1
|
Walayat N, Wei R, Lorenzo JM, Nawaz A, Khalifa I, Su Z, Salah M, Ahmed M. Kappa-carrageenan and xylooligosaccharide effect on water mobility and structural changes in silver carp proteins during frozen storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8511-8518. [PMID: 39031689 DOI: 10.1002/jsfa.13678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The cryoprotective effect of xylooligosaccharide (XO) and kappa-carrageenan (KC) mixture on silver carp proteins in fluctuated frozen storage from 4 to -18 °C was analyzed. Positive control as a conventional cryoprotectant mixture of sucrose (4%) and sorbitol (4%), KC (3%) and XO/KC (3%) treatments were incorporated in silver carp surimi and myofibrillar proteins to analyze the water mobility and its influence on structural attributes. RESULTS The temperature fluctuation significantly increased the structural alteration in samples with no treatments due to oxidative changes, protein denaturation and recrystallization. Meanwhile, the mixture of XO and KC (XO/KC 3%) significantly reduced the tertiary and secondary structural alterations by preventing the oxidative changes in α-helix and tryptophan (Trp) residues. Moreover, XO/KC (3%) inhibited water mobility, hindering the T22 relaxation time, as compared to the samples added with KC (3%) and the positive control. Interestingly, the XO/KC (3%) mixture significantly reduced the formation of extracellular spaces and recrystallization by restricting the partial dehydration of muscles and extracellular solution concentration. CONCLUSION From the current results, it can be concluded that the XO/KC mixture could be efficient in protecting aquatic food proteins during fluctuating frozen storage by preventing the exposure of Trp residues and α-helix contents. Moreover, XO/KC restricted the water mobility by establishing a bond and making water unavailable for crystallization and recrystallization. Therefore, XO/KC could be used as an effective mixture to prevent fluctuated and frozen storage changes in aquatic foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Noman Walayat
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Ran Wei
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, Spain
- Universidade de Vigo, Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Ourense, Spain
| | - Asad Nawaz
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Qaliuobia, Egypt
| | - Zhucheng Su
- College of Tea Science and Tea Culture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Mahmoud Salah
- Department of Enviromental Agricultural Science, Faculty of Graduate Studies and Enviromental Research, Ain Shams University, Cairo, Egypt
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Zhang Y, Bai G, Wang Y, Wang J, Teng W, Li M, Yao X, Cao J. Exploring the potential of fibrinogen hydrolysates as enhancers for myofibrillar protein gelation: Insights into molecular assembly behavior. Food Chem 2024; 464:141587. [PMID: 39423548 DOI: 10.1016/j.foodchem.2024.141587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
This study explored the use of pig blood fibrinogen hydrolysates, enzymatically hydrolyzed with trypsin and flavorzyme, to enhance myofibrillar protein gels, addressing issues like poor gel strength and water loss in meat products. By incorporating varying concentrations of fibrinogen hydrolysates into myofibrillar proteins, heat-induced gels were prepared. The composite gels showed improved textural properties, rheological characteristics and water-holding capacity. Scanning electron microscopy and atomic force microscopy analyses revealed a uniform, dense surface and an orderly internal structure in the composite gels. The study also noted decreased α-helix and random coil and increased β-sheet and β-turn contents, indicating a more ordered secondary structure. Hydrophobic interactions and disulfide bonds were identified as key factors in enhancing gelation, and a model was proposed to explain these molecular effects. This research demonstrates a potential of fibrinogen hydrolysates to improve quality and structure of myofibrillar protein gels designed for high-quality meat products.
Collapse
Affiliation(s)
- Yuemei Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Genpeng Bai
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ying Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| | - Jinpeng Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Wendi Teng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China
| | - Ming Li
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi, 276036, Shandong, China
| | - Xianqi Yao
- Linyi Jinluo Win Ray Food Co., Ltd., Linyi, 276036, Shandong, China
| | - Jinxuan Cao
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, 100048 Beijing, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, 100048 Beijing, China.
