ltd, Zibo, China
| | - Qingxiang Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zhiqiang Wang
- School of Computer Science and Technology, Shandong University of Technology, Zibo, China
| | - Zongmin Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Hongbo Yan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lanlan Zhu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Jie Chang
- Jing Hai Group Co., LD, Rongcheng, China
| |
Collapse
|
3
|
Du Y, Lan J, Zhong R, Shi F, Yang Q, Liang P. Insight into the effect of large yellow croaker roe phospholipids on the physical properties of surimi gel and their interaction mechanism with myofibrillar protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1347-1356. [PMID: 37814156 DOI: 10.1002/jsfa.13029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND The present study aimed to investigate the effects of large yellow croaker roe phospholipids (LYCRPLs) on the physical properties of surimi gels and to clarify their interaction mechanism with myofibrillar proteins (MPs) in terms of chemical forces and the spatial conformation. RESULTS LYCRPLs could improve the gel strength, textural properties, rheological properties and water-holding capacity of surimi gels. Moreover, the interaction mechanism between LYCRPLs with MPs was revealed through intermolecular forces, Fourier transform infrared spectroscopy and ultraviolet visible absorption spectroscopy. The findings demonstrated that LYCRPLs enhanced the surface hydrophobicity and particle size of MPs, facilitating expansion and cross-linking of MPs. CONCLUSION These results provide a theoretical basis for improving the characteristics of surimi gels and thus facilitate the application of LYCRPLs in the aquatic food industry. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanyu Du
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Jiaojiao Lan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Feifei Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Qian Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Ministry Education, Engineering Research Center Fujian Taiwan Special Marine Food Processing & Nutrition, Fuzhou, China
| |
Collapse
|
4
|
Liu Q, Lei M, Lin J, Zhao W, Zeng X, Bai W. The roles of lipoxygenases and autoxidation during mackerel (Scomberomorus niphonius) dry-cured processing. Food Res Int 2023; 173:113309. [PMID: 37803620 DOI: 10.1016/j.foodres.2023.113309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 06/03/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
The roles of enzymatic (Lipoxygenases, LOX) oxidation and autoxidation in the dry-cured processing of mackerel were investigated by adding exogenous substances in this study. Four groups, namely control, chlorogenic acid (inhibiting LOX activity), EDTA-2Na (inhibiting autoxidation), and exogenous LOX (adding eLOX), were assigned. The results showed that lipid oxidation of mackerel was reduced by inhibiting LOX activity and autoxidation, while adding eLOX promoted lipid oxidation. Inhibition of LOX activity and autoxidation suppressed fatty acid accumulation mainly in the air-drying and curing stage, respectively. The total contents of key flavors in the mackerel during dry-cured processing were decreased by inhibiting LOX activity and autoxidation, and the former inhibitory effect was stronger than autoxidation, while it was corresponding increased through adding eLOX, of particular in the later stage of air-drying. Collectively, LOX could promote the flavor formation of the mackerel in the dry-cured processing, which could be applied in the flavor adjustment of aquatic products or some similar fields.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
5
|
Zhong R, Zhu Y, Zhang H, Huo Y, Huang Y, Cheng W, Liang P. Integrated lipidomic and transcriptomic analyses reveal the mechanism of large yellow croaker roe phospholipids on lipid metabolism in normal-diet mice. Food Funct 2022; 13:12852-12869. [PMID: 36444685 DOI: 10.1039/d2fo02736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large yellow croaker roe phospholipids (LYCRPLs) could regulate the accumulation of triglycerides and blood lipid levels. However, there exists little research on the mechanism of LYCRPLs on lipid metabolism in normal-diet mice. In this work, the mice on a normal diet were given low-dose, medium-dose, and high-dose LYCRPLs by intragastric administration for 6 weeks. At the same time, the physiological and biochemical indicators of the mice were determined, and the histomorphological observation of the liver and epididymal fat was carried out. In addition, we examined the gene expression and lipid metabolites in the liver of mice using transcriptomic and lipidomic and performed a correlation analysis. The results showed that LYCRPLs regulated the lipid metabolism of normal-diet mice by affecting the expression of the glycerolipid metabolism pathway, insulin resistance pathway, and cholesterol metabolism pathway. This study not only elucidated the main pathway by which LYCRPLs regulate lipid metabolism, but also laid a foundation for exploring LYCRPLs as functional food supplements.
