1
|
Wang H, Xu Z, Jin X, Hu J, Tao Y, Lu J, Xia X, Tan M, Du J, Wang H. Structurally robust chitosan-based active packaging film by Pickering emulsion containing tree essential oil for pork preservation. Food Chem 2025; 466:142246. [PMID: 39612857 DOI: 10.1016/j.foodchem.2024.142246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/12/2024] [Accepted: 11/23/2024] [Indexed: 12/01/2024]
Abstract
The unstable structure of Pickering emulsion caused the fast release of active substance from active packaging and failure food preservation. Herein, a novel in-situ condensation strategy was proposed to construct sustained released chitosan (CS)-based active packaging film, in which the soybean separation protein (SPI)-carboxymethyl cellulose (CMC) emulsion (SCCE) containing tea tree essential oil (TTO) was physically incorporated into CS matrix. Originating from the strong electrostatic interaction of negatively charged SPI-CMC emulsion and positively charged CS matrix, a robust shell was in-situ formed on the outermost layer and served as armor to boost the structural stability of emulsion. The optimized SCCE3 has a homogeneous texture even after long-term storage (14 day) and under extreme conditions (high and low temperature, strong acid and alkali environment). The lifespan of packaged pork can be effectively extended at least 6 days. Our findings provided a new perspective for structurally robust and sustained-release food packaging films.
Collapse
Affiliation(s)
- Hanxu Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihang Xu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xingming Jin
- Beijing Shieldry Technology co., Ltd., Beijing 100004, China
| | - Jinwen Hu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jian Du
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China..
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China..
| |
Collapse
|
2
|
Zhao R, Chang C, He Y, Jiang C, Bao Z, Wang C. Effects of mixing ratio on physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein and pea protein. Food Chem 2025; 463:141062. [PMID: 39236389 DOI: 10.1016/j.foodchem.2024.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Physicochemical, structural properties and application in lycopene-loaded emulsions of blends of whey protein isolate (WPI) and pea protein isolate (PPI) at varying mass ratios (100/0, 75/25, 50/50, 25/75, 0/100) were investigated. Data indicated that the mass ratios affected the physical, chemical and storage stability of the emulsion by influencing the particle size, zeta-potential, surface hydrophobicity, free sulfhydryl content, and secondary structure of the blends. Particularly, emulsion with a mixing ratio of 75/25 exhibited superior physical stability against salt concentrations (200 and 500 mM), better chemical stability against UV light and heat, and maintained stability over a 30-day storage period. Emulsions stabilized by blends of different ratios exhibited similar digestion behavior, with no significant differences observed in lycopene's transformation stability and bio-accessibility. Data indicated that substitution of whey protein by pea protein is effective in term of emulsifier application and replacement ratio is an important factor need to be considered.
Collapse
Affiliation(s)
- Ru Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuyu Chang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yuxin He
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chuanrui Jiang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhaoxue Bao
- Hinggan League Mengyuan Technology Testing Service Co., Ltd, Ulanhot 137400, China
| | - Cuina Wang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Hu Y, Xu L, Sun H, Wu W, Wang Y, Lu L, Zeng T, Sheng L, Cai Z. Water-in-oil-in-water (W/O/W) emulsions with antioxidant and bacteriostatic capabilities: A preliminary exploration of food preservation films. Int J Biol Macromol 2024; 283:137657. [PMID: 39561832 DOI: 10.1016/j.ijbiomac.2024.137657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024]
Abstract
The development of stable water-in-oil-in-water (W/O/W) emulsions for edible preservation coatings and films, utilizing their properties, deserves scientific attention. In this study, oregano essential oil and D‑sodium erythorbate were simultaneously loaded into W/O/W emulsions, and the homogenization conditions of the W/O/W emulsions were optimized. The structure and interactions of gum Arabic (GA) and whey protein isolate (WPI) as the outer phase were analyzed. Stable W1/O/W2 emulsions with excellent antimicrobial and antioxidant activities could be produced under the conditions of GA: WPI at 1:1 and W2: W1/O at 5:5. The diphenyl-1-picrylhydrazyl radical (DPPH) and 2,2'-azinobis-(3-ethylbenzenthiazoline-6-sulphonic acid) (ABTS) radical scavenging rates were 86.35 % and 89.35 %, and the inhibition zone diameters for S. aureus and E. coli were 14.03 ± 0.42 mm and 14.17 ± 0.70 mm, respectively. Finally, the W1/O/W2 emulsions were successfully applied to prepare chitosan-based films. This study has the potential to promote the application of W/O/W emulsions in food preservation, emphasizing the need for advancements for real-world adaptability.