| |
Collapse
|
3
|
Zhai Y, Peng W, Luo W, Wu J, Liu Y, Wang F, Li X, Yu J, Wang S. Component stabilizing mechanism of membrane-separated hydrolysates on frozen surimi. Food Chem 2024; 431:137114. [PMID: 37595381 DOI: 10.1016/j.foodchem.2023.137114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
This study investigated the cryoprotective mechanism of ultrafiltration membrane-separated fractions (>10 kDa, UF-1; 3-10 kDa, UF-2; and <3 kDa, UF-3) derived from silver carp hydrolysates on frozen surimi. The surimi gel incorporating UF-3 exhibited a compact, continuous structure with uniform pores, even after undergoing six freeze-thaw (F-T) cycle, with the minimal reduction in entrapped water (from 95.1 % to 91.1 %) and least increase in free water (from 4.5 % to 6.6 %) as revealed by SEM and LF-NMR analysis. Through molecular docking analysis, three major peptides in UF-3 were identified to form robust interactions with the myosin head pocket, facilitated by hydrogen bonds, electrostatic forces, and hydrophobic interactions. Furthermore, molecular dynamics simulations demonstrated that the three peptides effectively prevented myosin from unfolding and aggregating by tightly binding to basic amino acids (Arg, Lys) and hydrophobic amino acids (Phe, Leu, Ile, Met, and Val) residues in the myosin head pocket, primarily governed by electrostatic energies (-156.95, -321.38, and -267.53 kcal/mol, respectively) and van der Waals energies (-395.05, -347.46, and -319.16 kcal/mol, respectively). Notably, the key action site was identified as Lys599 on myosin. The hydrophilic and hydrophobic hotspot residues of the peptides worked synergistically to stabilize the myosin structure in frozen surimi.
Collapse
Affiliation(s)
- Yueying Zhai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Wei Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| | - Jian Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian Province, China.
| |
Collapse
|
4
|
Nikoo M, Regenstein JM, Yasemi M. Protein Hydrolysates from Fishery Processing By-Products: Production, Characteristics, Food Applications, and Challenges. Foods 2023; 12:4470. [PMID: 38137273 PMCID: PMC10743304 DOI: 10.3390/foods12244470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Fish processing by-products such as frames, trimmings, and viscera of commercial fish species are rich in proteins. Thus, they could potentially be an economical source of proteins that may be used to obtain bioactive peptides and functional protein hydrolysates for the food and nutraceutical industries. The structure, composition, and biological activities of peptides and hydrolysates depend on the freshness and the actual composition of the material. Peptides isolated from fishery by-products showed antioxidant activity. Changes in hydrolysis parameters changed the sequence and properties of the peptides and determined their physiological functions. The optimization of the value of such peptides and the production costs must be considered for each particular source of marine by-products and for their specific food applications. This review will discuss the functional properties of fishery by-products prepared using hydrolysis and their potential food applications. It also reviews the structure-activity relationships of the antioxidant activity of peptides as well as challenges to the use of fishery by-products for protein hydrolysate production.
Collapse
Affiliation(s)
- Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia 57179-44514, Iran
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| | - Mehran Yasemi
- Department of Fisheries, Institute of Agricultural Education and Extension, Agricultural Research, Education, and Extension Organization (AREEO), Tehran 19858-13111, Iran;
| |
Collapse
|
5
|
Shen Z, Gao H, Peng W, Wang F, Liu Y, Wu J, Wang S, Li X. Cryoprotective effect of soybean oil on surimi gels and the mechanism based on molecular dynamics simulation. J Texture Stud 2023. [PMID: 37968073 DOI: 10.1111/jtxs.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The effect of soybean oil (SO) on freeze-thaw (F-T)-treated surimi was investigated and its related mechanism was revealed by molecular dynamics (MD) simulations. The results displayed that SO has a disrupting effect on the structure of fresh samples. However, in the F-T-treated samples, surimi gels supplemented with SO had a more uniform microstructure. Simultaneously, when SO was added from 0% to 7% in the F-T-treated samples, the gel strength increased from46.66 to 51.86 N · mm $$ 46.66\ \mathrm{to}\ 51.86\;\mathrm{N}\cdotp \mathrm{mm} $$ (p < .05), the physically bound water was increased from 92.90% to 94.15% (p < .05), and storage modulus was increased from 5939 to 6523 Pa. Triglycerides of SO generated hydrophobic interactions with myosin mainly in carbon chains. Computational results from MD simulations illustrated that the structure of myosin combined with triglycerides was more stable than that of myosin alone during temperature fluctuations (-20 to 4°C). During ice crystal growth, triglycerides absorbed on the myosin surface inhibited the growth of surrounding ice crystals and mitigated the ice crystal growth rate (from 7.54 to 5.99 cm/s). The addition of SO during the F-T treatments allowed myosin to be less negatively affected by ice crystal formation and temperature fluctuations and ultimately contributed to the formation of a more uniform network gel structure.
