1
|
Tang J, Wu X, Lv D, Huang S, Zhang Y, Kong F. Effect of salt concentration on the quality and microbial community during pickled peppers fermentation. Food Chem X 2024; 23:101594. [PMID: 39040148 PMCID: PMC11261264 DOI: 10.1016/j.fochx.2024.101594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
This work aimed to investigate the effect of salt concentration on the quality and microbial community of pickled peppers during fermentation, and the cross-correlation between microorganisms and quality was also revealed. The results showed that 9 volatile flavor compounds were unique to the low salt concentration group (D group), which also contained higher content of FAA, lactic acid and acetic acid than high salt concentration group (G group). Meanwhile, the samples of D2 group have a better texture properties. Firmicutes, Proteobacteria, Ascomycota, Lactobacillus, Pectobacterium, and Pseudomonas were detected as the main microbial community during the fermentation with different salt concentrations. Furthermore, the correlations analysis results indicated that the salt concentration has a significant effect on the microbial community of pickled peppers (p < 0.001), and Pediococcus, Lactobacillus, Cedecca, Issatchenkia, Pichia, Kazachstania, and Hanseniaspora were significantly correlated with flavors, which played crucial roles in the unique flavor formation of pickled peppers.
Collapse
Affiliation(s)
- Jianbo Tang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Xiaomeng Wu
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| | - Du Lv
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Shan Huang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Yu Zhang
- Guizhou Food Processing Institute, Guizhou, Academy of Agricultural Sciences, Guiyang, 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, 550006, China
| | - Fanhua Kong
- School of Food Science and Technology, Dalian Polytechnic University, Liaoning, 116000, China
| |
Collapse
|
2
|
Xian S, Zhao F, Huang X, Liu X, Zhang Z, Zhou M, Shen G, Li M, Chen A. Effects of Pre-Dehydration Treatments on Physicochemical Properties, Non-Volatile Flavor Characteristics, and Microbial Communities during Paocai Fermentation. Foods 2024; 13:2852. [PMID: 39272618 PMCID: PMC11395261 DOI: 10.3390/foods13172852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The paocai industry faces challenges related to the production of large volumes of high-salinity and acidic brine by-products. Maintaining paocai quality while reducing brine production is crucial. This study utilized high-throughput sequencing technology to analyze microbial changes throughout the fermentation process, along with the non-volatile flavor compounds and physicochemical properties, to assess the impact of hot-air and salt-pressing pre-dehydration treatments on paocai quality. The findings indicate that pre-dehydration of raw material slowed the fermentation process but enhanced the concentration of non-volatile flavor substances, including free amino acids and organic acids. Hot-air pre-dehydration effectively reduced initial salinity to levels comparable to those in high-salinity fermentation of fresh vegetables. Furthermore, pre-dehydration altered microbial community structures and simplified inter-microbial relationships during fermentation. However, the key microorganisms such as Lactobacillus, Weissella, Enterobacter, Wallemia, Aspergillus, and Kazachstania remained consistent across all groups. Additionally, this study found that biomarkers influenced non-volatile flavor formation differently depending on the treatment, but these substances had minimal impact on the biomarkers and showed no clear correlation with high-abundance microorganisms. Overall, fermenting pre-dehydrated raw materials presents an environmentally friendly alternative to traditional paocai production.
Collapse
Affiliation(s)
- Shuang Xian
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Feng Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xinyan Huang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xingyan Liu
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Guanghui Shen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Meiliang Li
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
3
|
Zheng Z, Zhou Q, Chen Q, Gao J, Wu Y, Yang F, Zhong K, Gao H. Improvement of physicochemical characteristics, flavor profiles and functional properties in Chinese radishes via spontaneous fermentation after drying. J Food Sci 2023; 88:1292-1307. [PMID: 36815393 DOI: 10.1111/1750-3841.16486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/24/2023]
Abstract
Spontaneously dried-fermented radishes have been consumed in China for hundreds of years and are usually fermented for a long time to acquire high quality. In this study, the spontaneously dried-fermented radishes with short-term manufacturing periods were made from five different varieties of radishes that grew in the same environment. In addition, the physicochemical characteristics (i.e., moisture content, soluble solid, and pH value), flavor profiles (i.e., free amino acids, organic acids, and volatile compounds), and functional properties (i.e., total phenolics content, total flavonoids content, sulforaphane content, and γ-aminobutyric acid [GABA] content) of these five raw radishes and spontaneously dried-fermented radishes were analyzed and compared. In detail, the content of volatile and nonvolatile compounds increased, especially in oxalic acid, succinic acid, and umami free amino acids. Furthermore, functional components, such as sulforaphane and GABA, were also enriched via spontaneous fermentation after drying. In addition, the results of principal component analysis, hierarchical clustering analysis, and redundancy analysis showed that there were significant discrepancies appeared when raw radishes were processed via spontaneous fermentation or not. These results suggested that the process of spontaneous fermentation after drying may contribute to improving the quality of fresh radishes. Notably, radishes with red skin and flesh were regarded as exceptional varieties for processing, because of the preferable flavor profiles and affluent functional substances via spontaneous fermentation after drying. Therefore, these findings could deliver a systematical insight into developing processed radishes with high quality. PRACTICAL APPLICATION: The spontaneously dried-fermented radishes were manufactured through the process of spontaneous fermentation after drying, which acquired tasty and healthy characteristics by accumulating the volatile and nonvolatile compounds as well as the functional components, like total phenolics, total flavonoids, sulforaphane, and γ-aminobutyric acid. Importantly, because of the excellent processing properties, the radishes with red skin and flesh could be more appropriate to produce spontaneously dried-fermented radishes. Our findings may provide a practical strategy for developing vegetable relishes with superb flavor profiles and good functional properties in pickled vegetables.