Collapse
Affiliation(s)
- Yue Hu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ligen Xu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Haoyang Sun
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wu
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Wang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Long Sheng
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
4
|
Jiang L, Zhang Z, Qiu C, Wen J. A Review of Whey Protein-Based Bioactive Delivery Systems: Design, Fabrication, and Application. Foods 2024; 13:2453. [PMID: 39123644 PMCID: PMC11312236 DOI: 10.3390/foods13152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
The efficacy of many edible bioactive agents is limited by their low water dispersibility and chemical instability in foods, as well as by their poor bioaccessibility, low absorption, and metabolism within the human gastrointestinal tract. Whey proteins are amphiphilic molecules that can be used to construct a variety of edible carrier systems that can improve the performance of bioactive ingredients. These carrier systems are being used by the food and biomedical industries to encapsulate, protect, and deliver a variety of bioactive agents. In this article, we begin by providing an overview of the molecular and functional characteristics of whey proteins, and then discuss their interactions with various kinds of bioactive agents. The ability of whey proteins to be used as building blocks to assemble different kinds of carrier systems is then discussed, including nanoparticles, hydrogels, oleogels, bigels, nanofibers, nanotubes, and nanoemulsions. Moreover, applications of these carrier systems are highlighted. Different kinds of whey protein-based carriers can be used to encapsulate, protect, and deliver bioactive agents. Each kind of carrier has its own characteristics, which make them suitable for different application needs in foods and other products. Previous studies suggest that whey protein-based carriers are particularly suitable for protecting chemically labile bioactive agents and for prolonging their release profiles. In the future, it is likely that the applications of whey protein-based carriers in the food and pharmaceutical fields will expand.
Collapse
Affiliation(s)
- Liming Jiang
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| | - Zhiheng Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jinsheng Wen
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315832, China
| |
Collapse
|
5
|
Henao-Ardila A, Quintanilla-Carvajal MX, Moreno FL. Emulsification and stabilisation technologies used for the inclusion of lipophilic functional ingredients in food systems. Heliyon 2024; 10:e32150. [PMID: 38873677 PMCID: PMC11170136 DOI: 10.1016/j.heliyon.2024.e32150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Food industry is increasingly using functional ingredients to improve the food product quality. Lipid-containing functional ingredients are important sources of nutrients. This review examines the current state of emulsification and stabilisation technologies for incorporating lipophilic functional ingredients into food systems. Lipophilic functional ingredients, such as omega-3 fatty acids, carotenoids, and fat-soluble vitamins, offer numerous health benefits but present challenges due to their limited solubility in water-based food matrices. Emulsification techniques enable the dispersion of these ingredients in aqueous environments, facilitating their inclusion in a variety of food products. This review highlights recent advances in food emulsion formulation, emulsification methods and stabilisation techniques which, together, improve the stability and bioavailability of lipophilic compounds. The role of various emulsifiers, stabilizers, and encapsulation materials in enhancing the functionality of these ingredients is also explored. Furthermore, the review discusses different stabilisation techniques which can yield in emulsion in a solid or liquid state. By providing a comprehensive overview of current technologies, this review aims to guide future research and application in the development of functional foods enriched with lipophilic ingredients.