Collapse
Affiliation(s)
- Zhiwen Shen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Huaqian Gao
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Wanqi Peng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha, Hunan Province, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha, Hunan Province, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, Hunan Province, China
| |
Collapse
|
6
|
Inhibition mechanism of membrane-separated silver carp hydrolysates on ice crystal growth obtained through experiments and molecular dynamics simulation. Food Chem 2023; 414:135695. [PMID: 36809728 DOI: 10.1016/j.foodchem.2023.135695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The membrane-separated silver carp hydrolysates (>10 kD, 3-10 kD and < 3 kD) displayed abilities to mitigate oxidation and denaturation of myofibrillar protein and cryoprotective activities for frozen surimi. However, the mechanism of the membrane-separated fractions on ice crystal growth in the system is still unknown. Therefore, the cryoprotective activities (recrystallization inhibition, RI and thermal hysteresis activity, THA) of the fractions were investigated and the mechanism was explored by molecular dynamics (MD) simulation to predict the probable binding sites and model the possible interactions between the peptides and water/ice. The fractions < 3 kD displayed remarkable RI activity, with significantly higher THA (0.60 ± 0.13 °C) and lower amount of ice nuclei (4.74 ± 0.53%) than that of fractions > 10 kD and 3-10 kD. The results of MD simulation certified that the main peptides in the fractions < 3 kD interacted firmly with water molecules and inhibited growth of ice crystals with mechanism compatible with Kelvin effect. Hydrophilic and hydrophobic amino acid residues in the membrane-separated fractions offered synergistic effects on the inhibition of ice crystals.
Collapse
|
7
|
Wang C, Rao J, Li X, He D, Zhang T, Xu J, Chen X, Wang L, Yuan Y, Zhu X. Chickpea protein hydrolysate as a novel plant-based cryoprotectant in frozen surimi: Insights into protein structure integrity and gelling behaviors. Food Res Int 2023; 169:112871. [PMID: 37254320 DOI: 10.1016/j.foodres.2023.112871] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/07/2023] [Accepted: 04/19/2023] [Indexed: 06/01/2023]
Abstract
Chickpea protein (CP) and its enzymatic hydrolysates are one of the most widely consumed pulse ingredients manifesting versatile applications in food industry, such as binders, emulsifiers, and meat protein substitutes. Other than those well-known functionalities, however, the use of CP as a cryoprotectant remained unexplored. In this study, we prepared the chickpea protein hydrolysate (CPH) and investigated its cryoprotective effects to frozen surimi in terms of the protein structure integrity and gelling behaviors. Results indicated that CPH could inhibit myofibrillar protein (MP) denaturation and oxidation during the freeze-thaw cycling, as evidenced by their increased solubility, Ca2+-ATPase activity, sulfhydryl concentration, and declined content of disulfide bonds, carbonyl concentration and surface hydrophobicity. Freezing-induced changes on MP secondary structures were also retarded. Moreover, gels prepared from CPH-protected frozen surimi demonstrated more stabilized microstructure, uniform water distribution, enhanced elasticity, gel strength and water holding capacity. The CPH alone, at a reducing addition content of 4% (w/w), exhibited comparable cryoprotective performance to that of the commercial formulation (4% sucrose and 4% sorbitol). Therefore, this study provides scientific insights for development of pulse proteins as novel and high-performance food cryoprotectants.