Collapse
Affiliation(s)
- Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Yujie Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Huadan Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Yuming Huo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Wenjian Cheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian, China. .,Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, Fujian, China
| |
Collapse
|
6
|
Huang L, Lu X, Zhang H, Zheng B, Zhang Y, Liang P. Effect of gut microbiota and metabolites in normal rats treated with large yellow croaker (Larimichthys crocea) roe phospholipids. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Pascual-Silva C, Alemán A, López-Caballero ME, Montero MP, Gómez-Guillén MDC. Physical and Oxidative Water-in-Oil Emulsion Stability by the Addition of Liposomes from Shrimp Waste Oil with Antioxidant and Anti-Inflammatory Properties. Antioxidants (Basel) 2022; 11:2236. [PMID: 36421422 PMCID: PMC9686809 DOI: 10.3390/antiox11112236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 08/05/2023] Open
Abstract
Liposomes made of partially purified phospholipids (PL) from Argentine red shrimp waste oil were loaded with two antioxidant lipid co-extracts (hexane-soluble, Hx and acetone-soluble, Ac) to provide a higher content of omega-3 fatty acids. The physical properties of the liposomes were characterized by Transmission Electron Microscopy (TEM), Dynamic Light Scattering (DLS) and Differential Scanning Calorimetry (DSC). The antioxidant and anti-inflammatory activity of the lipid extracts and liposomal suspensions were evaluated in terms of Superoxide and ABTS radical scavenging capacities and TNF-α inhibition. Uni-lamellar spherical liposomes (z-average ≈ 145 nm) with strong negative ζ potential (≈ -67 mV) were obtained in all cases. The high content of neutral lipids in the Hx extract caused structural changes in the bilayer membrane and decreased entrapment efficiency regarding astaxanthin and EPA + DHA contents. The liposomes loaded with the Hx/Ac extracts showed higher antioxidant and anti-inflammatory activity compared with empty liposomes. The liposomal dispersions improved the physical and oxidative stability of water-in-oil emulsions as compared with the PL extract, inducing pronounced close packing of water droplets. The liposomes decreased hydroperoxide formation in freshly made emulsions and prevented thio-barbituric acid-reactive substances (TBARS) accumulation during chilled storage. Liposomes from shrimp waste could be valuable nanocarriers and stabilizers in functional food emulsions.
Collapse
|
8
|
Zhang H, Zhang L, Yang X, Cheng W, Huang Y, Liang P. Oxidative stability of marine phospholipids derived from large yellow croaker roe. Food Res Int 2022; 160:111743. [DOI: 10.1016/j.foodres.2022.111743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/04/2022]
|
9
|
Functional and emulsification characteristics of phospholipids and derived o/w emulsions from peony seed meal. Food Chem 2022; 389:133112. [PMID: 35504077 DOI: 10.1016/j.foodchem.2022.133112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022]
Abstract
Peony seed phospholipids (PPLs), a kind of multifunctional plant-like phospholipids were extracted from peony seed meal. We investigated the functional properties of PPLs and compared their emulsification performance in corn oil-peony seed oil o/w emulsion systems with that of soy lecithin (DPLs). The PPLs were characterized with the higher content of phosphatidylcholine (PC) (416 ± 28 mg/g) and lyso-phosphatidylcholine (LPC) (43 ± 14 mg/g) fractions, and lower content of phosphatidylethanolamine (PE) (71 ± 13 mg/g). The polyunsaturated fatty acids showed higher content (83.25%), with the highest content of linoleic acid (46.05%) in PPLs. PPLs-emulsions showed smaller average particle size and higher loaded peony seed oil content at pH 5, temperature 50 °C, and about 60% corn oil content. PPLs-emulsions imparted better hydroxyl radical scavenging efficiency and reducing power than DPLs. Our results suggest that PPLs can be used as emulsifiers with improved antioxidant properties.
Collapse
|