Collapse
Affiliation(s)
- Alejandra Henao-Ardila
- Doctorate in Biosciences, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - María Ximena Quintanilla-Carvajal
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| | - Fabián Leonardo Moreno
- Grupo de Investigación en Procesos Agroindustriales, Faculty of Engineering, Universidad de La Sabana, Campus Universitario del Puente del Común, Km7 Autopista Norte de Bogotá, Chía, Cundinamarca, Colombia
| |
Collapse
|
6
|
Huang B, Hu Q, Zhang G, Zou J, Fei P, Wang Z. Exploring the emulsification potential of chitosan modified with phenolic acids: Emulsifying properties, functional activities, and application in curcumin encapsulation. Int J Biol Macromol 2024; 263:130450. [PMID: 38412937 DOI: 10.1016/j.ijbiomac.2024.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
This study successfully grafted caffeic acid and 3,4-dihydroxybenzoic acid into chitosan through a coupling reaction, yielding grafting ratio of 8.93 % for caffeic acid grafted chitosan (CA-GC) and 9.15 % for 3,4-dihydroxybenzoic acid grafted chitosan (DHB-GC) at an optimal concentration of 4 mmol phenolic acids. The characterization of modified chitosans through ultraviolet visible spectrometer (UV-vis), Fourier transform infrared spectrometer (FTIR), proton nuclear magnetic resonance (1H NMR), and x-ray photoelectron spectrometer (XPS) confirmed the successful grafting of phenolic acids. In the subsequent step of emulsion preparation, confocal laser scanning microscope images confirmed the formation of O/W (oil-in-water) emulsions. The phenolic acid-grafted chitosans exhibited better emulsification properties compared to native chitosan, such as reduced droplet size, more uniform emulsion droplet distribution, increased ζ-potential, and enhanced emulsifying activity and stability. Moreover, the modified chitosans demonstrated increased antioxidant activities (evidenced by DPPH and β-carotene assays) and displayed greater antimicrobial effects against E. coli and S. aureus. Its efficacy in curcumin encapsulation was also notable, with improved encapsulation efficiency, sustained release rates, and enhanced storage and photostability. These findings hint at the potential of modified chitosans as an effective emulsifier.
Collapse
Affiliation(s)
- Bingqing Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyi Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Jinmei Zou
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
7
|
Guo S, Guo Q, Zhang Y, Peng X, Ma C, McClements DJ, Liu X, Liu F. Preparation of enzymatically cross-linked α-lactalbumin nanoparticles and their application for encapsulating lycopene. Food Chem 2023; 429:136394. [PMID: 37478605 DOI: 10.1016/j.foodchem.2023.136394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 05/06/2023] [Accepted: 05/13/2023] [Indexed: 07/23/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized by protein nanoparticles have been widely reported, but the use of enzymatic methods for preparing these nanoparticles remains underexplored. Our hypothesis is that enzymatically crosslinked α-lactalbumin (ALA) nanoparticles (ALATGs) prepared using transglutaminase will demonstrate improved properties as stabilizers for HIPPEs. In this study, we investigated the physicochemical properties and microstructures of ALATGs, finding that enzymatic crosslinking could be enhanced by removing Ca2+ ions from ALA and preheating the proteins (85 °C, 15 min). The electrical charge, secondary structure, and surface hydrophobicity of ALATGs were found to depend on crosslinking conditions. HIPPEs formed with an ALA concentration of 10 mg/mL and an enzyme activity of 120 U/g exhibited the highest apparent viscosity and mechanical strength, as well as significantly improved loading capacity and photostability for the encapsulated lycopene. Overall, our results support the hypothesis that ALATG-nanoparticles show superior performance as emulsifiers compared to ALA-nanoparticles.
Collapse
Affiliation(s)
- Siqi Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yifan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoke Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | | | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
8
|
Zhang C, Du M, Li B. Modulation of physicochemical properties of lipid droplets using soy protein isolate and lactoferrin interfacial coatings. Food Sci Nutr 2023; 11:8035-8042. [PMID: 38107132 PMCID: PMC10724621 DOI: 10.1002/fsn3.3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 12/19/2023] Open
Abstract
In order to improve the physicochemical stability of soy protein isolate (SPI) emulsion, lactoferrin (LF) was used to modify the interface layer. The stable multilayer emulsion can be formed when the content of lactoferrin is 0.5% at pH 5. The emulsion with good stability was at pH 3-7, and it was also stable to temperature change. The FFAs release of SPI emulsion and LF-SPI emulsion was 103.9% and 103.7%, respectively. The results showed that the lactoferrin layer did not hinder the digestion of oil and the bioaccessibility of carotenoids, but lactoferrin layer improved the physicochemical stability of SPI emulsions. This work provides information valuable in the design of emulsion formulations for applications in the food, pharmaceutical, and personal care industries.
