1
|
Valdivia-Culqui JE, Maicelo-Quintana JL, Cayo-Colca IS, Medina-Mendoza M, Castro-Alayo EM, Balcázar-Zumaeta CR. Oleogel Systems for Chocolate Production: A Systematic Review. Gels 2024; 10:561. [PMID: 39330164 PMCID: PMC11431030 DOI: 10.3390/gels10090561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In response to the growing demand for healthier food options, this review explores advances in oleogel systems as an innovative solution to reduce saturated fats in chocolates. Although appreciated for its flavor and texture, chocolate is high in calories, mainly due to cocoa butter (CB), which is rich in saturated fats. Oleogels, three-dimensional structures formed by structuring agents in edible oils, stand out in terms of mimicking saturated fats' physical and sensory properties without compromising the quality of chocolate. This study reviews how oleogels could improve chocolate's stability and sensory quality, exploring the potential of pectin-rich agro-industrial by-products as sustainable alternatives. It also explores the need for physicochemical evaluations of both oleogel and oleogel-based chocolate.
Collapse
Affiliation(s)
- Jheniffer E Valdivia-Culqui
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Jorge L Maicelo-Quintana
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Ilse S Cayo-Colca
- Facultad de Ingeniería Zootecnista, Agronegocios y Biotecnología, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Marleni Medina-Mendoza
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - Efraín M Castro-Alayo
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
| | - César R Balcázar-Zumaeta
- Instituto de Investigación, Innovación y Desarrollo para el Sector Agrario y Agroindustrial (IIDAA), Facultad de Ingeniería y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas 01000, Peru
- Programa de Doctorado en Ciencias Agrarias, Escuela de Posgrado, Universidad Nacional de Piura, Jr. Tacna 748, Piura 20002, Peru
| |
Collapse
|
2
|
Pino NA, Marchetti L, Lorenzo G. Impact of binary mixtures of natural waxes in mechanical properties and microstructure of oleogels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6157-6165. [PMID: 38456778 DOI: 10.1002/jsfa.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Solid fats are critical to obtaining a wide range of food texture and quality characteristics, but their consumption is strongly associated with higher cardiovascular disease risks. Structuring unsaturated oils with natural waxes into oleogels (OG) is an innovative solution to develop fat mimics with a healthier profile. RESULTS Soy wax (SW), beeswax (BW) and carnauba wax (CW), have been used in binary mixtures of waxes, aiming to understand their interactions and influence on OG quality properties and microstructural characteristics. In the present study, OGs were produced using binary wax mixtures and analyzed for texture, color, smoke point, microstructure, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Wax combinations led to antagonistic (mixtures with SW) and synergistic interactions (BW/CW) based on their mechanical properties. At the microstructural level BW/CW blends showed a reduction in crystal size and with a more compact structure. XRD and FTIR spectra revealed a packing of orthorhombic perpendicular subcell for most OGs, whereas SW produced samples with an arrangement with β' crystals, characteristic of edible solid fats. Additionally, when compared to commercial beef fat, BW/CW mixtures showed similar quality attributes indicating that they could act as fat mimic. CONCLUSION The combined analysis of microstructure, spectroscopic and mechanical properties enhanced the understanding of how the nature of the interactions between waxes and lipid phases impact in the final quality of the structured oils. The study's insights indicate that binary wax combinations can efficiently replace solid fats, offering healthier alternatives at the same time as preserving desired sensory characteristics. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neuvis Alejandro Pino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata-CICPBA-UNLP), La Plata, Argentina
| | - Lucas Marchetti
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata-CICPBA-UNLP), La Plata, Argentina
| | - Gabriel Lorenzo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET La Plata-CICPBA-UNLP), La Plata, Argentina
- Departamento de Ingeniería Química, Facultad de Ingeniería, UNLP, La Plata, Argentina
| |
Collapse
|
3
|
Jeong S, Oh I. Characterization of mixed-component oleogels: Beeswax and glycerol monostearate interactions towards Tenebrio Molitor larvae oil. Curr Res Food Sci 2024; 8:100689. [PMID: 38333773 PMCID: PMC10850890 DOI: 10.1016/j.crfs.2024.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Edible insects are attracting attention as an alternative food due to their excellent production efficiency, lower carbon consumption, and containing high protein. Tenebrio Molitor larvae (TM), one of the approved edible insects worldwide, contain more than 30 % fat content consisting of 70 % unsaturated fatty acids, and particularly high phospholipids. Most of the research has focused on the utilization of proteins, and there are few studies using oils from TM. Therefore, in this study, to expand the utilization of TM oil in food applications, the oleogel was prepared with TM oil fortified by the incorporation of beeswax (BSW) and glycerol monostearate (GMS), and their structure, rheological and thermal properties were evaluated. The interaction between BSW and GMS contributed to the strength of the oleogel structure. The addition of GMS or the increase of the gelator concentrations resulted in increasing the melting point, which is consistent with the observed increase in viscoelasticity. As the temperature increased, the solid fat content decreased. The result of FT-IR suggests that TM oil is physically solidified without changing chemical composition through oleogelation. This study suggests a new processing direction for edible insects by confirming the rheological, thermal, and physicochemical characteristics of TM oil-based oleogel.