Collapse
Affiliation(s)
- Zimeng Zheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qian Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qian Chen
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jia Gao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yanping Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Feng Yang
- Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Deyang, Sichuan, China.,Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Kai Zhong
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Hong Gao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Deng W, Liu LL, Yu GB, Li N, Yang XY, Xiao W. Testing the Resource Hypothesis of Species-Area Relationships: Extinction Cannot Work Alone. Microorganisms 2022; 10:1993. [PMID: 36296268 PMCID: PMC9611600 DOI: 10.3390/microorganisms10101993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The mechanisms that underpin the species-area relationship (SAR) are crucial for both the development of biogeographic theory and the application of biodiversity conservation. Since its origin, the resource hypothesis, which proposes that rich resources in vast ecosystems will lower extinction rates and shape the SAR, has not been tested. The impossibility to quantify resources and extinction rates using plants and animals as research subjects, as well as the inability to rule out the influences of the area per se, habitat diversity, dispersal, and the historical background of biodiversity, make testing this hypothesis problematic. To address these challenges and test this hypothesis, two sets of microbial microcosm experimental systems with positive and negative correlated resources and volumes were created in this work. The results of 157 high-throughput sequencing monitoring sessions at 11 time points over 30 consecutive days showed that neither of the experimental groups with positive or negative correlations between total resources and microcosm volume had a significant SAR, and there were no negative correlations between extinction rates and resources. Therefore, in our microcosmic system, resources do not influence extinction rates or shape the SAR. Dispersal should be the principal mode of action if the resource theory is correct.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Li-Lei Liu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Guo-Bin Yu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Na Li
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primates Conservation, Dali 671003, China
| | - Xiao-Yan Yang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
| | - Wen Xiao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali 671003, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali 671003, China
- The Provincial Innovation Team of Biodiversity Conservation and Utility of the Three Parallel Rivers Region, Dali University, Dali 671003, China
- International Centre of Biodiversity and Primates Conservation, Dali 671003, China
- Yunling Black-and-White Snub-Nosed Monkey Observation and Research Station of Yunnan Province, Dali 761003, China
| |
Collapse
|
5
|
Dai JW, Zhang Q, Li M, Li LJ, Xu LJ, Liu YW, Yin PF, Liu SX, Zhao YP, Gou KY, Li YL, Qin W. Enhanced mass transfer of pulsed vacuum pressure pickling and changes in quality of sour bamboo shoots. Front Microbiol 2022; 13:981807. [PMID: 36187974 PMCID: PMC9523241 DOI: 10.3389/fmicb.2022.981807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sour bamboo shoot is a traditional Chinese fermented vegetable food. The traditional pickling method of sour bamboo shoots has the disadvantages of being time-consuming, inhomogeneous, and difficult to control. Pulsed vacuum pressure pickling (PVPP) technology uses pulsed vacuum pressure to enhance the pickling efficiency significantly. To demonstrate the effects of salt content and PVPP technical parameters on the fermentation of bamboo shoots, the sample salinity, pH value, color, crunchiness and chewiness, nitrite content, and lactic acid bacteria content during the pickling process were investigated. The salt content inside the bamboo shoots gradually increased to the equilibrium point during the pickling process. The pickling efficiency of bamboo shoots under PVPP technology increased by 34.1% compared to the traditional control groups. Meanwhile, the uniform salt distribution under PVPP technology also obtained better performance in comparison with the traditional groups. The pH value declined slowly from 5.96 to 3.70 with the extension of pickling time and sour flavor accumulated progressively. No significant differences were found in the color values (L*, a*, and b*) and the crunchiness of the bamboo shoot under different salt solution concentrations, vacuum pressure, and pulsation frequency ratio conditions. Colony-forming unit of lactic acid bacteria (CFU of LAB) decreased, to begin with, and then increased until the 6th day, followed by a declining trend in volatility. The nitrate content of bamboo shoots samples under PVPP treatments did not exceed the safety standard (<20 mg/kg) during the whole fermentation process, which proves the safety of PVPP technology. In conclusion, PVPP technology can safely replace the traditional method with better quality performance. The optimal PVPP processing conditions (vacuum pressure 60 kPa, 10 min vacuum pressure time vs. 4 min atmospheric pressure time, salt solution concentration 6%) have been recommended for pickling bamboo shoots with high product quality.
Collapse
Affiliation(s)
- Jian-Wu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Qing Zhang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Ming Li
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Lian-Jie Li
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Li-Jia Xu
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
- *Correspondence: Li-Jia Xu
| | - Yao-Wen Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Peng-Fei Yin
- College of Science, Sichuan Agricultural University, Ya'an, China
| | - Shu-Xiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yong-Peng Zhao
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Kai-Yun Gou
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, China
| | - Ying-Lu Li
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, China
- Wen Qin
| |
Collapse
|