Collapse
Affiliation(s)
- Chao Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Junhui Rao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ting Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jianteng Xu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xi Chen
- Key Laboratory of Bulk Grain and Oil Deep Processing Ministry of Education, Wuhan Polytechnic University, Wuhan 430023, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Yue Yuan
- Center for Nanophase Materials and Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States
| | - Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
8
|
Shang S, Wang Y, Jiang P, Fu B, Dong X, Qi L. Progress in the application of novel cryoprotectants for the stabilization of myofibrillar proteins. Crit Rev Food Sci Nutr 2023; 64:9756-9770. [PMID: 37222573 DOI: 10.1080/10408398.2023.2215874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In this review, the physicochemical and conformational changes of myofibrillar proteins (MPs) of freeze-induced mince-based aquatic foods were comprehensively summarized in depth. Studies have demonstrated that temperature fluctuation and long-time freezing negatively affect food quality, resulting in texture alteration, drip fluid, flavor degradation, and nutrition loss due to MPs denaturation, aggregation, and oxidation. Attempts have been made in ice-recrystallization inhibition, freezing point depression, and ice shape and growth control for better cryopreservation. Moreover, to further minimize the quality deterioration, cryoprotectants were acknowledged to reduce the denaturation and aggregation of the MPs effectively. Recently, interest in novel functional ingredients, including oligosaccharides, protein hydrolysates, and natural polyphenols demonstrated excellent cryoprotective effects while avoiding health concerns and undesirable flavor caused by traditional sugar-based or phosphates-based cryoprotectants. Therefore, the present review provides a systematic overview of these low molecular weight multifunctional substances with a particular sequence and highlights their underlying mechanism in the inhibition of ice recrystallization the stabilization of MPs.
Collapse
Affiliation(s)
- Shan Shang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Yueyue Wang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Pengfei Jiang
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Baoshang Fu
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Xiuping Dong
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Libo Qi
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, National Engineering Research Center of Seafood, State Key Laboratory of Marine Food Processing and Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
9
|
Li HL, Li MJ, Xiong GQ, Cai J, Liao T, Zu XY. Silver Carp ( Hypophthalmichthys molitrix) Scale Collagen Peptides-1 (SCPs1) Inhibit Melanogenesis through Downregulation of the cAMP-CREB Signaling Pathway. Nutrients 2023; 15:nu15112449. [PMID: 37299410 DOI: 10.3390/nu15112449] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The mechanism of silver carp scale collagen peptides (SCPs1) on melanogenesis and its mechanism of action were examined in mouse melanoma cells (B16). The cell viability and effects of SCPs1 on intracellular tyrosinase (TYR) activity and melanin, reactive oxygen species (ROS), glutathione (GSH) and cyclic adenosine monophosphate (cAMP) content were examined. The regulatory mechanism of SCPs1 on the cAMP response element-binding protein (CREB) signaling pathway was analyzed. The cell viability of the SCPs1 group was >80% (0.01-1 mg/mL) and the inhibitory rate of SCPs1 on B16 cell melanin increased in a dose-dependent manner. The highest inhibitory rate of SCPs1 on melanin content reaching 80.24%. SCPs1 significantly increased the GSH content and decreased the tyrosinase activity, as well as the content of ROS and cAMP. Western blot analysis showed that SCPs1 significantly inhibited melanocortin-1 receptor (MC1R) expression and CREB phosphorylation in the cAMP-CREB signaling pathway, leading to downregulation of microphthalmia-associated transcription factor (MITF) and the expression of TYR, TYR-related protein-1 (TRP-1) and TRP-2. SCPs1 also inhibited the expression of MC1R, MITF, TYR, TRP-1 and TRP-2 at the transcriptional level. Taken together, SCPs1 inhibited melanin synthesis through the downregulation of the cAMP-CREB signaling pathway. Fish-derived collagen peptides could potentially be applied in skin whitening products.