Collapse
Affiliation(s)
- Sohui Jeong
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| | - Imkyung Oh
- Department of Food Science & Technology, Sunchon National University, Suncheon, South Korea
| |
Collapse
|
4
|
Ding S, Chen X, Ouyang B, Yang B, Wang W, Wang Y. Exploring Diacylglycerol Oil-Based Oleogels as Effective Stabilizers in Peanut Butter: Performance, Structural Insights, and Sensory Evaluation. J Oleo Sci 2024; 73:135-145. [PMID: 38311404 DOI: 10.5650/jos.ess23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
In the pursuit of reducing oil separation in peanut butter, oleogels synthesized from diacylglycerol (DAG)-rich peanut oils, using glycerol monostearate (GMS) as the gelator, were examined as alternative stabilizers. In comparison to triacylglycerol (TAG)-rich peanut oils, the DAG oil-based oleogels exhibited better oil-binding capacities across increasing GMS concentrations. Intriguingly, thermal and rheological assessments pointed to a weaker network structure in DAG oil oleogels, as evidenced by their lower crystallization temperatures and reduced viscoelastic parameters (G' and G''). Insight from infrared spectroscopy revealed that this could stem from heightened intermolecular hydrogen bonding between the DAG oil and the gelator. When applied to peanut butter, DAG oil oleogels demonstrated efficacy in minimizing oil separation. Extended storage trials affirmed the long-term stability of peanut butter formulations incorporating these oleogels. Furthermore, sensory evaluations by panelists underscored favorable impressions, suggesting potential consumer acceptance. Overall, this study illuminates the promising role of DAG oleogels as effective, alternative stabilizers in peanut butter formulations.
Collapse
Affiliation(s)
- Siliang Ding
- College of Bioscience and Bioengineering, South China University of Technology
| | - Xiaohan Chen
- College of Food Science and Technology, South China University of Technology
| | - Bo Ouyang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
| | - Bo Yang
- College of Bioscience and Bioengineering, South China University of Technology
| | - Weifei Wang
- Institute of Sericulture and Agricultural Products Processing, Guangdong Academy of Agricultural Sciences
| | - Yonghua Wang
- College of Food Science and Technology, South China University of Technology
- Guangdong Yue-shan Special Nutrition Technology Co., Ltd
| |
Collapse
|
5
|
Frolova Y, Makarenko M, Kochetkova A. Analysis of Oleogel Volatile Profile Formation under Ultrasonic Treatment. Gels 2023; 9:823. [PMID: 37888396 PMCID: PMC10606149 DOI: 10.3390/gels9100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Under certain conditions, ultrasonic treatment of certain foods and ingredients can contribute to the appearance of an extraneous odor, which is not usual for them, especially in fat-containing products. Since the food sector uses high-intensity ultrasound to control the crystallization of fats, the development of foreign smells and secondary fat oxidation products may impact the quality and safety of such items. In this work, we studied the volatile compounds' profiles of oleogels structured with individual fractions of beeswax using ultrasonic treatment. For this work, six samples of oleogels were obtained. Sunflower oil was used as a fatty base, and three fractions of beeswax were used as gelators: hydrocarbon fraction (>99%), monoester fraction (>95%), and a mixture fraction of wax di- and triesters (10.1%), free fatty acids (40.1%), and free fatty alcohols (49.8%). The influence of ultrasonic treatment on the properties of oleogels was assessed using light microscopy in polarized light, texture analysis, gas chromatography with flame ionization, and mass spectrometric detection. Ultrasonic treatment affected the crystallization of oleogels and led to the formation of smaller crystals. At the same time, sonication led to both an increase and a decrease in the firmness of oleogels, depending on the composition of the gelator. As regards volatile compounds, a total of 121 fragrant substances were identified in all samples, including such groups as alkanes, alkenes, alkadienes, alkynes, alkadiynes, alcohols, ketones, aldehydes, terpenes, alkyl alkane, and alkyl benzene derivatives. Ultrasonic treatment caused formation of new volatile unsaturated compounds. Some of them are known to have an unpleasant odor and thus might be responsible for the extraneous odor formation in studied fatty systems. Those were mainly (E)-2-octene, 1-heptene, 1,3-butadiene, and 1,3-octadiene in all oleogel samples. Sonicated samples B and C additionally had but-1-en-3-yne, pentenyne, and 1,3-butadiyne, whose odor can also be characterized as extraneous and distasteful. Several volatile compounds, supposed to be products of lipid oxidation, were also identified. Here we assume a reasonable approach is needed when selecting sonication conditions to prevent undesirable taste and flavor in oleogels and oleogel-based food products.