Collapse
Affiliation(s)
- Chunlan Zhang
- College of Food Science and EngineeringTarim UniversityAlarChina
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern XinjiangAlar, XinjiangChina
| | - Mengyao Du
- College of Food Science and EngineeringTarim UniversityAlarChina
| | - Bin Li
- College of Food Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
9
|
Nsairat H, Lafi Z, Al-Sulaibi M, Gharaibeh L, Alshaer W. Impact of nanotechnology on the oral delivery of phyto-bioactive compounds. Food Chem 2023; 424:136438. [PMID: 37244187 DOI: 10.1016/j.foodchem.2023.136438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Nanotechnology is an advanced field that has remarkable nutraceutical and food applications. Phyto-bioactive compounds (PBCs) play critical roles in promoting health and disease treatment. However, PBCs generally encounter several limitations that delay their widespread application. For example, most PBCs have low aqueous solubility, poor biostability, poor bioavailability, and a lack of target specificity. Moreover, the high concentrations of effective PBC doses also limit their application. As a result, encapsulating PBCs into an appropriate nanocarrier may increase their solubility and biostability and protect them from premature degradation. Moreover, nanoencapsulation could improve absorption and prolong circulation with a high opportunity for targeted delivery that may decrease unwanted toxicity. This review addresses the main parameters, variables, and barriers that control and affect oral PBC delivery. Moreover, this review discusses the potential role of biocompatible and biodegradable nanocarriers in improving the water solubility, chemical stability, bioavailability, and specificity/selectivity of PBCs.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Lobna Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan.
| |
Collapse
|
10
|
Chen P, Wang RM, Xu BC, Xu FR, Ye YW, Zhang B. Food emulsifier based on the interaction of casein and butyrylated dextrin for improving stability and emulsifying properties. J Dairy Sci 2023; 106:1576-1585. [PMID: 36631321 DOI: 10.3168/jds.2022-22532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/08/2022] [Indexed: 01/11/2023]
Abstract
Green hydrophobically modified butyrylated dextrin (BD) was used to modulate casein (CN). The CN/BD complex nanoparticles were formed at different CN-to-BD mass ratios based on a pH-driven technology. The interaction force, stability, and emulsifying properties of complex nanoparticles were investigated. The nanoparticles had a negative charge and a small particle size (160.03, 152.6, 155.9, 206.13, and 231.67 nm) as well as excellent thermal stability and environmental stability (pH 4.5, 5.5, 6.6, 7.5, 8.5, and 9.5; ionic strength, 50, 100, 200, and 500 mM). Transmission electron microscopy demonstrated the successful preparation of complex nanoparticles and their spherical shape. Fourier transform infrared spectroscopy, fluorescence spectroscopy, and dissociation analysis results showed that the main driving forces of formed CN/BD nanoparticles were hydrogen bonding and hydrophobic interaction. Furthermore, the CN/BD nanoparticles (CN/BD mass ratio, 1:1; weight/weight) exhibited the lowest creaming index, and optical microscopy showed that it has the most evenly dispersed droplets after 7 d of storage, which indicates that the CN/BD nanoparticles had excellent emulsifying properties. Butyrylated dextrin forms complex nanoparticles with CN through hydrogen bonding and hydrophobic interaction to endow CN with superior properties. The results showed that it is possible to use pH-driven technology to form protein-polysaccharide complex nanoparticles, which provides some information on the development of novel food emulsifiers based on protein-polysaccharide nanoparticles. The study provided significant information on the improvement of CN properties and the development of emulsions based on CN.
