1
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
2
|
Song P, Zhang X, Wang S, Xu W, Wang F, Fu R, Wei F. Microbial proteases and their applications. Front Microbiol 2023; 14:1236368. [PMID: 37779686 PMCID: PMC10537240 DOI: 10.3389/fmicb.2023.1236368] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Proteases (proteinases or peptidases) are a class of hydrolases that cleave peptide chains in proteins. Endopeptidases are a type of protease that hydrolyze the internal peptide bonds of proteins, forming shorter peptides; exopeptidases hydrolyze the terminal peptide bonds from the C-terminal or N-terminal, forming free amino acids. Microbial proteases are a popular instrument in many industrial applications. In this review, the classification, detection, identification, and sources of microbial proteases are systematically introduced, as well as their applications in food, detergents, waste treatment, and biotechnology processes in the industry fields. In addition, recent studies on techniques used to express heterologous microbial proteases are summarized to describe the process of studying proteases. Finally, future developmental trends for microbial proteases are discussed.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shuhua Wang
- Shandong Aobo Biotech Co. Ltd., Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Fei Wang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotech Co. Ltd., Nanchang, China
| | - Feng Wei
- College of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Zhu X, Hua Y, Kong X, Li X, Chen Y, Zhang C. Characterization of proteases from Irpex lacteus grown on minimally denatured soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1800-1809. [PMID: 36317244 DOI: 10.1002/jsfa.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Acid and thermal stabilities are important properties for the preparation of acidic protein beverage. It is an important method for enzymatic modification to improve the functional properties of protein. Irpex lacteus protease showed a selective hydrolysis to soy proteins. The purpose of this study was to investigate the mechanism of enzymatic hydrolysis and its effects on acid and thermal stabilities of soy proteins. RESULTS The I. lacteus protease selectively hydrolyzed the α and α' subunits of the native soybean β-conglycinin (7S globulin) to produce products that presented as the 55 kDa band upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. The amino acid sequences of 55 kDa polypeptides were analyzed in gel multi-enzyme digestion followed by liquid chromatography-mass spectrometry. By matching the multi-enzyme digestion peptides with the published polypeptide chain sequences of the α and α' subunits, it was confirmed that the 55 kDa polypeptides were formed by eliminating amino acid residues on both sides of the N- and C-terminals. From the published protein structure database (https://www.uniprot.org/), it is known that the cleaved peptide bonds were in extension regions. Non-selective enzyme hydrolysis of both β-conglycinin (7S globulin) and glycinin (11S globulin), with corresponding drastic increases in the degree of hydrolysis, was observed when the substrates were preheated to the denaturation degree of 40% and above. However, 55 kDa hydrolyzed products and B polypeptides showed some extent of resistance to the proteolysis by I. lacteus protease even if denaturation degree was 100%. Both selective and non-selective hydrolysis of soy proteins by I. lacteus protease improved the acid and heat stabilities under the same hydrolysis conditions (enzyme/substrate ratio, time, and temperature). CONCLUSION Enzymatic hydrolysis of soybean proteins by the I. lacteus protease can effectively improve the acid and thermal stabilities of proteins. This discovery is significant to avoid aggregation during processing in the beverage industry. In the near future, the protease has potential application value for modification of other proteins. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
4
|
Zhu X, Hua Y, Li X, Kong X, Chen Y, Zhang C. Growing of fungi on the stored low denatured defatted soybean meals and the hydrolysis of proteins and isoflavone glycosides by fungal enzymes. Food Res Int 2023; 163:112261. [PMID: 36596172 DOI: 10.1016/j.foodres.2022.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Recently, more and more attention has been paid to the effects of fungal contamination and fungal enzymes secreted in raw grain on product quality. As the starting material of protein and active components, the quality of low denatured defatted soybean meals (LDSM) directly determines the qualities of subsequent products. In previous studies, we have revealed that infection with Aspergillus ochraceus protease causes significant hydrolysis of proteins. In this study, growing of fungi on the stored low denatured defatted soybean meals (LDSM) was analyzed by high-throughput sequencing and real-time PCR, which revealed that the abundance of Aspergillus increased significantly after storage. Twenty fungal proteases and 9 fungal glucosidases were found in stored LDSM and zymography showed that the proteases were of serine-type with some cysteine and aspartic activities. Proteolysis of the soybean storage proteins mainly occurred after the hydration of LDSM and the average molecular weight of soy proteins decreased from 57.9 kDa to 30.7 kDa after 60 min's of hydrolysis. Two-dimensional electrophoresis (2-DE) analysis found the polypeptide fragments from soybean 7S and 11S proteins with molecular weight around 10-25 kDa in the hydrated LDSM. Glycosylated isoflavones were hydrolyzed in both dry and hydrated stored LDSM which resulted in significant (p < 0.05) increase in the contents of isoflavone aglycones. This study suggested that fungi contamination be a new factor affecting the properties of LDSM derived soy protein products.