Collapse
Affiliation(s)
- Yuliya Frolova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution “Federal Research Center of Nutrition, Biotechnology and Food Safety”, 109240 Moscow, Russia;
| | - Mariia Makarenko
- Laboratory of Food Chemistry, Federal State Budgetary Scientific Institution “Federal Research Center of Nutrition, Biotechnology and Food Safety”, 109240 Moscow, Russia;
| | - Alla Kochetkova
- Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution “Federal Research Center of Nutrition, Biotechnology and Food Safety”, 109240 Moscow, Russia;
| |
Collapse
|
6
|
Zhang J, Zhang M, Chen K, Deng D. Improvement strategies for fats and oils used in future food processing based on health orientation and sustainability: research progress, challenges and solutions. Crit Rev Food Sci Nutr 2023; 65:47-63. [PMID: 39722463 DOI: 10.1080/10408398.2023.2266835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
As the third largest source of energy in addition to carbohydrates and proteins, lipids provide the body with more than twice as much energy as carbohydrates and proteins and are the accumulated "fuel bank" of the body. They are widely stored in animals, plants and microorganisms and are effectively extracted for dietary use by improved and novel technologies. Under the pressure of the current environment, we should immediately look for new strategies to improve or develop dietary lipids that are compatible with the development of the future food industry, in order to mitigate the environmental and climatic degradation caused by the lipid-producing activities of the animal husbandry industry, to avoid the contradiction between the demand for high quality of human beings and the strain on the resources, and to reduce the health risks caused by saturated fats and trans-fats in meat products. At present, workers concerned are opening up new avenues for the future edible lipids, for example, researches into fat and oil substitutes, the use of biotechnology in lipids and the value-added reuse of waste products is in full swing. The article therefore began with a detailed overview of the known lipids available, understanding their origins and the ways in which they were classified by region. Secondly, possible trends and potential strategies for dietary lipids for use in future foods were presented. Finally, constructive comments are made on the problems and challenges that may be encountered in the research and subsequent industrialization process.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Flores-García CL, Medina-Herrera N, Rodríguez-Romero BA, Martínez-Ávila GCG, Rojas R, Meza-Carranco Z. Impact of Fat Replacement by Using Organic-Candelilla-Wax-Based Oleogels on the Physicochemical and Sensorial Properties of a Model Cookie. Gels 2023; 9:636. [PMID: 37623091 PMCID: PMC10453563 DOI: 10.3390/gels9080636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/26/2023] Open
Abstract
Oleogelation is an alternative process to improve the nutritional properties of food by creating soft-matter structures with the same functionality as commercial fats (shortenings). In this study, oleogels were produced by adding organic candelilla wax at 3% (OC03), 6% (OC06), and 9% (OC09) to extra-virgin linseed oil, and then characterized by their physicochemical properties. Furthermore, the physicochemical and sensorial properties of five cookie formulations were evaluated. Organic candelilla wax influenced the oleogel formulations, giving higher values of color (L* and b*), texture, acidity index, and melting point. In the cookie formulations, the luminosity values decreased when the percentage of oleogel was increased; reddish trends were obtained (a* values) for the cookie where 70% of the fat was replaced by the oleogel (C70), and more yellow trends were obtained (b* values) for C100. The moisture content was higher in cookies with oleogels, but it was within quality limits. The percentage of fat migration was lower in cookies with a mixture of fats and oleogels. In terms of hardness, the substitution of oleogels resulted in softer cookies. In terms of the sensory evaluation, the most accepted cookie was C70. Therefore, this study demonstrates the possibility of using organic-candelilla-wax-based oleogels in a real food model rich in unsaturated fats.