Collapse
Affiliation(s)
- Pin Chen
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Ru-Meng Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bao-Cai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Fei-Ran Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| | - Ying-Wang Ye
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Bao Zhang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
11
|
Wang T, Wang S, Zhang L, Sun J, Guo T, Yu G, Xia X. Fabrication of bilayer emulsion by ultrasonic emulsification: Effects of chitosan on the interfacial stability of emulsion. ULTRASONICS SONOCHEMISTRY 2023; 93:106296. [PMID: 36641872 PMCID: PMC9852778 DOI: 10.1016/j.ultsonch.2023.106296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/29/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
In this study, the stable system of bilayer emulsion was fabricated by ultrasonic emulsification. The effect of chitosan (CS) addition (0.05 %-0.4 %, w/v) at pH 5.0 on the stability of rice bran protein hydrolysate-ferulic acid (RBPH-FA) monolayer emulsion was investigated. It was found that the addition of CS (0.3 %) could form a stable bilayer emulsion. The droplet size was 3.38 μm and the absolute ζ-potential value was 31.52 mV. The bilayer emulsion had better storage stability, oxidation stability and environmental stabilities than the monolayer emulsion. The results of in vitro simulations revealed the bilayer emulsion was able to deliver the β-carotene to the small intestine digestive stage stably and the bioaccessibility was increased from 22.34 % to 61.36 % compared with the monolayer emulsion. The research confirmed that the bilayer emulsion prepared by ultrasonic emulsification can be used for the delivery of hydrophobic functional component β-carotene.
Collapse
Affiliation(s)
- Tengyu Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China; School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Shirang Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Lijuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiapeng Sun
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tianhao Guo
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Zhang Y, Sun G, Li D, Xu J, McClements DJ, Li Y. Advances in emulsion-based delivery systems for nutraceuticals: Utilization of interfacial engineering approaches to control bioavailability. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:139-178. [DOI: 10.1016/bs.afnr.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Chen P, Yang BQ, Wang RM, Xu BC, Zhang B. Regulate the interfacial characteristic of emulsions by casein/butyrylated dextrin nanoparticles and chitosan based on ultrasound-assisted homogenization: Fabrication and characterization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Fabrication and Characteristic of Rhamnolipid-chitosan Coated Emulsions for Loading Ergocalciferol. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Enhancement of the intestinal permeability of curcumin using Pickering emulsions stabilized by starch crystals and chitosan. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Sun Y, Zhong M, Sun Y, Li Y, Qi B, Jiang L. Stability and digestibility of encapsulated lycopene in different emulsion systems stabilized by acid-modified soybean lipophilic protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6146-6155. [PMID: 35478100 DOI: 10.1002/jsfa.11968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Owing to the harsh acidic environment of the stomach, acid-resistant emulsion products have wide-ranging applications in the food industry. Herein, natural soybean lipophilic protein (LP) was used to establish coarse emulsions, nanoemulsions, emulsion gels, and high internal phase Pickering emulsions (HIPPE) under acidic conditions. Furthermore, the carrying characteristics of the acid-resistant emulsion system with lycopene were explored. RESULTS Comparisons of particle sizes, potentials, microstructures, and rheology of the four carrier systems revealed that HIPPE has a single particle-size distribution, the largest zeta potential, and an elastic gel-like network structure. Comparison of encapsulation rates indicated that HIPPE had the best effect on encapsulating lycopene, reaching approximately 90%. The pH stability, storage stability, and simulated in vitro digestion experiments showed that the four emulsions that were stable under acidic conditions had good acid resistance. Among them, the acid-induced LP-stabilized HIPPE had the best storage stability and superior compatibility with the harsh acidic environment of the stomach, which not only achieved the purpose of delaying the release of lipids but also conferred better protection to lycopene in the gastric tract; moreover, it achieved the best bioavailability. CONCLUSION LP-stabilized HIPPE has the best stability and can yield better absorption and utilization of lycopene by the body. The results of this study are helpful for the development of acid-resistant functional emulsion foods that are conducive to the absorption of lycopene. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanda Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
17
|
Jie Y, Chen F. Progress in the Application of Food-Grade Emulsions. Foods 2022; 11:2883. [PMID: 36141011 PMCID: PMC9498284 DOI: 10.3390/foods11182883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The detailed investigation of food-grade emulsions, which possess considerable structural and functional advantages, remains ongoing to enhance our understanding of these dispersion systems and to expand their application scope. This work reviews the applications of food-grade emulsions on the dispersed phase, interface structure, and macroscopic scales; further, it discusses the corresponding factors of influence, the selection and design of food dispersion systems, and the expansion of their application scope. Specifically, applications on the dispersed-phase scale mainly include delivery by soft matter carriers and auxiliary extraction/separation, while applications on the scale of the interface structure involve biphasic systems for enzymatic catalysis and systems that can influence substance digestion/absorption, washing, and disinfection. Future research on these scales should therefore focus on surface-active substances, real interface structure compositions, and the design of interface layers with antioxidant properties. By contrast, applications on the macroscopic scale mainly include the design of soft materials for structured food, in addition to various material applications and other emerging uses. In this case, future research should focus on the interactions between emulsion systems and food ingredients, the effects of food process engineering, safety, nutrition, and metabolism. Considering the ongoing research in this field, we believe that this review will be useful for researchers aiming to explore the applications of food-grade emulsions.