Collapse
Affiliation(s)
- Hai-Lan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mei-Jin Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Guang-Quan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiao-Yan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
10
|
Cui M, Li J, Li J, Wang F, Li X, Yu J, Huang Y, Liu Y. Screening and characterization of a novel antifreeze peptide from silver carp muscle hydrolysate. Food Chem 2023; 403:134480. [DOI: 10.1016/j.foodchem.2022.134480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
|
11
|
Huang JB, Kong XW, Chen YY, Chen J. Assessment of flavor characteristics in snakehead ( Ophiocephalus argus Cantor) surimi gels affected by atmospheric cold plasma treatment using GC-IMS. Front Nutr 2023; 9:1086426. [PMID: 36712526 PMCID: PMC9875017 DOI: 10.3389/fnut.2022.1086426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
The gel formation ability of freshwater surimi is weak, resulting in its poor flavor and quality. Atmospheric cold plasma (ACP), a widely developed non-thermal processing technology in the food industry, is considered to have potential applications in maintaining and improving the flavor characteristics of surimi gels. In this study, the effect of ACP on snakehead surimi gels flavor at different treatment times was investigated by sensory evaluation and gas chromatography-ion mobility spectrometry (GC-IMS) analysis. The results showed that ACP could better maintain and improve the original appearance and tissue state characteristics of surimi gels, scoring about 1-2 points higher than the ACP-untreated group. GC-IMS analysis demonstrated the obvious difference in the volatile organic compounds (VOCs) among the treatment groups. Specifically, the samples treated for 120 s with ACP exhibited the most unique aroma characteristics, which probably related to the highest thiobarbituric acid reactive substances values (73.28 μmol MDA/kg sample). Meanwhile, the reduced TCA-soluble peptides content indicated that ACP could inhibit protein degradation to maintaining the tissue state and flavor characteristics of the surimi gels. In conclusion, the advantages of ACP treatment, such as little damage to nutrients, and maximum retention of original sensory properties, provide new ideas for its application in the flavor characteristics of the snakehead surimi gels.
Collapse
Affiliation(s)
- Jia-bao Huang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xian-wang Kong
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, China
| | - Ying-yun Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China,*Correspondence: Jing Chen,
| |
Collapse
|
12
|
Food Protein-Derived Antioxidant Peptides: Molecular Mechanism, Stability and Bioavailability. Biomolecules 2022; 12:biom12111622. [PMID: 36358972 PMCID: PMC9687809 DOI: 10.3390/biom12111622] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/22/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
The antioxidant activity of protein-derived peptides was one of the first to be revealed among the more than 50 known peptide bioactivities to date. The exploitation value associated with food-derived antioxidant peptides is mainly attributed to their natural properties and effectiveness as food preservatives and in disease prevention, management, and treatment. An increasing number of antioxidant active peptides have been identified from a variety of renewable sources, including terrestrial and aquatic organisms and their processing by-products. This has important implications for alleviating population pressure, avoiding environmental problems, and promoting a sustainable shift in consumption. To identify such opportunities, we conducted a systematic literature review of recent research advances in food-derived antioxidant peptides, with particular reference to their biological effects, mechanisms, digestive stability, and bioaccessibility. In this review, 515 potentially relevant papers were identified from a preliminary search of the academic databases PubMed, Google Scholar, and Scopus. After removing non-thematic articles, articles without full text, and other quality-related factors, 52 review articles and 122 full research papers remained for analysis and reference. The findings highlighted chemical and biological evidence for a wide range of edible species as a source of precursor proteins for antioxidant-active peptides. Food-derived antioxidant peptides reduce the production of reactive oxygen species, besides activating endogenous antioxidant defense systems in cellular and animal models. The intestinal absorption and metabolism of such peptides were elucidated by using cellular models. Protein hydrolysates (peptides) are promising ingredients with enhanced nutritional, functional, and organoleptic properties of foods, not only as a natural alternative to synthetic antioxidants.
Collapse
|
13
|
Formation of advanced glycation end-products in silver carp (Hypophthalmichthys molitrix) surimi products during heat treatment as affected by freezing-thawing cycles. Food Chem 2022; 395:133612. [DOI: 10.1016/j.foodchem.2022.133612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/02/2022] [Accepted: 06/28/2022] [Indexed: 01/04/2023]
|
14
|
Lin H, Lai K, Zhang J, Wang F, Liu Y, Rasco BA, Huang Y. Heat-induced formation of advanced glycation end-products in ground pork as affected by the addition of acetic acid or citric acid and the storage duration prior to the heat treatments. Food Chem X 2022; 15:100387. [PMID: 36211737 PMCID: PMC9532729 DOI: 10.1016/j.fochx.2022.100387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Organic acids affected advanced glycation end-product (AGE) levels in heated pork. Heat-induced AGEs in pork with citric acid (ca 0.5–1%) were reduced by 30–54%. Adding acetic acid at the same level led to 14–48% reduction of AGEs. The reduction of AGEs corresponded to decreased levels of TBARS and Schiff bases. Marinating time (pork & acid) did not affect the acid’s inhibiting effect for AGEs.