Collapse
Affiliation(s)
| | | | | | - Guillermo Cristian Guadalupe Martínez-Ávila
- Chemistry and Biochemistry Laboratory, School of Agronomy, Autonomous University of Nuevo León, Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico; (C.L.F.-G.); (N.M.-H.); (B.A.R.-R.); (Z.M.-C.)
| | - Romeo Rojas
- Chemistry and Biochemistry Laboratory, School of Agronomy, Autonomous University of Nuevo León, Av. Francisco Villa S/N, Col. Ex Hacienda el Canadá, General Escobedo 66050, Nuevo León, Mexico; (C.L.F.-G.); (N.M.-H.); (B.A.R.-R.); (Z.M.-C.)
| | | |
Collapse
|
8
|
Lu Y, Li J, Ding J, Nie X, Yu N, Meng X. Comparison of diosgenin-vegetable oils oleogels with various unsaturated fatty acids: Physicochemical properties, in-vitro digestion, and potential mechanism. Food Chem 2023; 413:135663. [PMID: 36796264 DOI: 10.1016/j.foodchem.2023.135663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
This study aimed to evaluate the influence of gelation and unsaturated fatty acids on the reduced extent of lipolysis between diosgenin (DSG)-based oleogels and oils with various unsaturated fatty acids. Overall, the lipolysis of oleogels was significantly lower than oils. The highest reduced extent of lipolysis (46.23 %) was obtained in linseed oleogels (LOG) while sesame oleogels possessed the lowest (21.17 %). It was suggested LOG discovered the strong van der Waals force to induce the robust gel strength and tight cross-linked network and then increase the contact difficulty between lipase and oils. Correlation analysis revealed that C18:3n-3 was positively correlated with hardness and G' while C18:2n-6 was negative. Thus, the effect on the reduced extent of lipolysis with abundant C18:3n-3 was most significant while that rich in C18:2n-6 was least. These discoveries provided a deepening insight into DSG-based oleogels with various unsaturated fatty acids to design desirable properties.
Collapse
Affiliation(s)
- Yuanchao Lu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jialing Li
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jue Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaohua Nie
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ningxiang Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Xianghe Meng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
9
|
Ropciuc S, Dranca F, Oroian MA, Leahu A, Codină GG, Prisacaru AE. Structuring of Cold Pressed Oils: Evaluation of the Physicochemical Characteristics and Microstructure of White Beeswax Oleogels. Gels 2023; 9:gels9030216. [PMID: 36975665 PMCID: PMC10048366 DOI: 10.3390/gels9030216] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The aim of the study was to characterize the gelling effect of beeswax (BW) using different types of cold pressed oil. The organogels were produced by hot mixing sunflower oil, olive oil, walnut oil, grape seed oil and hemp seed oil with 3%, 7% and 11% beeswax. Characterization of the oleogels was done using Fourier transform infrared spectroscopy (FTIR), the chemical and physical properties of the oleogels were determined, the oil binding capacity was estimated and the SEM morphology was studied. The color differences were highlighted by the CIE Lab color scale for evaluating the psychometric index of brightness (L*), components a and b. Beeswax showed excellent gelling capacity at 3% (w/w) of 99.73% for grape seed oil and a minimum capacity of 64.34%for hemp seed oil. The value of the peroxide index is strongly correlated with the oleogelator concentration. Scanning electron microscopy described the morphology of the oleogels in the form of overlapping structures of platelets similar in structure, but dependent on the percentage of oleogelator added. The use in the food industry of oleogels from cold-pressed vegetable oils with white beeswax is conditioned by the ability to imitate the properties of conventional fats.