Collapse
Affiliation(s)
- Xiaoxu Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yufei Hua
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China.
| | - Xingfei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Yeming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
5
|
Screening and Characteristics of Marine Bacillus velezensis Z-1 Protease and Its Application of Enzymatic Hydrolysis of Mussels to Prepare Antioxidant Active Substances. Molecules 2022; 27:molecules27196570. [PMID: 36235106 PMCID: PMC9572009 DOI: 10.3390/molecules27196570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Bacillus velezensis is a type of microorganism that is beneficial to humans and animals. In this work, a protease-producing B. velezensis strain Z-1 was screened from sludge in the sea area near Qingdao (deposit number CGMCC No. 25059). The response surface methodology was used to analyze protease production, and the optimal temperature was 37.09 °C and pH 7.73 with the addition of 0.42% NaCl, resulting in maximum protease production of 17.64 U/mL. The optimum reaction temperature and pH of the protease of strain Z-1 were 60 °C and 9.0, respectively. The protease had good temperature and pH stability, and good stability in solvents such as methanol, ethanol and Tween 80. Ammonium, NH4+,and Mn2+ significantly promoted enzyme activity, while Zn2+ significantly inhibited the enzyme activity. The protease produced by strain Z-1 was used for the enzymolysis of mussel meat. The mussel hydrolysate exhibited good antioxidant function, with a DPPH free radical removal rate of 75.3%, a hydroxyl free radical removal rate of 75.9%, and a superoxide anion removal rate of 84.4%. This study provides a reference for the application of B. velez protease and the diverse processing applications of mussel meat.
Collapse
|
6
|
Chen L, Li E, Wu W, Wang G, Zhang J, Guo X, Xing F. The Secondary Metabolites and Biosynthetic Diversity From Aspergillus ochraceus. Front Chem 2022; 10:938626. [PMID: 36092677 PMCID: PMC9452667 DOI: 10.3389/fchem.2022.938626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Aspergillus ochraceus, generally known as a food spoilage fungus, is the representative species in Aspergillus section Circumdati. A. ochraceus strains are widely distributed in nature, and usually isolated from cereal, coffee, fruit, and beverage. Increasing cases suggest A. ochraceus acts as human and animal pathogens due to producing the mycotoxins. However, in terms of benefits to mankind, A. ochraceus is the potential source of industrial enzymes, and has excellent capability to produce diverse structural products, including polyketides, nonribosomal peptides, diketopiperazine alkaloids, benzodiazepine alkaloids, pyrazines, bis-indolyl benzenoids, nitrobenzoyl sesquiterpenoids, and steroids. This review outlines recent discovery, chemical structure, biosynthetic pathway, and bio-activity of the natural compounds from A. ochraceus.
Collapse
Affiliation(s)
- Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, China
| | - Erfeng Li
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Wenqing Wu
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Gang Wang
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou, China
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqian Zhang
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Xu Guo
- Horticulture and Landscape College, Tianjin Agricultural University, Tianjin, China
| | - Fuguo Xing
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|