The heat-induced (121 °C, 10 or 30 min) formation of two potentially hazardous advanced glycation end-products (AGEs), protein-bound Nɛ-carboxymethyllysine (CML) and Nɛ-carboxyethyllysine (CEL), in pork as affected by citric or acetic acid (0.5, 1 g/100 pork) and the storage duration (0 °C, 0 – 8 d) prior to the heating was investigated. A longer storage time of raw pork resulted in higher levels of AGEs produced during the later heating, likely due to the accumulation of some AGE precursors during the storage. Depending on the acid level and heating time, adding acid in pork led to 30 – 54% (citric acid) or 14 – 48% (acetic acid) average reduction of heat-induced production of CML/CEL, which corresponded to the reduction of thiobarbituric acid reactive substances and Schiff bases. The marinating time of raw pork with an acid did not significantly affect (P = 0.959 – 0.998) the acid’s inhibition effect on heat-induced formation of CML/CEL.
Collapse
Affiliation(s)
- Hui Lin
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 HuchengHuan Road, Nanhui New City, Shanghai 201306, China
| | - Juanjuan Zhang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| | - Barbara A Rasco
- College of Agriculture and Natural Resources, University of Wyoming, Dept 3354, 1000 E University Ave, Laramie, WY 83071, United States
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali South Rd, Changsha, Hunan 410114, China
| |
Collapse
|
15
|
Fu Y, Liu C, Yan X, Jiang G, Dang Q, Wang L, Liu X. Physicochemical and functional properties of the muscle protein fraction of Hypomesus olidus. Food Chem X 2022; 16:100484. [PMID: 36313272 PMCID: PMC9615135 DOI: 10.1016/j.fochx.2022.100484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The physicochemical and functional properties of myofibrillar protein (MP), sarcoplasmic protein (SP), and myostromin (MY) in Hypomesus olidus muscle were evaluated and reported in this study. These fractions are rich in Glu. Three proteins exhibited significantly different morphologies, colors, and particle sizes. The main protein bands of MP, SP, and MY are 15-220 kDa, 26-60 kDa, and 15-245 kDa, respectively. In particular, MP is more hydrophobic. Three proteins exhibited a maximum UV absorption peak at 270 nm, and all amide I secondary structures were shown to be composed of repetitive units (e.g., α-helices and β-sheets). The three proteins demonstrated a predominantly amorphous halo, with Td values of 52.22 °C, 59.16 °C, and 58.09 °C. Regarding their properties in water/oil absorption, emulsification, and foaming, MP is the most preferred, followed by SP and MY. In conclusion, Hypomesus olidus muscle proteins are novel and potential functional nutrition ingredients for the food industry.
Collapse
Affiliation(s)
- Yuan Fu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | | | - Xiaohui Yan
- Finance and Taxation College, Jilin Business and Technology College, No. 1666, Kalun Lake Street, Changchun 130102, Jilin, China
| | - Guochuan Jiang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | - Qiao Dang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
| | - Liyan Wang
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
- Corresponding authors.
| | - Xuejun Liu
- College of Food Science and Engineering, Jilin Agricultural University, No. 2888 Xincheng Street, Changchun 130118, China
- Corresponding authors.