Collapse
|
10
|
Zheng L, Zhong J, Liu X, Wang Q, Qin X. Physicochemical properties and intermolecular interactions of a novel diacylglycerol oil oleogel made with ethyl cellulose as affected by γ-oryzanol. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Frolova Y, Sarkisyan V, Sobolev R, Kochetkova A. Ultrasonic Treatment of Food Colloidal Systems Containing Oleogels: A Review. Gels 2022; 8:gels8120801. [PMID: 36547325 PMCID: PMC9777715 DOI: 10.3390/gels8120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The use of oleogels as an alternative to solid fats to reduce the content of saturated and trans-isomeric fatty acids is a developing area of research. Studies devoted to the search for methods of obtaining oleogels with given properties are of current interest. Ultrasonic treatment as a method for modifying oleogel properties has been used to solve this problem. The number of publications on the study of the effect of ultrasonic treatment on oleogel properties is increasing. This review aimed to systematize and summarize existing data. It allowed us to identify the incompleteness of this data, assess the effect of ultrasonic treatment on oleogel properties, which depends on various factors, and identify the vector of this direction in the food industry. A more detailed description of the parameters of ultrasonic treatment is needed to compare the results between various publications. Ultrasonic treatment generally leads to a decrease in crystal size and an increase in oil-binding capacity, rheological properties, and hardness. The chemical composition of oleogels and the concentration of gelators, the amplitude and duration of sonication, the cooling rate, and the crystallization process stage at which the treatment occurs are shown to be the factors influencing the efficiency of the ultrasonic treatment.
Collapse
|
12
|
Puşcaş A, Mureşan V. The Feasibility of Shellac Wax Emulsion Oleogels as Low-Fat Spreads Analyzed by Means of Multidimensional Statistical Analysis. Gels 2022; 8:749. [PMID: 36421571 PMCID: PMC9689311 DOI: 10.3390/gels8110749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Shellac wax-based oleogel emulsions were studied with a three level two factorial design in order to find an optimal formulation for a spread formulation. Rheological, textural, colorimetry, and stability analysis were conducted to assess the performance of oleogel emulsions. FTIR spectra were also compared. The similarities between the samples were studied using cluster analysis. Analysis of variance (ANOVA) demonstrates that (i) the texture is influenced by the wax concentration, (ii) the rheology and stability by both the considered numeric factors (wax and water concentration) and their interaction, and (iii) the color by both factors. The emulsions containing 7% (m/m) shellac oleogels behaved like the strongest systems, (G′ & GLVR > 30,000 Pa) and exhibited the highest value of the G′-G″ cross-over. The lowest oil binding capacity (OBC) was 99.88% for the sample with 3% (m/m) shellac and 20% (m/m) water. The whiteness index (Windex) varied between 58.12 and 78.50. The optimization process indicated that a formulation based on 4.29% (m/m) shellac wax and 24.13% (m/m) water was suitable as a low-fat spread.
Collapse
Affiliation(s)
- Andreea Puşcaş
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| | - Vlad Mureşan
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăştur Street, No. 3-5, 400372 Cluj-Napoca, Romania
- Technological Transfer Center “CTT-BioTech”, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Floreşti Street, No. 64, 400509 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Variations in Microstructural and Physicochemical Properties of Soy Wax/Soybean Oil-Derived Oleogels Using Soy Lecithin. Polymers (Basel) 2022; 14:polym14193928. [PMID: 36235877 PMCID: PMC9570507 DOI: 10.3390/polym14193928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Emerging natural-based polymers and materials progress and new technology innovations open the way for unique food products with high nutritional value development. In this regard, oleogel may be essential in replacing fatty acids from food products. In this study, we researched the effects of varied soy lecithin (SYL) concentrations on the various physicochemical characteristics of soy wax (SW)/refined soybean oil (RSO) oleogels. These oleogels had a soft texture. The microscopic analysis of the oleogels suggested that the thickness, length, and density of the wax crystals (needle-shaped) varied as the SYL content was changed. Colorimetric analysis indicated that the oleogels were slightly yellowish. FTIR spectrometry helped analyze the functional groups of the raw materials and the oleogels. All the functional groups present in the raw materials could be accounted for within the oleogels. The only exception is the hydrogen-bonding peak in SW, which was not seen in the FTIR spectrum of the oleogels. It was found that at a critical SYL content, the oleogel showed a stable and repeatable wax network structure. This can be described by the presence of the uniformly distributed fat crystal network in the sample. The DSC analysis revealed that the oleogel samples were thermo-reversible, with their melting and crystallization temperatures ~43 °C and ~22 °C, respectively. In gist, it can be concluded that the incorporation of SYL can impact the color, wax crystal network characteristics, thermal characteristics, and mechanical characteristics of the oleogels in a composition-dependent manner.