Collapse
Affiliation(s)
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
18
|
Liu Y, Liu Y. Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms. Crit Rev Food Sci Nutr 2022; 64:1653-1676. [PMID: 36062817 DOI: 10.1080/10408398.2022.2118229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Due to the unstable chemical properties and poor water solubility of carotenoids, their processing adaptation and oral bioavailability are poor, limiting their application in hydrophilic food systems. Lipid-biomacromolecular compounds can be excellent carriers for carotenoid delivery by taking full advantage of the solubilization of lipids to non-polar nutrients and the water dispersion and gastrointestinal controlled release properties of biomacromolecules. This paper reviewed the research progress of lipid-biomacromolecular compounds as encapsulation and delivery carriers of carotenoids and summarized the material selection and preparation methods for biomacromolecular compounds. By considering the interaction between the two, this paper briefly discussed the effect of these compounds on carotenoid water solubility, stability, and bioavailability, emphasizing their delivery effect on carotenoids. Finally, various challenges and future trends of lipid-biomacromolecular compounds as carotenoid delivery carriers were discussed, providing new insight into efficient loading and delivery of carotenoids.
Collapse
Affiliation(s)
- Yunjun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
| | - Yixiang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian, People's Republic of China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
19
|
Wang H, Hu L, Peng L, Du J, Lan M, Cheng Y, Ma L, Zhang Y. Dual encapsulation of β-carotene by β-cyclodextrin and chitosan for 3D printing application. Food Chem 2022; 378:132088. [PMID: 35033713 DOI: 10.1016/j.foodchem.2022.132088] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Dual encapsulation of β-carotene (CAT) by β-cyclodextrin (CCLD) and chitosan (CS) are prepared via self-assembly process by special addition order and concentration. CCLD and CS alone could not effectively stabilize CAT, while CAT could be encapsulated in cavity of CCLD and the inclusion complex could be further strengthened by CS, due to hydrogen-bonding between CCLD and CS via groups including NH2 and OH. The dispersion system based on dual encapsulation of CAT had outstanding shear-thinning behavior, proper pseudoplastic properties, satisfactory yield stress, excellent thermal stability and great thixotropy, illustrating high potential for 3D printing. 3D printing of CAT-encapsulated system with high-content CS on paper and bread proves its excellent extrudability and printability, with possible potential in nutrition personalization. The designed host encapsulation structure by CCLD and CS plays a guiding role in incorporating functional materials including bioactives, probiotics, enzymes, vitamins, etc., and provides a reference in innovative food technology.
Collapse
Affiliation(s)
- Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee, Chongqing 400715, PR China.
| | - Ludan Hu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Lin Peng
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Jie Du
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Miaochuan Lan
- College of Food Science, Southwest University, Chongqing 400715, PR China; Luzhou Vocational and Technical College, Sichuan 646699, PR China
| | - Yang Cheng
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee, Chongqing 400715, PR China.
| |
Collapse
|
20
|
Zheng R, Zhao T, Lin X, Chen Z, Li B, Zhang Y. Fabrication, characterization, and application of Pickering emulsion stabilized by tea ( Camellia sinensis (L.) O. Kuntze) waste microcrystalline cellulose. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2063883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Ruiting Zheng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tong Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bin Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Falsafi SR, Rostamabadi H, Babazadeh A, Tarhan Ö, Rashidinejad A, Boostani S, Khoshnoudi-Nia S, Akbari-Alavijeh S, Shaddel R, Jafari SM. Lycopene nanodelivery systems; recent advances. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|