| |
Collapse
|
16
|
Shen Z, Li S, Wu J, Wang F, Li X, Yu J, Liu Y, Ma X. Effect of different oil incorporation on gelling properties, flavor and advanced glycation end-products of silver carp surimi sausages. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
17
|
Changes of proteins and amino acids in soymilk during lactic acid fermentation and subsequent storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01492-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
18
|
Effects of sodium bicarbonate and sodium phosphates on the formation of advanced glycation end-products in minced pork during cold storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
Li J, Niu L, Yu J, Wang F, Li X, Huang Y, Liu Y. Effects of frozen temperature and multiple freeze‐thaw cycles on gel structure, protein and lipid oxidation and formation of advanced glycation end‐products in unwashed silver carp surimi. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiayi Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Lihong Niu
- School of Food Engineering Ludong University Yantai 264025 Shandong China
| | - Jian Yu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Faxiang Wang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Xianghong Li
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yiqun Huang
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| | - Yongle Liu
- Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, School of food science and bioengineering Changsha University of Science and Technology Changsha 410114 China
| |
Collapse
|
20
|
de Albuquerque Sousa TC, Ferreira VCDS, da Silva Araújo ÍB, da Silva FAP. Natural Additives as Quality Promoters in Surimi: a Brief Review. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2092434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Thamyres César de Albuquerque Sousa
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Valquiria Cardoso da Silva Ferreira
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Íris Braz da Silva Araújo
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| | - Fábio Anderson Pereira da Silva
- Postgraduate Program in Agrifood Technology, Center for Human, Social and Agrarian Sciences, Federal University of Paraíba, Bananeiras, Brazil
| |
Collapse
|
21
|
Yuan C, Li X, Huang Y, Yang D, Zhang Y, Shi Y, Wu J, Wang S, Zhang L. Cryoprotective effect of low molecular weight collagen peptides on myofibrillar protein stability and gel properties of frozen silver carp surimi. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01362-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Zhu X, Zhu M, He D, Li X, Shi L, Wang L, Xu J, Zheng Y, Yin T. Cryoprotective Roles of Carboxymethyl Chitosan during the Frozen Storage of Surimi: Protein Structures, Gel Behaviors and Edible Qualities. Foods 2022; 11:356. [PMID: 35159506 PMCID: PMC8833919 DOI: 10.3390/foods11030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Carboxymethyl chitosan (CMCh) is an ampholytic chitosan derivative that manifests versatile applications in food industry, such as antibacterial ingredients and nutritional additives. However, its use as a cryoprotectant remains under-researched. In this study, the cryoprotective effect of CMCh oligosaccharide (CMCO) on frozen surimi (silver carp) was systematically investigated in terms of protein structures, gelling behaviors, and sensory qualities. CMCO (0.6%) was incorporated in the surimi before frozen storage (-18 °C for 60 days) while the commercial cryoprotectant (4% sucrose, 4% sorbitol) was used as a positive control. Results indicated that CMCO could inhibit the freezing-induced denaturation of myofibrillar protein, whose values of solubility, Ca2+-ATPase and sulfhydryl content were 24.8%, 64.7%, and 17.1% higher than the nonprotected sample, respectively, while the surface hydrophobicity was 21.6% lower. Accordingly, CMCO stabilized microstructure of the surimi gels associated with improved gel strength, viscoelasticity, water-holding capacities, and whiteness. Moreover, the cryoprotective effect of CMCO with higher degree of carboxymethyl substitution (DS: 1.2) was more pronounced than that of low-DS-CMCO (DS: 0.8). Frozen surimi treated with high-DS-CMCO achieved competitive gelling properties and sensory acceptability to those with the commercial counterpart. This study provided scientific insights into the development of ampholytic oligosaccharides as food cryoprotectants.
Collapse
Affiliation(s)
- Xiangwei Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Minglang Zhu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Diheng He
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xueyin Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Liu Shi
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Lan Wang
- Institute for Farm Products Processing and Nuclear-Agricultural Technology, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Jianteng Xu
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Tao Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
23
|
Zhang G, Zhu C, Walayat N, Nawaz A, Ding Y, Liu J. Recent development in evaluation methods, influencing factors and control measures for freeze denaturation of food protein. Crit Rev Food Sci Nutr 2022; 63:5874-5889. [PMID: 34996325 DOI: 10.1080/10408398.2022.2025534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Frozen storage is most widely adopted preservation method to maintain food freshness and nutritional attributes. However, at low temperature, food is prone to chemical changes such as protein denaturation and lipid oxidation. In this review, we discussed the reasons and influencing factors that cause protein denaturation during freezing, such as freezing rate, freezing temperature, freezing method, etc. From the previous literatures, it was found that frozen storage is commonly used to prevent freeze induced protein denaturation by adding cryoprotectants to food. Some widely used cryoprotectants (for example, sucrose and sorbitol) have been reported with higher sweetness and weaker cryoprotective abilities. Therefore, this article comprehensively discusses the new cryopreservation methods and providing comparative study to the conventional frozen storage. Meanwhile, this article sheds light on the freeze induced alterations, such as change in functional and gelling properties. In addition, this article could be helpful for the prolonged frozen storage of food with minimum quality related changes. Meanwhile, it could also improve the commercial values and consumer satisfaction of frozen food as well.
Collapse
Affiliation(s)
- Gaopeng Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Chunyan Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, P.R. China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, P.R. China
- National R & D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, P.R. China
| |
Collapse
|