Collapse
|
14
|
Babu A, Sivakumar G, Das A, Bharti D, Qureshi D, Habibullah SK, Satheesan A, Mohanty B, Pal K, Maji S. Preparation and Characterization of Novel Oleogels Using Jasmine Floral Wax and Wheat Germ Oil for Oral Delivery of Curcumin. ACS OMEGA 2022; 7:30125-30136. [PMID: 36061661 PMCID: PMC9434628 DOI: 10.1021/acsomega.2c03201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/04/2022] [Indexed: 05/31/2023]
Abstract
Oleogels (OGs) have gained a lot of interest as a delivery system for a variety of pharmaceuticals. The current study explains the development of jasmine floral wax (JFW) and wheat germ oil (WGO)-based OGs for oral drug (curcumin) delivery application. The OGs were made by dissolving JFW in WGO at 70 °C and cooling it to room temperature (25 °C). The critical gelation concentration of JFW that induces the gelation of WGO was found to be 10% (w/w). The OGs were characterized using various techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), microscopic analysis, and mechanical test. XRD data indicated that JFW influences the crystallinity of the OGs. Among the prepared OGs, OG 17.5 showed higher crystallization in the series. Optical microscopic studies demonstrated the formation of fiber structures due to the entanglement of crystals whereas, polarized light micrographs suggested the formation of spherulites or clustered crystallite structures. The mechanical properties of the OGs increased linearly with the increase in the JFW concentration. Curcumin-loaded OGs were examined for their controlled release applications. In summary, the developed OGs were found to have the necessary features for modulating the oral delivery of curcumin.
Collapse
Affiliation(s)
- Anashwara Babu
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Gomathi Sivakumar
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Anubhab Das
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | - Deepti Bharti
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Dilshad Qureshi
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - SK Habibullah
- Institute
of Pharmacy and Technology, Salipur, Odisha 754202, India
| | - Anjana Satheesan
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| | | | - Kunal Pal
- Department
of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Samarendra Maji
- Department
of Chemistry, SRM Institute of Science and
Technology, Kattankulathur, Chennai 603203, India
| |
Collapse
|
15
|
Gel Properties and Formation Mechanism of Camellia Oil Body-Based Oleogel Improved by Camellia Saponin. Gels 2022; 8:gels8080499. [PMID: 36005100 PMCID: PMC9407265 DOI: 10.3390/gels8080499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effect of camellia saponin (CS) on the structural characteristics, texture properties, rheological properties, and thermal stability of camellia oil body-based oleogel (COBO). In addition, the formation mechanism of COBO was further studied in terms of the microstructure and texture of freeze-dried products, the mobility of hydrogen protons, and the conformation and structure changes of oleosin. The texture and rheological properties of the oleogels were found to be gradually improved with the incorporation of CS. This was attributed to the CS-induced enhancement of oil body interfacial film. CS was likely to bind to oleosin via hydrogen bonding and hydrophobic interactions, thereby forming a thick CS-oleosin complex interface, which was revealed by the oleosin fluorescence quenching and an increase in the ordered structure (α-helix). The composite interface could resist the crystallization damage and air disturbance caused by solidification and sublimation of water during freeze-drying, resulting in a denser and more uniform three-dimensional gel structure to trap the liquid oil, which could be explained by the decreased mobility of hydrogen protons in oleogel. The work offers a new proposal and theoretical basis for the development of saponin-enhanced oleogels using non-thermal processing.
Collapse
|